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Abstract: The formation of a biological organism, or an organ within it, can often be regarded as the
unfolding of successive equilibria of a mechanical system. In a mathematical model, these changes
of equilibria may be considered to be responses of mechanically constrained systems to a change
of a reference configuration and of a reference metric, which are in turn driven by genes and their
expression. This paper brings together three major threads of research. These are: Lie-type symmetries
of equations; models as well as data on growth and pattern formation; and the relation between Lie
algebras (and groups) and special functions associated with them. We show that symmetry methods
can be generalized to map between solutions to models with different reference metrics. In the case in
which we attempt to obtain such equations, they seem too complicated to be of any immediate service
to the community of researchers on cortical growth. However, models and data on growth may be
used to obtain generators of these Lie algebras empirically and numerically. These generators result in
new classes of special functions. The paper is an invitation to develop what we may call empirical Lie
algebras and associated functions. The hypothesis that remains to be tested is whether the confluence
of ideas described in the paper, namely the Lie algebraic-related consequences of pattern formation
and growth, prove useful for deepened understanding of biological growth patterns.

Keywords: cortical growth; symmetry methods in pattern formation; biomechanical models; big
data; Lie algebras; generators; special functions; cortical growth data

1. Introduction

This paper is an invitation to consider a class of what I may call experimental Lie algebras and
special functions associated with them. The hypothesis is that such explorations may be useful in
understanding the phenomena from which they arise naturally, namely the formation of biological
organs. For illustrative purposes, we shall focus on biological growth patterns as viewed at the
mesoscale: the level where continuum physics remains useful, with spatial resolution well above the
scale of individual cells. For all our examples and data we shall specialize to the growth of the brain
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and of the cortical convolutions that have fascinated so many people. The approach however is much
broader than that application as should become clear later. Physical models are here understood to
address mechanical forces, leaving the biochemical and genetic substrates of growth to act as external
forces. Such models of biological growth have by now acquired a tradition, starting perhaps with
D’Arcy Wentworth Thompson [1].

In this Introduction, the outline of the rest of this paper is described, and remarks on the literature of
the subjects considered are mentioned. The theme of the special issue for which this paper is submitted
is the mathematics of symmetry groups and equivalence due in main to Sophus Lie and Elie Cartan as
applied to equations (primarily differential and integro-differential) describing biological phenomena.
We therefore begin the next section (section 2) with brief references to the mathematical modeling of
brain and cortical growth, and explore the very simplest equations that model growth. We describe
the generalization of the method of symmetries required to give the generators of growth, and the
Lie algebra thereby generated. However, we find even in this simplest model that formulas which
would result seem too complex for implementation and use in the near term. Standard methods of Lie
symmetries applied to equations may not be very useful in this area where the equations and constraints
that define growth patterns are more complicated.

Section 3 offers another approach appropriate to this century of big data. Either with computer
models of growth or with data collected from brain imaging, we can calculate numerical vector fields
that generate growth. We provide examples both from our own work with brain images, and from other
modern work that is available to the research community. These provide several different datasets from
which generating vector fields of different dimensionalities may be obtained. Although the Lie algebra
so generated can be of any, including formally infinite, dimensionality, the elements of the algebra are
generated from a finite, even small, number of generators.

Section 4 is our preliminary exploration for how we might use such generators of Lie algebras. It is
well known that Lie algebras (and groups) have special functions associated with them. The algebras
we are concerned with are generalizations of nilpotent algebras such as the Heisenberg algebra. We
describe several paths to obtaining special functions associated with the algebras in question, including
infinite dimensional ones, and illustrate the lowest order special functions for particular generators,
though it will be clear how the process can be carried out in general.

Models and data, Lie symmetries and special functions

In the rest of this introduction, we provide a guide to some literature on the topics we bring together
in the rest of the paper, namely those mentioned in this subsection title, but primarily on the brain and
models for its growth. The literature on computer models and related pertinent information on brain
growth is truly vast, and a selection of these may be found here: [2–36].

The normal gross morphology of the brain has been described in [37–43]. Older work on growth
patterns [44, 45] and neuronal migration: [46–48] continue to be developed. The morphology of the
brain has always been a fascinating topic, and some of the more absurd conclusions drawn in relation
to Einstein’s brain may be found in [49, 50]. Brain growth (ontogeny) is not the only area in which
morphological patterns are interesting: they play a role in phylogeny (evolution) as well [51–54]. A
discussion on the evolution of a particular sulcus called the lunate led to a controversy that may be
traced in [51, 55–62]. The gyrification or the folding of the brain is discussed in [52, 62–64]. Cortical
asymmetries [65–67] as well as sex differences [68] remain of interest as citation searches of the
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quoted references show. Finally, comparative morphology between species [69–71] deserves to be
explored more fully. In fact, computer models of brain growth have mostly focused on the period from
conception to gestation of the human, and more comprehensive models that integrate other species as
well would be welcome.

The dream of a reductionist theory would be to construct the form of the brain from the gene
expressions, and as can be surmised, much exciting work is being done on spatial patterns of gene
expression, genetic control of cortical development and first-principles chemical kinetics [72–83]. In
the context of cellular growth processes, morphogens and associated chemotaxis are extensively
discussed in [84], which cites earlier work including [85–87]; see also [88, 89] for an analysis of the
chemical reactions and diffusions that generate and sustain morphogen gradients. However, “quite
possibly there is no obligatory relationship between functional systems in the brain and global
patterns of gene expression” [90], so that models restricted to the coarser scale of visible morphology
remain of great interest. The radial patterns of migration of neurons from the ventricles have long
been projected to be the cause of the tubular patterns that are so characteristic of the surface of the
brain. A recent summary of such issues may be found in the thesis [91]. Much work still remains to
synthesize the finer spatial scale at which gene expression occurs with the coarser scale of visible
cortical folding patterns driven by mechanical constraints.

