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Abstract: We propose a mathematical model based on a system of differential equations, which
incorporates the impact of the chronic health conditions of the host population, to investigate the
transmission dynamics of COVID-19. The model divides the total population into two groups,
depending on whether they have underlying conditions, and describes the disease transmission both
within and between the groups. As an application of this model, we perform a case study for
Hamilton County, the fourth-most populous county in the US state of Tennessee and a region with
high prevalence of chronic conditions. Our data fitting and simulation results quantify the high risk
of COVID-19 for the population group with underlying health conditions. The findings suggest that
weakening the disease transmission route between the exposed and susceptible individuals, including
the reduction of the between-group contact, would be an effective approach to protect the most
vulnerable people in this population group.
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1. Introduction

COVID-19 has been a global pandemic for more than one year, with over 100 million cases reported
throughout the world. In the United States (US) alone, COVID-19 already led to nearly 30 million cases
and over half million deaths, as of early March, 2021. The elderly and those with chronic conditions
have been among the most vulnerable groups for the COVID-19 infection [1, 2].

It is estimated that 22% of the global population, or 1.7 billion people, have at least one underlying
health conditions that put them at higher risk for severe COVID-19 associated illness, and that 4% of
the global population, or 349 million people, would require hospital admission if infected with
COVID-19 [3]. A recent study conducted by CDC reports that among COVID-19 cases, the most
common underlying health conditions are cardiovascular disease (32%), diabetes (30%), and chronic
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lung disease (18%). It is also found that among those with reported underlying conditions,
hospitalizations were 6 times higher and deaths were 12 times higher compared to those without an
underlying condition [4]. In another study, it is found that among 3,142 US counties, the median
estimate of the prevalence of any of five underlying medical conditions (chronic obstructive
pulmonary disease, heart disease, diabetes, chronic kidney disease, and obesity) associated with
increased risk of severe COVID-19 infection among adults is 47.2%. Counties with the highest
prevalences of these health conditions are concentrated in Alabama, Mississippi, Tennessee, and
several other southeastern states [5].

The widespread presence of underlying health conditions plays a significant role in raising the
numbers of severe COVID-19 infections and subsequent hospitalizations, in contributing to the
disease-induced mortality rates, and in shaping the overall pattern of the COVID-19 epidemics. On
the other hand, the quantitative relationship between the transmission and spread of COVID-19 and
the underlying health conditions of the population remains unclear at present, which hinders our
further understanding of COVID-19 dynamics and the design of effective control strategies to protect
the most vulnerable [6, 7]. In this work, we propose to use mathematical modeling to study this
relationship and to quantify the impact of chronic conditions on the COVID-19 transmission
dynamics. Thus far, there have been a large number of mathematical, statistical and computational
models developed to study the transmission and spread of COVID-19 and to forecast its epidemic
development (see, e.g., [8–17] and references therein). However, to our knowledge, none of these
models have been designed to investigate the effects of the chronic medical conditions on the
incidence, prevalence and transmission of COVID-19 and associated severe illness.

Our aim is to develop a general modeling framework that can quantify the correlation between
COVID-19 transmission and underlying medical conditions, and predict the specific numbers of the
infected individuals with underlying conditions and those without such health conditions. To that end,
we divide the host population into two groups, depending on whether or not they have underlying
health conditions. Individuals within each group are classified into the susceptible, exposed, infected,
hospitalized, and recovered compartments, where both the exposed and infected individuals are capable
of transmitting the disease, and where the hospitalized compartment contains individuals with severe
COVID-19 infection. Our model then describes the disease progression within each group as well as
the cross-transmission of the disease between the two groups.

As a demonstration of our modeling work, we apply it to study the transmission of COVID-19 in
Hamilton County, the fourth-most populous county in the US state of Tennessee. The total population
of Hamilton County is 367,804 [18] and Chattanooga, the fourth-largest city in Tennessee, is its
county seat. With several cities, towns, census-designated places and unincorporated communities,
Hamilton County forms a region that combines both urban and rural areas. Its racial makeup is about
74.75% White and 25.25% other races. With age-adjusted death rates in the region 13.7% higher than
national averages, and with the prevalence of chronic heart disease, chronic obstructive pulmonary
disease, diabetes, and obesity exceeding national rates, a significant portion of the population in
Hamilton County is considered highly vulnerable to COVID-19 [19]. Through a collaboration with
the Chattanooga COVID-19 Data and Analytics Working Group [20], the authors of this work have
been provided and continuously updated with detailed epidemic, demographic and health data for
Hamilton County.

We implement our mode for Hamilton County in the time period from December 1st, 2020 to
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February 28th, 2021. After almost a year since COVID-19 was first reported, the general public already
have a good understanding of the disease risk and get used to the social distancing normal. We thus
assume that there was no significant change of human behavior during this three-month period, which
allows the parameters, particularly the transmission rates, in our model to be reasonably approximated
as constants [21]. On the other hand, December 2020 marked a time when the second wave of COVID-
19 was spreading throughout the US. Our modeling study allows us to investigate the development and
progression of this epidemic wave, taking into account the underlying health conditions of the host
population, and make near-term predictions of the future evolution of COVID-19.