Patterns of folding and of sulci have analogs in entirely different fields, from the folding of
dough [92–94] to geological folds [95–97]. Reaction-diffusion equations in two-dimensional space
with certain coefficients have been demonstrated to give rise to labyrinthine tubular patterns [98], and
this phenomenon has been invoked to explain certain features of cortical topography [99]. This planar
theory may be relevant for three-dimensional tubular patterns because, generically, a section of an
axisymmetric shell behaves similarly to any other section. We shall refer later to a more recent
computer model using such a basis for describing the cortex. Finally, it is interesting to compare the
pattern of sulci and their branching patterns such as found in [100] and to see if there are any “laws”
analogous to those found in river meanders [101–103]. We now describe approaches to the three
threads mentioned.

Mathematical models of growth were pioneered, as far as we are aware, by Richard Skalak and
his collaborators and students (see [104] and references therein). They took as their starting point the
continuum theory of dislocations. The chapter on dislocations and on disclinations in liquid crystals
in the classical treatise on elasticity [105] can serve as a ready reference for the basic theory, while a
full account of the continuum theory may be found in [106], where some of the history is given. In the
last decade of the twentieth century, people used these concepts to describe growth in the continuum.
Following the above reference, a few of a large number of papers utilizing this approach are [107–110].
Data on growth will be mentioned in section 3.

There are a large number of references on Lie symmetries. We have basically relied on the
pedagogical masterpiece [111], in particular, several of the formulas in Chapter 5 of that book. It
should be understood that although we will not make repeated citations to [111], it, or other treatises
on the Lie approach to differential equations, can be consulted for an explanation for all the material
in section 2.2. Olver’s later book [112] written at a higher mathematical level is not used here.

Finally, the papers on Lie algebras and special functions that we have consulted are mentioned in
section 4. There is an encylopaedic three-volume series on the Representations of Lie Groups and
Special Functions, followed by a fourth one on subsequent developments, by Vilenkin and Klimyk, but
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we have not consulted any of these.

2. Lie algebras from growth-model equations

We first describe two models of cortical and brain growth, and then focus on the one that is more
suited to illustrate how we might use the approach of Lie symmetries to attempt to discover the
invariants and generators of growth. Section 2.2 then develops the equations of the symmetries. Some
details on the formulas are deferred to Appendix A.

2.1. Models

We shall refer only to two computer models of brain growth, in addition to our own older one. A
three dimensional model that shows realistic patterns is described in [33] with the authors’ previous
relevant work referenced there. For the purposes of developing the first mathematical model, we will
begin with a lower dimensional model. Below we reproduce pictorial representations of three mutually
orthogonal sections of a human brain from our work creating an electronic brain atlas [113]. The
sectioning planes are canonical, and are axial or horizontal for vertically standing human, sagittal, and
coronal or frontal. These images are from the famous original paper atlases of Talairach and Tournoux,
though here taken from the electronic version.

(a) Coronal (b) Axial (c) Sagittal

Figure 1. Brain sections from an electronic version of the Talairach-Tournoux brain atlas.

The cortical contours depicted in these sections are quite characteristic. Such cortical contours are
the subject of a thesis [91] that develops a detailed model with the thickness of the cortex included in
a planar model. The model is entirely numerical, and provides information useful for the purposes of
this paper, as we shall describe in the next section. However, we turn to an older model that is less
realistic but which expresses the key factors affecting cortical convolutions in a variational principle.
This model was described in [114] and has the virtue for purposes of mathematical simplicity that it
constructs an energy on a planar curve which is meant to be a cortical contour such as exhibited in the
figure. The energy is minimized to obtain or predict the shape of the curve. The configuration of the
curve is given by the position vector u(s) = (x(s), y(s)) of points on it. We will use the fact that the
“coordinate” s has exactly the same range before and after a transformation which alters the function
u(s). Thus we can compare the values of the transformed position of the curve with the original at the
same value of s. Further, as for the simpler case of geodesics for a given metric on a manifold, the flow
is on the “jet bundle”, that is, the curve is generated by minimizing an integral:
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E[u,u1,u2, l] :=
∫ 1

0
ds E (s,u(s),u1(s),u2(s), l(s)) ≡

∫ 1

0
ds E

(
s, (uJ)J=2

J=0 , l
)

(2.1)

where l(s) is the function that drives the growth. It is the rest length of the curve per unit s, along the
curve. uJ denotes the J′th derivative of u: we omit the subscript 0 when denoting u itself. The energy
density E consists of several terms describing physical effects: stretching, bending, skull roof and floor
constraints, and those of white matter cabling and shear. The resulting energy density expressions
involve differential functions of up to the second order so that stretching and bending are included. The
behavior of white matter led us to introduce a term in E that is an integral. In other words, E is itself
a functional. Thus as Figure 2(a) shows, the resulting thick curve is meant to be the cortical contour.
The vault of the skull is represented by a semicircle, while the deep brain structures constraining the
cortex from below are also modeled by a (smaller) circle, here just touching the larger surrounding
circle. Any convenient geometry will serve our purposes here: from the simplest (a semicircle) or a
general crescent or lune, or as we illustrate in Figure 2(a).

(a) Continuum Model (b) Polygonal model

Figure 2. One dimensional continuum (a) and piecewise linear (b) models of a cortical
contour. See text and Appendix A for explanation.

The detailed form of the energy density used is described in Appendix A. In addition, for numerical
purposes, one could consider a polygonal (piecewise-linear) approximation to the curve as shown in
Figure 2(b), which is explained further in the appendix. For the purposes of infinitesimal symmetries,
we use the continuum version.

2.2. Growth, form and symmetries

We now turn to the approach to the formalism for obtaining the generators and invariants of growth.
As mentioned above, u (s) ∈ E2 is the configuration of a curve in the plane parametrized by the number
s ∈ [0, 1]. The stretch of the curve is l (s) :=

∣∣∣ d
dsu (s)

∣∣∣. Then the reference metric in question are
reference values for l (s) denoted by a subscript, e.g., l0 (s). Growth is driven by changes with time of
this reference metric. The shape is obtained by minimizing energy at each time point. Both the energy
and the reference metric can depend on the configurational variables, their derivatives, and even non-
locally on their integrals. This approach retains its validity in higher dimensions where we have a
metric tensor in the reference state as well as the deformed state. As is well known the strain tensor is
just the difference between the pullback to the reference state of metric of the deformed state, and that
of the reference metric.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3598–3645.