The remainder of this paper is organized as follows. Section 2 presents the mathematical
formulation of our two-group model. Section 3 discusses parameter values, with a focus on the
estimation of the transmission rates through data fitting. Section 4 conducts a sensitivity analysis to
the model parameters in terms of the state variables and the basic reproduction number. Section 5
presents simulation results and near-term forecasts for the epidemic progression of COVID-19.
Section 6 concludes the paper with some discussion.

2. Model formulation

We propose a mathematical model based on differential equations to investigate the transmission
dynamics of COVID-19, with an emphasis on the relationship between the disease transmission and the
chronic health conditions of the hosts. We divide the total human population into two groups: Group I
consists of individuals without underlying health conditions, and Group II consists of individuals with
at least one underlying health conditions. We partition each group i (i = 1, 2) into five compartments,
including the susceptible individuals (denoted by S i), the exposed individuals (denoted by Ei), the
infected but non-hospitalized individuals (denoted by Ii), the hospitalized individuals (denoted by Hi),
and the recovered individuals (denoted by Ri).

Both the exposed and infected individuals are assumed to be infectious and are capable of
transmitting the disease to susceptible individuals [22–24]. The exposed compartment in our model is
treated the same as a pre-symptomatic or asymptomatic compartment in other studies [11, 25].
Individuals in the exposed compartment typically do not show symptoms and have not been
tested/confirmed; they may either recover directly from the exposed state, or transfer into the infected
and hospitalized states after an incubation period. Individuals in the infected compartment have tested
positive but only show minor or moderate symptoms. They are typically advised, though not in a
mandatory manner, to self-quarantine at home until full recovery. Individuals in the hospitalized
compartment have tested positive and are at high risk that necessitates hospital admission. We assume
that disease-induced deaths only occur in hospitalized individuals. We also assume that hospitalized
individuals do not have contact with the public due to their strict isolation, and they will not transmit
the disease to others.

Our two-group COVID-19 model is described by the following system. A flow diagram for this
model is given in Figure 1.
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Group I: Individuals without underlying health conditions.

dS 1

dt
= Λ1 − β

E
11S 1E1 − β

I
11S 1I1 − β

E
12S 1E2 − β

I
12S 1I2 − µ1S 1,

dE1

dt
= βE

11S 1E1 + βI
11S 1I1 + βE

12S 1E2 + βI
12S 1I2 − (γ11 + α1 + µ1)E1,

dI1

dt
= α1(1 − p1)E1 − (γ12 + µ1)I1,

dH1

dt
= α1 p1E1 − (w1 + γ13 + µ1)H1,

dR1

dt
= γ11E1 + γ12I1 + γ13H1 − µ1R1.

(2.1)

Group II: Individuals with underlying health conditions.

dS 2

dt
= Λ2 − β

E
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22S 2I2 − µ2S 2,

dE2
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21S 2E1 + βI
21S 2I1 + βE

22S 2E2 + βI
22S 2I2 − (γ21 + α2 + µ2)E2,

dI2

dt
= α2(1 − p2)E2 − (γ22 + µ2)I2,

dH2

dt
= α2 p2E2 − (w2 + γ23 + µ2)H2,

dR2

dt
= γ21E2 + γ22I2 + γ23H2 − µ2R2.

(2.2)
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Figure 1. Flow diagram for Group i (i = 1, 2).

For each group i (i = 1, 2), Λi is the population influx rate, µi is the natural death rate, αi is the
incubation rate, pi is the portion of exposed individuals who become severely ill and hospitalized
after the incubation period, γi1, γi2 and γi3 are the rates of recovery from the exposed, infected (non-
hospitalized), and hospitalized individuals, respectively, and wi is the disease-induced death rate. The
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parameters βE
i j and βI

i j (i, j = 1, 2) are the transmission rates between compartments S i and E j, and
between compartments S i and I j, respectively. We assume that all these parameters are constants, and
their values are discussed in the next section.

3. Data fitting

We list the model parameters and their base values in Table 1. For those parameters whose base
values are not available, we will use data fitting to estimate their values. The total population of
the region in this study (Hamilton County) is N = 367, 804 [18]. According to an estimate from
CDC [5], about 40% of the population have at least one underlying health conditions. We thus set
the population sizes of the two groups as N1 = 0.6N and N2 = 0.4N. We calculate the influx rate
of susceptible individuals in each group (i = 1, 2) by Λi = µiNi, where we take µ1 = µ2 = µ as
the natural birth and death rate in the region. The incubation period of the infection ranges between
2 and 14 days, with a mean of 5–7 days [26]. We choose the base value of α−1

1 = α−1
2 = 7 days

in our model. Among individuals who have tested positive, the portion of severe infections, which
would lead to hospitalization, ranges from 5% to 20% [27]. A recent study conducted by CDC found
that hospitalizations were 6 times higher and deaths were 12 times higher among those with reported
underlying conditions, compared to those with none reported [4]. We thus take the values p1 = 0.03,
p2 = 0.18, and w1 = 1.2 × 10−3, w2 = 1.44 × 10−2. The recovery period from COVID-19 has a wide
variation (1.5–30 days) among different patients [27], depending on their severities, ages, and overall
health conditions. In our model, disease recovery occurs in the exposed, infected, and hospitalized
compartments. Those who recover directly from the exposed state typically exhibit no symptoms and
have a fast recovery; we set their average recovery period as 5 days in the model, which gives γ11 =

γ21 = 0.2 per day. Most of the infected individuals, with minor or moderate symptoms, may recover
without going to a hospital; we set their average recovery rates as γ12 = 0.12 per day and γ22 = 0.08 per
day. The hospitalized individuals, typically with more severe symptoms, may need a longer recovery
period; on the other hand, they receive intensive medical treatment which may accelerate their recovery
process. Moreover, it is observed that the length of the average hospital stay for COVID-19 patients
with chronic health conditions is 1.5 times that for those without underlying conditions [28]. Hence,
we take their average recovery rates γ13 = 0.12 per day and γ23 = 0.08 per day as well.