3603

2.2.1. A toy example

We first describe a toy example that illustrates what we propose, followed by the equations that arise
from the model alluded to above and described in Appendix A. Consider variables x, y and a parameter
s, 0 ≤ s ≤ 2π so that a circle of radius 1 in the plane is described by

x = cos s, y = sin s (2.2)

Let us define an energy function E

2E(x, y, s) := (x − cos s)2 + (y − sin s)2 (2.3)

This assumes its minimum along the helical “space curve” whose projection onto the x− y plane is the
circle. Now any transformation of the circle to another circle, or indeed closed curve in the plane, can
be described by the same range of parameter s, so one can compare the positions x, y at the same value
of s, before and after the transformation. If we introduce the infinitesimal changes

xε = x + εX (x, y, s) , yε = y + εY (x, y, s) , sε = s + εS (x, y, s) (2.4)

then for example the value of the transformed field xε at the original value of the parameter is

xε (sε − εS ) = xε − εS
[
∂xε

∂sε

]
ε=0

= x + ε

(
X − S

dx
ds

)
= x + εQx (2.5)

Qx := X − S
dx
ds

(2.6)

and similarly for y. Using Eq (2.5) for xεand the corresponding equation for yε, the derivative of the
energy function at the original circle is

1
2

d
dε

[
(xε − cos s)2 + (yε − sin s)2

]
ε=0

= Qx (x − cos s) + Qy (y − sin s) (2.7)

Thus if Qx and Qy are “arbitrary”variations, then the derivative of the energy vanishes only on the circle
mentioned. If we compute the second derivative restricted to the circle

d2
(

(x+εQx−cos s)2+(y+εQy−sin s)2

2

)
dε2


ε=0,x=cos s,y=sin s

(2.8)

we get :
Q2

x + Q2
y (2.9)

which is the quadratic coefficient of an expansion of the “energy” around the circle. Demanding this
be a minimum results in that x→ x + εQx, y→ y + εQy transforms circles to circles provided

Qx = 0 = Qy (2.10)

Substituting x = cos s, y = sin s, we get
Xx + Yy = 0 (2.11)
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In polar coordinates, ρ, θ, we could write the infinitesimal generator as

R (ρ, θ)
∂

∂ρ
+ T (ρ, θ)

∂

∂θ
(2.12)

and the condition of symmetry becomes
R = 0 (2.13)

The usual solution offered to describe the symmetry of the circle is the solution

X = y,Y = −x or (2.14)
T = 1 (2.15)

giving the infinitesimal generator of rotations in the plane in the form y ∂
∂x − x ∂

∂y , or in polar coordinates,
∂
∂θ

. The eigenfunctions of this, namely the trigonometric functions or periodic exponentials, are useful
in analyzing functions on the circle. However, any T will describe at least a local symmetry of the
circle. For example if we choose

X = y/x,Y = −1 (2.16)

this generates rotations of up to an angle of π, starting for example at θ > π
2 , and up to θ < 3π

2 , points on
the y−axis being “infinities” of the transformation. By a similar token,

X = xy,Y = −x2 (2.17)

gives us a flow or vector field which has singularities in the form of stagnation points instead of
infinities, all along the y−axis. We believe that such restrictions on the exponentiation of Lie algebras
is the norm in biological applications, where the symmetries of shapes are rather local. The same result
can be obtained from the symmetric bilinear form in the variations x → x + εUx + tQx and similarly
for y. We consider now “the problem of equivalence”, or “growth”as we will understand it, driven by
a change of the parameter that describes the particular circle, namely the radius. Denoting

u(1,1) := (x + εUx + tQx − (1 + t) cos s)2 +
(
y + εUy + tQy − (1 + t) sin s

)2
(2.18)

the bilinear form u(1,1) evaluated on the circle is[
1
2
∂2

∂ε∂t
u(1,1)

]
ε=0,t=0,x=cos s,y=sin s

= (Qx − x) Ux +
(
Qy − y

)
Uy (2.19)

The first variation is simply to obtain the equation describing a circle, while the second is to obtain the
transformation that indicates the growth of the circle of radius 1 to one of radius 1 + t. Equating to zero
the coefficients of the arbitrary variations gives us

Qx − x = 0 = Qy − y (2.20)

which yields
Xx + Yy = 1 (2.21)

from the second variation. This is the condition for the coordinates x, y of the locus points to remain
on a circle when its radius is increased. Again, in polar coordinates, we now have the condition R = 1.
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The “special functions”associated with the operator ∂
∂ρ

, namely the real exponentials, are useful in
describing radial expansions. We note that T (the coefficient of the vector field along θ) is not
determined, and can be arbitrary, being any solution of the homogeneous form of the equation.
However, we are quite uninterested in T , since any T ∂

∂θ
is a symmetry common to both the original

and the “grown up”circle. Among the equivalence transformations therefore, we must weed out the
common symmetries. We can do so if we know these common symmetries, by projecting onto the
subspace – at each tangent space – orthogonal to the generators of the common symmetries: the
projection of T ∂

∂θ
is zero along the direction of the vector ∂

∂ρ
at every point (ρ, θ) of the plane. Further,

in general, we will also need to discard the trivial equivalences which, in this two-dimensional case,
are of the form X = 0 = Y; i.e., where the change in parameter driving growth, the radius of the circle
in this example, can be accommodated without transformation of the dependent or independent
variables. This does not occur in our particular example, but can in general. Another remark on this
example: without further descriptions of the parameter changes, we cannot alter the form of R above.
As an example, we cannot describe an upper limit to the radius without putting it in by hand. The
change in parameter has been “parachuted”in as a source, being quite unaffected by the disposition of
the points of the curve. In general, the transformation of the parameter (the concentration of a
chemical for example) will depend on parameters of the shape (the curvature of the cortex for
example). Finally, we should remark that although we have, in this example, talked about vector fields
in the plane, they need to be defined only on the circle being considered. However, in general they
will point “out”of the manifold in question so they can generate growth in the embedding space.