Other parameter include the 8 transmission rates βE
i j and βI

i j (i, j = 1, 2), which typically vary from
place to place and from time to time. Prior studies [11,15,16] have shown that the transmission rates are
especially sensitive for COVID-19 modeling and have significant impact on the model output. In this
study, we estimate all these transmission rates through data fitting, based on the regional COVID-19
data for Hamilton County [20].

We start our numerical study on December 1, 2020, when the second wave of COVID-19 was
spreading throughout the US. We run the simulation and data fitting for a three-month period (until
February 28, 2021). Using the demographic and epidemic data reported in Hamilton County [19, 20],
we set the initial conditions as: S 1(0) = 203164, E1(0) = 2000, I1(0) = 3000, H1(0) = 18, R1(0) =

13000; S 2(0) = 144315, E2(0) = 300, I2(0) = 500, H2(0) = 107, R2(0) = 2000. Figure 2 shows
the reported number of cumulative confirmed cases in Hamilton County versus our fitting curve in this
three-month period. We observe a high degree of match between our simulation result and the reported
data. The parameter values found through the data fitting and their 95% confidence intervals (CI) are
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Table 1. Model parameters and their base values (p=person, d=day).

Parameter Description Value Source
N Population size in Hamilton County 367804 p [18]
µ Natural birth and death rate 2.74 × 10−5/d [19]
α1 Incubation rate in group I 1/7/d [26]
α2 Incubation rate in group II 1/7/d [26]
p1 Ratio of hospitalization in group I 0.03 [4, 27]
p2 Ratio of hospitalization in group II 0.18 [4, 27]
w1 Disease-induced death rate in group I 0.0012/d [2, 4]
w2 Disease-induced death rate in group II 0.0144/d [2, 4]
γ11 Recovery rate of exposed individuals in group I 0.2/d [27]
γ21 Recovery rate of exposed individuals in group II 0.2/d [27]
γ12 Recovery rate of infected individuals in group I 0.12/d [27, 28]
γ22 Recovery rate of infected individuals in group II 0.08/d [27, 28]
γ13 Recovery rate of hospitalized individuals in group I 0.12/d [27, 28]
γ23 Recovery rate of hospitalized individuals in group II 0.08/d [27, 28]
βE

11 Transmission rate between S 1 and E1 fitting by data –
βE

12 Transmission rate between S 1 and E2 fitting by data –
βE

21 Transmission rate between S 2 and E1 fitting by data –
βE

22 Transmission rate between S 2 and E2 fitting by data –
βI

11 Transmission rate between S 1 and I1 fitting by data –
βI

12 Transmission rate between S 1 and I2 fitting by data –
βI

21 Transmission rate between S 2 and I1 fitting by data –
βI

22 Transmission rate between S 2 and I2 fitting by data –

presented in Table 2.

Table 2. Parameter values estimated by data fitting.

Parameter Fitted value 95% CI Parameter Fitted value 95% CI
βE

11 1.77 × 10−6 (0, 3.25 × 10−5) βI
11 2.10 × 10−9 (0, 5.04 × 10−5)

βE
12 2.50 × 10−7 (0, 3.13 × 10−4) βI

12 2.63 × 10−10 (0, 1.71 × 10−5)
βE

21 2.76 × 10−7 (0, 5.67 × 10−4) βI
21 3.91 × 10−10 (0, 3.44 × 10−5)

βE
22 9.36 × 10−7 (0, 1.35 × 10−4) βI

22 8.55 × 10−11 (0, 1.04 × 10−6)

In order to quantify the goodness-of-fit, we calculate the normalized mean square error (NMSE),
which is defined by

NMSE =
n
∑n

i=1(yi − ŷi)2

(
∑n

i=1 yi)(
∑n

i=1 ŷi)
,

where yi (1 ≤ i ≤ n) are the reported data, ŷi (1 ≤ i ≤ n) are the simulated data, and n is the number of
data points used. In general, a lower value of NMSE indicates a better quality of fitting. We find that
the NMSE for our data fitting is 0.00023.

In Eq (A3) of the Appendix, we have derived the basic reproduction number R0 for our model.
In Theorem A1.1, we have shown that when R0 < 1, the disease would be eradicated. Based on the
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Figure 2. Data fitting result for the cumulative confirmed cases in Hamilton County from
12/1/2020 to 2/28/2021. The circles (in blue) denote the reported cases and the solid line (in
red) denotes the fitting result.

parameter values in Tables 1 and 2, we are able to evaluate the basic reproduction number in this region,
and we find that R0 ≈ 1.16, which is consistent with the persistence of the disease during these three
months.