Thus our proposed program in general is: study the equivalences, after barring the common
symmetries and trivial equivalences, that map solutions of equations that contain parameters, to
solutions of the same equations with altered parameters. The general methodology was apparently
introduced by [115], Chapter 6, and developed considerably by Ibragimov and others. For example,
Ibragimov, Torrisi and Valenti [116] find the equivalence group for a large class of equations. A
detailed development of these methods for a general system of differential equations not necessarily
arising from a variational principle as in our case, with coefficients that can be arbitrary functions of
one or more variables in the problem, may be found in the thesis [117]. The thesis also describes the
terminology of common symmetries and trivial equivalences. As also indicated in these references,
the resulting equivalences will be described by a Lie algebra that will usually generate only a local
group.

This conclusion may be summarized in the following diagram:

∆ = 0 ⇀ f = 1 + εT → Λ = 0

� �

P Π = P + ε′′[P,T ]′′

↓ ↓

∆ = 0 ⇀ Q → Λ = 0

In the top row, a transformation of parameters changes the equations of equilibrium. The left vertical
descent shows a symmetry of the equations of equilibrium prior to a growth step, with P as its generator.
The bottom row shows a map from a solution of the prior equilibrium equation to the post-growth
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equilibrium equation, with Q as the generator. The right vertical descent shows similarly a symmetry
generator of the post-growth equation, which is naturally related to the generators of the pre-growth
symmetry as well as the that of the transformation of the equation itself.

Below we describe our point of view on growth as a succession of equilibrium states. We will always
stay within the infinitesimal, hence a local, look at the shapes. In other words, we will not integrate the
algbera to obtain a group. We also feel it is essential in the biological context to deal with Lie groups
that may be only local. Special functions that we hope turn out to be useful in describing the shapes
generated may be associated to these algebras. When the equations are derived from an extremization
principle, this study can be carried out in the context of a second variation. More generally, we could
carry out the suggested program in terms of equivalence transformations of the equations themselves.
However, in this paper we will confine ourselves to equations arising from a variational principle.

We can now proceed to the general case, which is only notationally but not conceptually more
complicated than this toy example.

2.2.2. Application to the cortical contour

In Appendix A, we describe the detailed form of the energy terms that add up to give the total energy
of Eq (2.1). Thus u (s) is the location of a point on the ‘cortical contour’ embedded in the plane. In
this section, we assume some familiarity with [111] and its notation, and particularly Chapter 5 in that
book. In order to write formulas compactly, we define the derivative of E at u evaluated on U

E′uU :=
d
dε
E[u + εU]|ε=0 (2.22)

We adopt the usual notation of a linear operator acting on a vector by juxtaposition to denote the action
of the derivative on the tangent vector U. Although it is important for consistency to denote u as a
subscript in the derivative operator, we sometimes omit it for typographical ease. Note that

E′uU =

∫
ds

(
E′U

)
(s) =: 〈6 1, E′U〉 (2.23)

where the angle brackets indicate the integral of a product of a constant function 6 1 of the jet space
variables with E′U. The adjoint of the derivative can be uniquely defined by integration by parts or by

〈6 1, E′U〉 =
〈(

E′
)∗
6 1,U

〉
+ boundary terms (2.24)

(E′)∗ 6 1 is the Euler Lagrange expression. We will use explicit formulas in terms of differential
operators for all these derivatives later. By extension, the second derivative of E is

E′′u [U,Q] :=
∂2

∂t∂ε
E[u + εU + tQ]|ε=0=t =

∫
ds

(
E′′UQ

)
(s) (2.25)

Clearly E′′ is symmetric from its definition, and it does not matter which one of U,Q go into the first
space to the right of E′′. By differentiating (2.24)〈((

E′
)∗
6 1

)′Q,U〉
= 〈6 1, E′′QU〉 + boundary terms (2.26)
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Numerical subscripts will always denote the order of a derivative with respect to the independent
variables, never components of a vector. Thus:

uJ (s) :=
dJu
dsJ ; J ∈ {0, 1, 2, 3, 4, · · · } (2.27)

The use of the letter J to stand generically for the derivatives can be generalized to be a multi-index
when several independent variables are involved, as is done systematically in Olver’s book. Variations
will follow the same convention for derivatives, e.g., if u→ u + εU, then uJ→ uJ + εUJ . A function
of several such differential functions can be written, for example, as

f
(
s, (uJ)J=4

J=0

)
We proceed as we did in the trivial case of the circle above. We define two-parameter

transformations u (s) → u (s) + εU + tQ := u2 and similarly for any other functions. We use the
following notation:

uε := u + εU
ut := u + tQ (2.28)
u2 := u + εU + tQ (2.29)

We have deliberately omitted the arguments of the functions and their variations, because this will be
the subject of subsequent discussion, and choice of those arguments on which the variations depend
will directly affect the obtained results. The notation for the derivatives uses subscripts: uε1 means Duε
and similarly. For the length density we introduce

lt := l (s) + tL =: l(2) (2.30)

A change of the length density is what drives growth in this case. Finally, we introduce the further
special notation in this section:

Qt := Q
(
s,ut, lt, · · ·

)
That is, all the relevant arguments in these differential functions take on their values at non-zero t.
Recall that

E[u(2), l(2)] =

∫
dsE

(
s,

(
u(2)

J

)
,
(
l(2)
J

))
=:

∫
dsE2 (2.31)

and that the total derivative operator is here:

DQ (s,u,u1,u2, . . . , l, . . .) :=
∑
J10

[
uJ+1 · ∂

u
JQ + lJ+1∂

l
JQ

]
(2.32)

As for example [111], Chapter 5 indicates, if one allows the generators to depend on derivatives, then
it is sufficient to transform the dependent variables and leave the independent ones alone. For the sake
of completeness, we recount the argument briefly. Consider the solution near a particular s

u − f (s) = 0 (2.33)
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and apply the operator S ∂s + V · ∂u to obtain

V − S f′ = 0 (2.34)

as a condition of symmetry. This is the same as applying Q · ∂u on solutions, where

Q (s,u,u1) := V − S u1 (2.35)

with u1 ← f′ (s). Since all our considerations are local, the representation (2.35) is general enough.
Another argument is that as long as the domains of the independent variable remain identical before
and after the transformation, there is no loss of generality in comparing the transformed dependent
variables with those of the untransformed at the same value of the independent variable. Then

E2 = E
((

ut + εU
)
,
(
lt)) (2.36)

= E
(
ut, lt) + εv̂UE

(
ut, lt) (2.37)

= E
(
ut, lt) +

I=2∑
I=0

UI · ∂
u
I E

(
ut, lt) + · · · (2.38)

= E
(
ut, lt) + ε

[
U·∆E

(
ut, lt) + DBt

1
]
+ · · · (2.39)

where

∆E = ∂uE
(
ut, lt) − D

(
∂u

1E
(
ut, lt)) + D2 (

∂u
2E

(
ut, lt)) (2.40)

= ∂uE −
J=2∑
J=0

uJ+1 · ∂
u
J∂

u
1E +

J=4∑
J=0

uJ+1 · ∂
u
J∂

u
2E (2.41)

Bt
1 =

2∑
J=1

DJ−1
(
Ut·∆J‘ (E)

)
(2.42)

= Ut·

(
∂E
∂ut

1
− D

(
∂E
∂ut

2

))
+ Ut

1·
∂E
∂ut

2
(2.43)

The superscripts t remind us that the corresponding expressions are being evaluated at the extended
functions ut, lt; i.e., t has not yet been set to zero. Continuing with the expansion,

E2

((
u2

)
,
(
l(2)

))
= E

(
ut, lt) + εv̂UE

(
ut, lt) (2.44)

= E (u, l) + t
(
v̂Q + v̂L

)
E (u, l) + εv̂UE (u, l) + tε

(
v̂Q + v̂L

)
v̂UE (u, l) (2.45)

= E (u, l) + t
J=2∑
J=0

(
QJ · ∂

u
J + LJ∂

l
J

)
E (u, l) + ε (∆E (u, l) + DB1)

+ tεUt·

 J=2∑
J=0

(
QJ · ∂

u
J + LJ∂

l
J

)∆E (u, l)

+ tε

 J=2∑
J=0

(
QJ · ∂

u
J + LJ∂

l
J

) DB1 + · · · (2.46)

where the neglected terms in the last equation are neither O (t) nor O (tε). We set the O (ε) variation to
zero, so that necessarily ∆E (u, l) = 0.
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Remark 1. The first variation in Q (i.e. O (t) term) does not vanish on ∆E = 0.

Continuing, we compute the terms in the second variation above separately. First,

v̂Q (∆E) =

J=4∑
J=0

(
QJ·∂

u
J
)
∆E

=

J=4∑
J=0

QJ·∂
u
J

 I=2∑
I=0

(−D)I ∂u
I E


Explicitly

v̂Q (∆E) =

(
Q ·

∂

∂u
+ Q1 ·

∂

∂u1
+ Q2 ·

∂

∂u2
+ Q3 ·

∂

∂u3
+ Q4 ·

∂

∂u4

)
(
∂E
∂u
− D

(
∂E
∂u1

)
+ D2

(
∂E
∂u2

))
We will now assume that l is given as a function of s alone, and has no explicit dependence on uJ.
Then, since

[
v̂Q,D

]
= 0 we have, denoting the Hessian of E in the u variables by Hu

IJ, that

v̂Q (∆E) = v̂Q

 I=2∑
I=0

(−D)I ∂u
I E


=

J=2∑
J=0

(−D)J

 I=2∑
I=0

QI · Hu
IJ


≡ Q ·

∂2E
∂u∂u

+ Q1 ·
∂2E
∂u1∂u

+ Q2 ·
∂2E
∂u2∂u

− D
(
Q ·

∂2E
∂u∂u1

+ Q1 ·
∂2E

∂u1∂u1
+ Q2 ·

∂2E
∂u2∂u1

)
+ D2

(
Q ·

∂2E
∂u∂u2

+ Q1 ·
∂2E

∂u1∂u2
+ Q2 ·

∂2E
∂u2∂u2

)
(2.47)

Similarly

v̂L (∆E) =
∑
J≥0

(−D)J

 I=2∑
I=0

LI · Hl
IJ

 (2.48)

When “dotted” into the variation U, v̂Q and v̂L comprise the important part of the second variation. All
of the above commutations will fail if the reference length functions l depend on differential or other
functions of the dependent variables u (or vice versa). In that case the first line of the expressions for
v̂Q (∆E) must be retained. We proceed with the simplifying assumptions, where l is given as a function
of s alone.

Now let us return to the boundary terms. The second variation is:

B2 =

[
∂Bt

1

∂t

]
t=0

=

[(
v̂Q + v̂L

) (
U·

[
∂E
∂ut

1
− D

(
∂E
∂ut

2

)]
+ Ut

1·
∂E
∂ut

2

)]
t=0

(2.49)
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where the sum truncates according to the order of the differential function it operates on. Denoting
v̂ := v̂Q + v̂L, and noting that U vanishes at either boundary,

v̂
(
U·

[
∂E
∂ut

1
− D

(
∂E
∂ut

2

)]
+ U1·

∂E
∂ut

2

)
(2.50)

=

[(
∂E
∂u1
− D

(
∂E
∂u2

))
· v̂U+v̂

(
∂E
∂u2
· U1

)]s=1

s=0
(2.51)

Again, by assuming that U is not a differential function in the uJ
′s, v̂ annihilates U,DU so

B2 =

[
U1 · v̂

(
∂E
∂u2

)]s=1

s=0
(2.52)

=

U1 ·
∑
J≥0

QJHJ2

s=1

s=0

(2.53)

The coefficient of U1 in B1, namely ∂E
∂u2

must vanish at the end points, from the fact that the first
derivative of the energy evaluated on U must vanish at the extremal. Further simplification of B2 will
depend on the special forms for the energy density. When we examine the second variations from
the point of view of the analysis of equivalence, we do not find that the boundary terms will vanish,
owing to the more general forms of the variations that we need. These vector fields which minimize the
second variation are called Jacobi fields in the calculus of variations and Riemannian geomety. Jacobi
fields are usually discussed in the context of a metric which is a quadratic form in the “velocities”(the
usual Riemannian space), and in the context of how “fast”geodesics separate along a path. In the
present case, we are talking about the separation of an extremum for one energy function from an
extremum starting at the same point but for another energy (the one with a change of reference metric).
For this reason, the first variation of the energy on this field does not vanish. Then Q too must satisfy
the Euler-Lagrange equations if u does and if the transformed curve is also to be a solution for the new
rest length (l + tM). The infinitesimal version then means