In addition, we observe in Table 2 that βE
11, βE

12, βE
21 and βE

22 are much higher in values than
βI

11, β
I
12, β

I
21 and βI

22, indicating that the exposed individuals play a significantly larger role than that
of the infected individuals in the disease transmission and spread. This can be clearly expected since
infected individuals who have tested positive are generally recommended or required to quarantine at
home, while those severely infected ones are treated and isolated in hospitals, and so they possess a
lower risk in transmitting the disease compared to the exposed individuals who are asymptomatic but
infectious. Meanwhile, among the four parameters associated with the exposed-to-susceptible
transmission route, we see that βE

11 is the largest and βE
22 is the second largest, and even the second

largest one is about four times of the values of βE
12 and βE

22, showing that the contact and transmission
within each group may play a more important role than the cross-transmission between the two
groups (I and II).

4. Sensitivity analysis

Our model involves a relatively large number of parameters. To investigate changes of which
parameters have higher impact on model output, we conduct a sensitivity analysis of the parameters
with respect to the state variables and the basic reproduction number. We consider the following 20
parameters, βE

11, β
E
12, β

E
21, β

E
22, βI

11, β
I
12, β

I
21, β

I
22, γ11, γ12, γ13, γ21, γ22, γ23, α1, α2, p1, p2,w1, and w2, in our

model. The sensitivity of the state variables measures the influence of parameters on model
prediction, whereas the sensitivity of the basic reproduction number quantifies the influence of
parameters in shaping the disease risk.
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We first employ the basic differential equation analysis approach [29] to derive the sensitivity
equations for our system (2.1) and (2.2). Denote the sets of state variables by

X1 = {S 1, E1, I1,H1,R1}, X2 = {S 2, E2, I2,H2,R2},

and the set of parameters by

P = {βE
11, β

E
12, β

E
21, β

E
22, β

I
11, β

I
12, β

I
21, β

I
22, γ11, γ12, γ13, γ21, γ22, γ23, α1, α2, p1, p2,w1,w2}.

For Xi ∈ Xi and y ∈ P, we define the relative sensitivity s(Xi, y) of the state Xi to the parameter y,
non-dimensionalized by the state Xi and the parameter value y, as

s(Xi, y) =
∂Xi

∂y
·

y
Xi
, Xi , 0, i = 1, 2. (4.1)

To compute the partial derivative
∂Xi

∂y
, which is also referred to as a quasi-state variable, we differentiate

it with respect to t to obtain

∂

∂t

(
∂Xi

∂y

)
=

∂

∂y

(
∂Xi

∂t

)
, Xi ∈ Xi, y ∈ P, i = 1, 2. (4.2)

We then numerically solve for the quasi-state solutions
{
∂Xi

∂y
: Xi ∈ Xi, y ∈ P, i = 1, 2

}
by associating

systems (2.1) and (2.2) with system (4.2).
A typical set of results are presented in Figure 3, where we list the relative sensitivities of the state

variables H1, H2, I1 and I2 with respect to the most sensitive parameters in the set P. Unlisted
parameters have low sensitivities that are very close to 0. We clearly observe that βE

11 has the highest
sensitivity for H1, H2 and I1, and the second highest sensitivity for I2, which implies that the
exposed-to-susceptible transmission route within Group I has a major impact on the epidemic
progression. Meanwhile, we see the other three parameters associated with the exposed-to-susceptible
transmission route; i.e., βE

12, βE
21 and βE

22, are also sensitive for all the four state variables, consistent
with our observation from the data fitting result. Additionally, we find that the incubation rates
(represented by αi), recovery rates (represented by γi j), and hospitalization ratios (represented by pi),
are also among the sensitive parameters for the four state variables. We will further explore the impact
of these sensitive parameters on the simulation results in section 5.

Next, we use the expression in equation (A3) to compute the relative sensitivity of the basic

reproduction number R0 with respect to each parameter y ∈ P; i.e.,
∂R0

∂y
·

y
R0

. The results are listed in

Table 3, where the parameters are ranked in terms of their sensitivities. We observe a general pattern
consistent with that in Figure 3. In particular, we observe that the four transmission rates βE

11, βE
22, βE

12
and βE

21 have the highest sensitivity for R0, indicating that the changes of their values would have most
significant impact on the reduction of the basic reproduction number. According to Theorem A1.1,
reducing R0 below unity would eradicate the infection. Consequently, disease control measures
reducing the contact rate (such as social distancing) or the transmission probability (such as
vaccination) between the exposed and susceptible individuals, may be most efficient in containing the
COVID-19 epidemic.
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Figure 3. Relative sensitivities of the most sensitive parameters for the numbers of infected
and hospitalized individuals.

Moreover, we visualize the variations of R0 with respect to each transmission rate in Figure 4.
Specifically, we change the value of each transmission rate from 50% to 200% of its base value in
Table 2, and use Eq (A3) to calculate R0 correspondingly. Figures 4a and 4b again show that R0 is
typically more sensitive to βE

i j than to βI
i j, i, j = 1, 2, which is another piece of evidence that exposed

individuals play a greater role than that of infected individuals in the disease transmission and spread.