∆
′

u(Q) + ∆
′

l(L) = 0 (2.54)

Since ∆ · U =E′u [U], this means
E′′uu [U,Q] + E′′ul [U, L] = 0 (2.55)

This gives us integro-differential equations involving the fields S ,u, L and their derivatives with respect
to s, which we may attempt to solve to give us the “vector fields that generate growth”. However,
the Eqs (2.54) or (2.55) are enormously complicated. The gradients and the Hessians of the energy
densities appear in the equations, as is seen from Eq (2.1). These are evaluated in Appendix A, but the
total derivatives D still need to be expanded. As an example,

DQ ≡
d
ds

Q
(
s,u(s),u′(s),u′′(s), l(s)

)
=
∂

∂s
Q

(
s,u(s),u′(s),u′′(s), l(s)

)
+
∂u (s)
∂s

· ∇uQ
(
s,u(s),u′(s),u′′(s), l(s)

)
+
∂u′(s) (s)

∂s
∇u′Q

(
s,u(s),u′(s),u′′(s), l(s)

)
Mathematical Biosciences and Engineering Volume 18, Issue 4, 3598–3645.



3611

+
∂u′′(s)
∂s
∇u′′Q

(
s,u(s),u′(s),u′′(s), l(s)

)
+
∂l (s)
∂s
∇lQ

(
s,u(s),u′(s),u′′(s), l(s)

)
(2.56)

Such expansions are feasible using computer algebra packages, but the resulting equations that need to
be solved to obtain the generators are very complicated. The framework nevertheless may prove useful
in the future, but for now we turn to a rather more immediate possibility for exploration.

3. Lie algebras from data

Fortunately, there are sources other than the mathematical models expressed either as differential
equations or as minimization problems to obtain approximations to the vector fields that will serve
well for numerical purposes. We shall illustrate how we may use them in the following section 4. In
this section we give several examples, both from our own work and those of others, to illustrate the
wealth of data available to construct growth generators. First we should mention that all the models
that people have developed (see section 1) may in fact also be considered as potential sources of the
empirical vector fields in question, since one may use them to examine the movement of corresponding
points of the brain during growth. We discuss a specific example below. We shall order the examples
in decreasing dimensionality, which corresponds roughly to increasing simplicity. In this section, we
illustrate some of the data available. Many details about the datasets including where they may be
accessed are contained in Appendix B and the links there provided to Supplementary Information.

3.1. Three-dimensional vector fields in a volume

We obtained the original 16 datasets from a research project described in [15]. We then processed
the data to obtain vectors that point from a position at one age to the corresponding position at the
succeeding age as outlined in Appendix B. The process involved both global (affine) and local (so-
called elastic morphing) transformations to co-register into a common frame any pair of volume data
to be able to obtain correspondence between the voxels of the pair. Vectors that characterize the
growth patterns are available in the NIHto682dispVector folder. Further interpolation results in the
data in the folder NIH GrowthVecDataInterpolated and these datasets are available for exploration.
Figure 3 shows a selection from the vast amount of data. We selected a particular plane and displayed
vectors that lead from one time point to the immediately succeeding one at the voxels in that plane,
at four different time points separated roughly by one year. The displays are color-coded line-fields
as opposed to vector fields, i.e., the magnitude of each component (with sign ignored) of the growth
vector is displayed as an intensity of a corresponding R, G, B color.
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(a) Plus 1 year (b) Plus 2 years

(c) Plus 3 years (d) Plus 4 years

Figure 3. Brain growth in child from ages 3 through 7. Vectors on a particular plane of
voxels are shown as a line-field, with the magnitude of the X, Y, Z components proportional
to intensity in R, G, and B, respectively. See text for explanation.

We also created volume renderings of the magnitudes of the vectors. In Figure 4, we show select
volume renderings at roughly one year apart. The figure shows still frames from an animation which
may be viewed from the repository described in Appendix B. The actual dates selected were those of
the datasets designated 0682, 1090, 1552,and 2058. Precise dates for these are given in the Appendix.

The data above was that of a post-term child, and it is known that there is essentially no gyrification
(increased folding of the cerebral cortex) beyond the age of about one year (see references mentioned
in the Introduction). It is therefore of considerable interest to examine the brain growth vectors in
pre-term infants.

3.2. Three-dimensional vector fields on the cortical surface

A superb set of MR images, enabled with point to point correspondence has been made available
publicly [13]. These were taken of generally pre-term infants at birth at PMA (post-menstrual ages) of
27, 31, 34, and 37 weeks, respectively. We have constructed the coordinates of the corresponding
points based upon the information provided by the researchers, and these are available as Excel
spreadsheets at the location mentioned in Appendix B, which also contains more useful information
on these data. A plot of the vector fields is shown in Figure 5. These are plots of the vectors
connecting the corresponding points taken from the spreadsheets provided. We were provided with

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3598–3645.



3613

(a) Plus 1 year (b) Plus 2 years

(c) Plus 3 years (d) Plus 4 years

Figure 4. Volume rendering of growth magnitude datasets obtained for the same child.

two different methods of registration between data at different points, and for the purposes of the
display here, we chose the forward registration as mentioned in Appendix B. With this choice, Figure
5(a) is a plot of vectors that lead from the cortical surface at week 27 to the surface at week 31, and
analogously for the other figures. The data provided contained 10,242 points on each surface, and we
have plotted the vectors at every 15th point. The pattern of growth which reverses itself to return to
point to the rostral region of the brain was noted in the earlier work cited [15] as a “rostro-caudal
wave”. We note that sub-Figures (a)–(c) show the vectors between consecutive growth stages imaged,
while Figure 5(d) shows the vectors from week 31 to the very last (at-term) image at week 37.

From the spreadsheets shown in the link referenced in Appendix B, other vectors, e.g., arising from a
“backwards” registration may also be obtained and examined (see the Appendix for details). The above
plots were created from the Excel files mentioned by use of the Vector command in Mathematica 12.1.