5. Simulation results

Our data fitting and numerical simulation are conducted on the three-month period from December
1, 2020 to February 28, 2021. Figure 5 displays the exposed cases, infected cases, and hospitalized
cases in Group I (without underlying health conditions) and Group II (with underlying health
conditions). We observe that the numbers of exposed and infected individuals in Group I are much
higher than those in Group II (see Figure 5a,b). These differences can be possibly explained by: (1)
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Table 3. Ranked parameter sensitivity (from the highest to the lowest) for R0 .

Rank Parameter Sensitivity Rank Parameter Sensitivity
1 βE

11 0.828 11 γ22 3.12 × 10−5

2 βE
22 5.26 × 10−2 12 βI

21 2.56 × 10−5

3 βE
12 1.57 × 10−2 13 βI

12 2.42 × 10−5

4 βE
21 1.56 × 10−2 14 α2 1.82 × 10−5

5 γ12 1.17 × 10−3 15 βI
22 7.04 × 10−6

6 βI
11 1.14 × 10−3 16 p2 6.85 × 10−6

7 α1 6.81 × 10−4 17 γ13 0
8 γ11 6.80 × 10−4 18 γ23 0
9 γ21 1.82 × 10−4 19 w1 0
10 p1 3.61 × 10−5 20 w2 0
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Figure 4. Variations of R0 in terms of the transmission rates.

the size of Group I is larger than that of Group II; (2) individuals in Group I, considered as more
healthy, generally have a higher level of physical activity, including mobility and personal contact,
than that for individuals in Group II; and (3) individuals in Group II, aware of their underlying health
conditions, are generally more cautious about the infection risk of COVID-19. On the other hand,
Figure 5c,d shows that the numbers of hospitalizations and deaths in Group I are significantly lower
than those in Group II, since individuals with underlying health conditions have a much higher chance
to develop severe illness due to COVID-19. In particular, the number of disease-induced deaths in
Group I only increased slightly and remained at a very low level during the three-month period ,
whereas the number of deaths in Group II increased by more than 100 in the same period. For the
hospitalized cases, the curves for both groups reach a peak around December 30, several days behind
the peaks of the exposed and infected cases, and then decline afterwards. The time interval for the
occurrence of the peak values of the exposed, infected and hospitalized cases in both groups coincide
with the Christmas–New Year holiday period, a reflection of the impact of the increased mobility and
personal contact due to holiday travels.
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Figure 5. Simulation results for the numbers of exposed, infected and hospitalized
individuals in Group I (without underlying health conditions) and Group II (with underlying
health conditions).

Figure 5 provides base scenarios of our model simulation from December 1, 2020 to February 28,
2021, using transmission rates estimated from data fitting that are presented in Table 2. Also, from
the same table, we have observed that the values of the within-group transmission rates βE

11 and βE
22 are

much higher than those of the inter-group transmission rates βE
12 and βE

21. In order to quantify the role
played by the cross-transmission between the two groups, we simulate a hypothetical scenario where
there is no communication between the two groups; i.e., the two groups are decoupled from each other.
Effectively, we set the four between-group transmission rates βE

12, βE
21, βI

12 and βI
21 to zero, and run

the model simulation. Results for the numbers of exposed and infected individuals are presented in
Figure 6. Compared to Figures 5a and 5b, we see that the curves for Group I only have slight changes,
whereas the curves for Group II are dramatically different. Without the between-group transmission,
the numbers of exposed and infected individuals in Group II would both quickly approach zero. This
pattern implies that the cross-transmission has a minor effect on the Group I disease dynamics, but it
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is critical for the disease progression and persistence in Group II. Neglecting such cross-transmission
would severely underestimate the disease risk for Group II.
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Figure 6. Simulation results for the numbers of exposed and infected individuals in a
hypothetical scenario where there is no communication between Group I and Group II.
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Figure 7. Comparison between the reported number of hospitalizations and the numerical
simulation results. The circles (in blue) represent the reported cases, the solid line (in
red) represents the simulation result from the original model, and the dashed line (in red)
represents the simulation result for the scenario where the between-group communication is
not present.

A major concern of the health administrations is whether the hospital capacity can meet the demands
of COVID-19 patients with severe illness. This underscores the importance of accurate simulation
and prediction of hospitalizations that result from the COVID-19 infection. Our model is capable of
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computing the number of hospitalized cases from each of the two population groups. As a means
to validate our model simulation, we calculate the total number of hospitalizations; i.e., H1 + H2 in
our model, and compare with the reported hospitalized cases from December 1, 2020 to February 28,
2021. Figure 7 depicts this comparison, and we observe a similar trend and reasonably good agreement
between these two sets of (reported and simulated) data. In particular, we notice that the peak values
of the hospitalized cases, for both the reported and simulated data, occur around December 30, similar
to what we observed in Figure 5c. Additionally, we have also plotted in Figure 7 the simulation result
for the hypothetical scenario where the inter-group transmission is removed, and we again observe a
significant underestimate for the number of hospitalizations.

The results in Figures 6 and 7 imply that, from the disease control point of view, reducing the
between-group contact could be a strategic approach to bring down the exposed, infected and
hospitalized cases in Group II, and to effectively protect the individuals with underlying health
conditions.
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Figure 8. Simulation results for the numbers of exposed, infected, and hospitalized
individuals from March 1 to March 31, 2021.