3.3. Two-dimensional vector fields on a curve

The Ph.D. thesis of Sarah Kim [91] develops a model for the cortical curves that arise from
sectioning the brain. Actually, these are ‘thickened’ curves defined by quadrilateral elements. The
model she provides then moves the vertices of these quadrilaterals, and one may see from Figure 4.3
of her thesis that the details within her numerical simulations allow one to construct the vector fields
of growth. Indeed they can be defined throughout the thickness of the cortical layer by interpolation
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(a) week 27 to 31 (b) week 31 to 33

(c) week 33 to 37 (d) week 31 to 37

Figure 5. Growth vector plots from data sourced from [13].

between the outer and inner vertices of the quadrilaterals. Both her model and our previous
work [114] construct only these boundary curves, though thickened in her case. However, her model
is more general than ours because she allows for two dimensional interactions. In our previous work,
we invented a penalty function or energy to prevent self-intersection of the cortical curve and allow
for white matter fibers to pass between points on the cortical curve. This allowed us to stay within the
mechanics of curves in the plane, without having to take into account any interaction between points
on the curve and those outside. We took advantage of special geometry of planar curves, which would
not be possible in a higher dimension.

There is another potential source of such fields, namely extensive data collected on brain sections.
The monumental six-volume set authored by Shirley Bayer and Joseph Altman [118] contains pictures
of extensive collections of such sections taken from the first trimester to term. In Figure 6, we show
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a few of these sections which also serve to highlight the problems in using such un-registered data
collected historically. The sections shown are from what is called the Yakovlev collection [119] at
gestational weeks 29, 31, 34, and 37, not dissimilar to the data mentioned above. Moreover, we have
selected the sections that most closely correspond at the different weeks.

(a) GW 29 (b) GW 31

(c) GW 34 (d) GW 37

Figure 6. Sections from the Yakovlev collection photographed by Shirley Bayer, at epochs
given by gestational week number. See text for details.

Despite this, we can easily see that it is difficult to obtain a detailed point-to-point correspondence
and be confident of not contaminating the vector fields with artefacts due to poor correspondence and
registration. Our own early work also readily provides empirical vector fields by following marked
points in growing curves, but that model was more purposed to look at the basic determinants of
growth rather than detailed correspondence with cortical curves.

As mentioned, this section was primarily to indicate the wealth of sources available, and
continuing to be available for vector fields of both two dimensions in the plane or on curves, and of
three dimensions in a volume or on a surface.

4. From generators to special functions

We now return to our main theme and speculation, namely that Lie algebras and special functions
associated with them may be useful for describing the mathematical development of biological pattern
formation and growth. Let us henceforth specialize to the simplest case, namely the growth of a
cortical curve, or the cortical boundary of a plane section as described above. We may locally describe
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a growth transformation as taking a material point at (x, y) and moving it to (x+ ε, y + εq (x)). We
then call q (x) the generator of the growth pattern, and we have supplied many examples in diverse
dimensions. Now, we can construct the Lie algebra generated by ∂/∂x which we shall henceforth
call D, and multiplication by q (x). Sometimes, it is convenient to introduce a parameter t and call
the generators tD and q (x). If q (x) is a polynomial this generates a finite dimensional nilpotent Lie
algebra which includes multiplication by q (x) and its successive derivatives. The canonical prototype
is the Heisenberg algebra in which q (x) = x. Its N−step nilpotent generalization is q (x) = xn or xn/n!.
If q (x) is smooth and infinitely differentiable, then an infinite dimensional Lie algebra, though with
only two generators, will result. The following developments can easily accommodate either case.

There are many roads available to take us to special functions. To construct some of these, and
display them as graphs, we shall choose q (x) to be the bump function so labeled in Figure 7(a). We
also take the range of x to be a finite interval, [−1, 1] without loss of generality. This is not strictly
necessary, but allowing for infinite ranges will mean that we have to pay attention to the integrability,
and we choose to ignore that for the moment. Moreover, in the examples we have illustrated, the skull is
a compact bounded region, and so indeed the ranges will be finite. Now, we notice that D and q (x)−D
are operators adjoint with respect to each other in the space of functions which vanish at the end points,
and where the inner product has the weight w (x) ∼ exp (−Q (x)), Q′ (x) = q (x). The function Q (x) and
the weight w (x) after multiplication by a factor ensuring normalization, are also displayed in Figure
7(a). Immediately then, the “growth generator” gives rise to an orthogonal polynomial sequence with
the noted weight function. We construct these by standard procedures, and no particular difficulties
arise doing so numerically when q and hence Q and w are only given numerically or ‘empirically’ as
we have called it. The first five orthogonal polynomials for the given q are shown in Figure 7(b).

(a) (b)

(c) (d)

Figure 7. Special functions from generators. (a) The generator q(x) designated ”bump”,
its integral Q designated ”moment function” and corresponding weight exp(−Q(x)). (b)
Orthogonal polynomials wrt weight. (c) Eigenfunctions of product of generators. (d)
Eigenfunctions of Schrödinger operator constructed from generators.
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We may develop other special functions. We note that the product D (q(x) − D) is a self adjoint
operator and hence its eigenfunctions in the space spanned by functions vanishing at the end points may
also be considered “special”. The first five of these are plotted in (c) of the figure. The pair D, q(x)−D of
operators generate the same Lie algebra as do the original pair D, q(x) or other pairs such as x, q(D)+ x.
Finally we may consider the Hamiltonian operator with a potential well −q (x). The eigenfunctions
of −D2 − q (x) are shown in Figure 7(d). All these functions plotted may be considered “special
functions”associated with the generators of the Lie algebra in question. Another set of operators whose
eigenfunctions are sometimes designated as special functions associated to the Lie algebra are the
quadratic Casimir operators. However, in our case, these are not useful because they do not involve the
differentiation operator. There do exist such operators in an isomorphic Lie algebra which are quadratic
in the Lie algebra elements but these are of high order in D. See Appendix C for further discussion
about the Casimir operators.