In what follows, we use our model to make predictions for the near future with regard to COVID-19
epidemic development in Hamilton County. Figure 8 shows the simulation results for the numbers of
exposed, infected, and hospitalized cases (two groups combined) for the one-month period from March
1, 2021 to March 31, 2021, based on the parameter values in Tables 1 and 2. We clearly see that all
the three curve move downward, a continuation of the decline of the epidemic from the previous two
months (see Figure 5). In particular, the decrease of the infected cases is substantial.

Figure 8 is regarded as a base scenario for our model prediction in the near term (March 1 to
March 31, 2021). Since our model involves many parameters, and since some of these parameters are
considerably sensitive (see section 4 for our sensitivity analysis results), we perform a detailed
simulation study to quantify the changes of the model predictions when the values of these most
sensible parameters vary.

We first study the variation of the recovery rates. The parameters γi1, γi2 and γi3 in our model
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(a) 75% of the base values of recovery rates

3/1 3/5 3/10 3/15 3/20 3/25 3/31
0

50

100

150

200

250

300

350

400

450

500
Exposed cases

Infected cases

Hospitalized cases

(b) 125% of the base values of recovery rates

Figure 9. Simulation results for the numbers of the exposed, infected, and hospitalized
individuals from March 1 to March 31, 2021, with different recovery rates γi j (i = 1, 2; j =

1, 2, 3).
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(a) α1 = α2 = 0.1 per day
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(b) α1 = α2 = 0.2 per day

Figure 10. Simulation results for the numbers of the exposed, infected, and hospitalized
individuals from March 1 to March 31, 2021, with different incubation rates represented by
αi (i = 1, 2).

represent the recovery rates of the exposed, infected and hospitalized individuals, respectively, in group
i (i = 1, 2). We consider a scenario where each recovery rate is reduced to 75% of its base value,
and present the simulation result for the same period in Figure 9a. In comparison with Figure 8,
we see that the decline of the exposed and infected cases slows down in Figure 9a, while there is
little change to the number of hospitalizations. Meanwhile, we consider another scenario where each
recovery rate is increased to 125% of its base value, and present the simulation result in Figure 9b.
We see that the numbers of the exposed, infected and hospitalized individuals all decrease much faster,
compared with Figure 8. The variation of recovery rates could be caused by factors such as the change
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of environmental conditions, the improvement of medical care standards in the region, the evolution of
the immunity level in the host population, and the mutation of the viral strains. The results in Figure
9 demonstrate that higher (lower) recover rates would accelerate (slow down) the elimination of the
epidemic.
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(a) 90% effective transmission
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(c) 70% effective transmission
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Figure 11. Simulation results for the numbers of the exposed, infected, and hospitalized
individuals from March 1 to March 31, 2021, with reduced transmission rates represented by
90%, 75%, 70% and 50% of the base values.

We also consider the impact of the incubation periods on the epidemic progression. The parameters
αi in our model represent the incubation rate (i.e., the reciprocal of the incubation length) in group i
(i = 1, 2), and their base values are α1 = α2 = 1/7 per day. Similar to recovery rates, the incubation
rates could change due to the health conditions of the hosts and the characteristics of the coronavirus.
Figure 10 shows the simulation results with decreased incubation rates α1 = α2 = 0.1 per day, and
increased rates α1 = α2 = 0.2 per day, while other parameters are all fixed. Comparing Figures 10a
and 10b, we see that there is little difference for the numbers of exposed and hospitalized individuals,
while the impact is more significant on the number of infected individuals: larger values of incubation
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3/1 3/5 3/10 3/15 3/20 3/25 3/31
0

50

100

150

200

250

300

350

400

450

500
Exposed cases

Infected cases

Hospitalized cases

(b) Increased ratios p1 = 0.05 and p2 = 0.3

Figure 12. Simulation results for the numbers of the exposed, infected, and hospitalized
individuals from March 1 to March 31, 2021, with different values of hospitalization ratios
p1 and p2.

rates correspond to shorter incubation periods, resulting in a stronger influx into the infected class
which leads to a higher level of infection.

Next, we consider the variation of the transmission rates. As discussed in previous sections, the
transmission rates are sensitive to both the state variables and the basic reproduction number. The
COVID-19 vaccination campaign is currently on-going throughout the US, with over 2 million shots
administered each day. For Hamilton County, about 15.5% of the total population had been at least
partially vaccinated as of March 5, 2021 [30]. As the vaccination coverage quickly increases, the
probability of human hosts contracting the coronavirus will decrease, which will effectively reduce
the disease transmission rates. Here we consider three possible scenarios where all the transmission
rates are reduced to 90%, 75%, and 70%, respectively, and another (more hypothetical) scenario
where all the transmission rates are reduced to 50%, of their respective base values given in Table 2.
In other words, we assume that the disease transmission would be only 90%, 75%, 70% and 50%
effective, respectively, during the month of March 2021, compared to that in previous three months.
The simulation results are presented in Figure 11. As can be naturally expected, the reduction of
transmission rates quickly brings down the numbers of the exposed, infected, and hospitalized
individuals, and the curves all approach zero in the more hypothetical case with only 50% effective
transmission.

In addition, we examine the changes of the hospitalization ratios p1 and p2 and their impact on the
model prediction. The base values are p1 = 0.03 and p2 = 0.18 in our model. Figure 12a depicts
the simulation result for decreased hospitalization ratios p1 = 0.01 and p2 = 0.06, and Figure 12b
depicts the simulation result for increased hospitalization ratios p1 = 0.05 and p2 = 0.3. The two sets
of results shows very little difference for the exposed and infected cases, while it is noticeable that
the hospitalized cases decline faster with the reduced hospitalization ratios, which could be possibly
achieved through the on-going vaccination campaign that places individuals with underlying health
conditions into a priority group.
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Figure 13. Data fitting result for the cumulative confirmed cases in Hamilton County from
12/1/2020 to 2/28/2021 based on the infected-to-susceptible transmission only. The circles
(in blue) denote the reported cases and the solid line (in red) denotes the fitting result.
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Figure 14. Comparison between the reported number of hospitalizations in Hamilton County
and the numerical simulation result based on the infected-to-susceptible transmission only.
The circles (in blue) represent the reported cases, and the solid line (in red) represents the
simulation result.

Finally, we discuss another modeling scenario concerned with the disease transmission by exposed
individuals. In our model system (2.1) and (2.2), a person in the exposed compartment E is essentially
regarded as a pre-symptomatic or asymptomatic infectious individual who can directly transmit
COVID-19 to susceptible people [22–25]. For comparison, we now assume that exposed individuals
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in compartment E are latent and not capable of transmitting the disease [31]. To that end, we remove
the exposed-to-susceptible transmission route by setting the transmission rates βE

i j = 0 (i, j = 1, 2) in
system (2.1) and (2.2). In this way we obtain a two-group system where each group allows only the
infected-to-susceptible transmission route and is more like a traditional SEIR model. We then conduct
data fitting to estimate the four transmission rates βI

i j (i, j = 1, 2) using the same reported data from
December 1, 2020 to February 28, 2021. The fitting curve for the cumulative cases is shown in Figure
13. The normalized mean square error (NMSE) for this data fitting is 0.00071, in comparison to
0.00023 for our original model fitting (see Figure 2). The parameter values found through the fitting
and their 95% confidence intervals are presented in Table 4. Based on these values, we find that the
basic reproduction number in this case is given by R0 ≈ 1.12, which is comparable to our estimate of
1.16 for the original model (see section 3).

Table 4. Infected-to-susceptible transmission rates estimated by data fitting.

Parameter Fitted value 95% Confidence Interval
βI

11 1.53 × 10−6 (1.38 × 10−8, 3.05 × 10−6)
βI

12 1.36 × 10−7 (0, 3.67 × 10−6)
βI

21 3.30 × 10−8 (0, 5.40 × 10−7)
βI

22 3.23 × 10−10 (0, 2.57 × 10−8)

Using the parameter values from this data fitting, we numerically calculate the total number of
hospitalizations, and the simulation result versus the reported hospitalized cases in the three-month
period (from December 1, 2020 to February 28, 2021) are presented in Figure 14. We observe that the
modified model significantly underestimates the hospitalized cases, in comparison to Figure 7 where
the simulation result for the original model is represented in the solid line. Since the hospitalized
individuals are mainly those with underlying health conditions, this result indicates that neglecting the
exposed-to-susceptible transmission route would underrate the infection risk for the more vulnerable
population group (i.e., Group II). The finding appears to be consistent with our previous observations,
including the sensitivity analysis in section 4, that the transmission rates βE

i j (i, j = 1, 2) play an
important role in shaping the overall transmission pattern and infection risk. Hence, our original
model (2.1)(2.2) seems to be a better choice in addressing the correlation between COVID-19
transmission and underlying medical conditions, the main goal of this study.

6. Conclusions

We have presented a new mathematical model to investigate the relationship between the
transmission and spread of COVID-19 and the underlying health conditions of the host population.
The model divides the population into two groups based on the presence/absence of chronic
conditions, and incorporates the transmission of the disease both within and between groups. As a
demonstration of our model application, we have performed a case study for Hamilton County in the
US state of Tennessee, a typical place with high prevalence of chronic health conditions.

With all the transmission rates estimated by parameter fitting based on the regional data, we have
conducted a detailed numerical investigation on the numbers of exposed, infected and hospitalized
cases that come from individuals with and without chronic conditions. Our simulation results agree
well with the reported data. We have also conducted extensive simulations when a number of sensitive
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parameters change in values, the results of which help us to better understand the progression and
evolution of COVID-19 in the near future.

Our simulation results quantify and confirm the high risk of individuals with chronic conditions.
Specifically, the population group with underlying health conditions constantly produces much higher
numbers of hospitalizations and deaths, compared to the group without underlying conditions. Our
findings highlight the importance of weakening the disease transmission route between the exposed
and susceptible individuals, for both the population groups, in fighting COVID-19. Social distancing,
which reduces the personal contact, and vaccination deployment, which reduces the transmission
probability, would both be critical approaches to achieve this goal. In particular, we find that reducing
the between-group contact is effective in protecting the vulnerable group against the COVID-19
infection, and this control strategy seems to be productive in bringing down the numbers of infections
and hospitalizations for the group with chronic conditions.

The model output predicts a general decline of the COVID-19 epidemic in the near future for the
region in this study, even with the variation of several sensitive and important parameters. In particular,
the on-going vaccination campaign is expected to continue improving the immunity level in the host
population, particularly for those with chronic conditions, and speed up the process of containing the
epidemic.
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Appendix

A1. Basic reproduction number

We derive the basic reproduction number for the proposed two-group COVID-19 model. Note that
in the original system (2.1) and (2.2), the compartments S i, Ei, and Ii do not depend on the
compartments Hi and Ri (i = 1, 2). We can thus combine the two subsystems (2.1) and (2.2) and study
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the following reduced system instead.
dS 1

dt
= Λ1 − β

E
11S 1E1 − β

I
11S 1I1 − β

E
12S 1E2 − β

I
12S 1I2 − µ1S 1,

dE1

dt
= βE

11S 1E1 + βI
11S 1I1 + βE

12S 1E2 + βI
12S 1I2 − (γ11 + α1 + µ1)E1,

dI1

dt
= α1(1 − p1)E1 − (γ12 + µ1)I1,

dS 2

dt
= Λ2 − β

E
21S 2E1 − β

I
21S 2I1 − β

E
22S 2E2 − β

I
22S 2I2 − µ2S 2,

dE2

dt
= βE

21S 2E1 + βI
21S 2I1 + βE

22S 2E2 + βI
22S 2I2 − (γ21 + α2 + µ2)E2,

dI2

dt
= α2(1 − p2)E2 − (γ22 + µ2)I2.

(A1)

It is easy to verify that the system (A1) has a unique disease-free equilibrium (DFE) at

x0 = (S 0
1, E

0
1, I

0
1 , S

0
2, E

0
2, I

0
2) =

(
Λ1

µ1
, 0, 0,

Λ2

µ2
, 0, 0

)
. (A2)

Based on the next-generation matrix technique [32], the new infection matrix F and the transition
matrix V are given by

F =


βE

11S 0
1 βI

11S 0
1 βE

12S 0
1 βI

12S 0
1

0 0 0 0
βE

21S 0
2 βI

21S 0
2 βE

22S 0
2 βI

22S 0
2

0 0 0 0


and

V =


u11 0 0 0

−α1(1 − p1) u12 0 0
0 0 u21 0
0 0 −α2(1 − p2) u22

 ,
where ui1 = γi1 + αi + µi and ui2 = γi2 + µi for i = 1, 2. The basic reproduction number R0 is defined as
the spectral radius of the next-generation matrix

FV−1 =


a11

βI
11S 0

1
u12

a12
βI

12S 0
1

u22

0 0 0 0

a21
βI

21S 0
1

u12
a22

βI
22S 0

2
u22

0 0 0 0

 ,
where

a11 =
βE

11S 0
1

u11
+
α1(1 − p1)βI

11S 0
1

u11u12
, a12 =

βE
12S 0

1

u21
+
α2(1 − p2)βI

12S 0
1

u21u22
,

a21 =
βE

21S 0
2

u11
+
α1(1 − p1)βI

21S 0
2

u11u12
, a22 =

βE
22S 0

2

u21
+
α2(1 − p2)βI

22S 0
2

u21u22
.

Hence we have

R0 = ρ(FV−1) =
a11 + a22 +

√
(a11 − a22)2 + 4a12a21

2
, (A3)

which provides a measurement for the disease risk.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3790–3812.



3812

A2. Disease-free equilibrium

The disease-free equilibrium has a special importance in an epidemic model. Mathematically, it
represents a stationary state where there is no infection; practically, it represents the eventual goal of
disease control measures: to eliminate the infection. We establish the following result for our two-
group COVID-19 model, which indicates that if the basic reproduction number is reduced below unity,
then the DFE is globally attractive; i.e., the disease would be eradicated.

Theorem A1.1. If R0 < 1, the DFE of system (A1) is globally asymptotically stable in

Ω =
{
(S 1, E1, I1, S 2, E2, I2) ∈ R6

+ : S 1 + E1 + I1 ≤ S 0
1, S 2 + E2 + I2 ≤ S 0

2

}
.

Proof. Apparently, Ω is a positively invariant set for system (A1). Let X = (E1, I1, E2, I2)T . It is easy
to observe that

dX
dt
≤ (F − V)X.

Since R0 = ρ(FV−1) = ρ(V−1F) and V−1F is a positive matrix, then by Perron Theorem, V−1F has
a positive left eigenvector u corresponding to the eigenvalue R0; i.e., uV−1F = R0u. Consider the
following Lyapunov function

L = uV−1X.

Differentiating L along the solutions of (A1), we have

dL
dt

= uV−1 dX
dt
≤ uV−1(F − V)X = (R0 − 1)uX. (A4)

Clearly, if R0 < 1, the equality
dL
dt

= 0 implies that uX = 0 by Eq (A4). Hence X = 0 and thereby

S 1 = S 0
1, E1 = 0, I1 = 0, S 2 = S 0

2, E2 = 0, and I2 = 0. Thus, the largest invariant set on which
dL
dt

= 0 consists of only the singleton x0 = (S 0
1, 0, 0, S

0
2, 0, 0). By LaSalle’s Invariance Principle [33],

the DFE x0 is globally asymptotically stable in Ω if R0 < 1.
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