We have not yet made any use of the fact that these generators generate an algebra, and that other
Lie algebra operators are thereby obtained. As stated, even in the infinite dimensional case, we may
consider the whole class of elements of the Lie algebra as generalizations of the standard N−step
nilpotent algebras. The relation between Lie groups and algebras and special functions is a venerable
subject, but standard texts usually focus on semisimple Lie groups. The papers of Feinsilver and
Schott offer methods seemingly applicable to any Lie algebra, and moreover focus on the algebras,
rather than the groups. In particular their methods apply to nilpotent and solvable Lie algebras, and
algebras generated as above are clearly either nilpotent or obvious generalizations of such algebras.
We have consulted the papers [120, 121], and [122] and we should also mention their three-volume
tome [123–125] summarizing several decades of their work in the field. For the reader’s convenience
we have provided a short exposition of Feinsilver and Schott’s methods in Appendix C. The Lie
algebra representations on suitable spaces of functions of x generated in the special case mentioned
consists of the multiplications by q (x) , q′ (x) , .....q(n) (x) , .... and the differentiation operator D. When
q is infinitely differentiable, the Lie algebra may be infinite-dimensional. The basic machinery that
Feinsilver and Schott use to generate “special”functions and polynomials is to write an element of the
Lie group in two different ways. For any suitable finite dimensional Lie algebra with elements Xi,
i = 1, 2, ..., n, we exponentiate to write an element of the Lie group so obtained in two different ways

exp

 n∑
i=1

αiXi

 =

n∏
i=1

exp (aiXi) (4.1)

This equality gives us the parameters a in terms of the α′s, called coordinates of the first and second
kind. The details of how these may be obtained in terms of the adjoint representation of the Lie algebra
is given in Appendix C. Let us take the case of the 4−step nilpotent Lie algebra. Let the non-zero
commutators in the Lie algebra be written as

[X5, X1] = X2; [X5, X2] = X3; [X5, X3] = X4 (4.2)

The generators are X5 and X1; for example X5 = tD and X1 = x3/3! generates such an algebra and X4

is then the center of the algebra. We find in this case

a1 = α1; a2 = α2 +
1
2
α1α5; a3 = α3 +

1
2
α2α5 +

1
3!
α1α

2
5;
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a4 = α4 +
1
2
α3α5 +

1
3!
α2α

2
5 +

1
4!
α1α

3
5; a5 = α5 (4.3)

The general pattern is clear from this set of equalities, and a proof that does not depend on working out
the transformation of coordinates this way is indicated below. Further, it is clear from the derivation
that the relationship does not depend on the specific representation chosen and that any morphism of the
Lie algebra will yield the same relationships. The general procedure for obtaining special functions
suggested by the work of Feinsilver and Schott, specialized to the specific representation of the Lie
algebra above, is this. Apply both sides of the Eq (4.1) to some suitable function, for example the
constant function 1. There results on the right hand side the expression

g (α, x) =

4∏
i=1

exp (aiXi) (4.4)

since exp (α5X5) 1 = exp (α5D) 1 = 1. It is assumed that we have replaced a′is by their corresponding
expression in terms of the α′s as well as the X′i s in terms of the multiplicative functions. Then we may
examine the moments for any multi-index J given by

DJ
αg (α, x)

∣∣∣
α=0

(4.5)

As implied,

DJ
α =

∂ j1∂ j2 ...∂ jn

∂α j1∂α j2 ...∂α j1
, j1 + j2 + ... jn = J (4.6)

Let us take a particular example. This example when restricted to the case n = 3, which is the
Heisenberg algebra, will yield the Hermite polynomials as the moments. We will take this example
for any n including n = ∞. Let us focus on the generators only, setting α1 = α and the α for the
differentiation operator to be β. The other coordinates are set to zero for the moment. All of the Xi in
Eq (4.4), now with the upper limit at infinity, commute, and we obtain

g (α, β, x) = exp
(
α

Q (x + β) − Q (x)
β

)
(4.7)

where we remind ourselves that Q′ (x) = q (x) and finally setting β = −α we obtain the generating
function

Φ (α, x) = eQ(x)e−Q(x−α) (4.8)

Setting Q (x) = x2/2 generates the Hermite polynomials, as mentioned. Since

eQ(x)(−D)e−Q(x−α) = q (x) − D (4.9)

we have
eα(q(x)−D)1 = eQ(x)e−αDe−Q(x)1 = eQ(x)e−Q(x−α) = Φ (α, x) (4.10)

Thus Φ generates the moments
(q (x) − D)m 1 (4.11)
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This generating function and its attendant moments may also be considered as functions of interest
allied to the Lie algebra. In fact, we can generalize this approach without setting the other parameters
to zero. Consider an element of the algebra

Y := −D +
∑

α jX j =: −D + ψ (x) =: −D + Ψ′ (x) (4.12)

where the equations define the functions ψ,Ψ. Then

exp (Ψ (x) − Ψ (x − t)) = exp (tY) (4.13)

and we have generating functions for other potentially interesting functions associated with the algebra.
We now use this to obtain the general relationship between the two kinds of coordinates, which we
surmised by inspection of a lower order case in Eq (4.3). By Taylor expansion in t, we find

an (α) =
∑
m10

αn−m
tm

(m + 1)!
(4.14)

Setting t = 1 reproduces the special cases we considered before.
We have thus shown a variety of “special”functions associated with the generators of the Lie

algebra. Although the plots were specific to a model bump function, it is clear that any empirical data
of the proper sort can be used to obtain a generator which in general will be a vector field in space,
and will generate a Lie algebra in the usual way. The supplementary file referred to above contains
several other morphisms of the Lie algebra which may lead to interesting functions and polynomials.

5. Conclusions

This paper has consisted of three parts. In the first part, we model early brain growth as smooth
deformations (diffeomorphisms) of a spatial region containing the brain which gives rise to cortical
folds. The rate of change of these diffeomorphisms are what we have called the vector fields of
growth. We applied the approach of symmetries of equations, in particular those derived from a
variational principle, to some simple elastic models of growth to suggest equations that may describe
the generators and invariants of growth, specifically of the brain and cortex. The equations for even a
simplified one dimensional model were very complicated. We then showed how vector fields that are
the growth generators may be obtained from a variety and increasing number of sources, both from
computer models and from imaging. We hypothesize that these vector fields are finitely generated. In
the third part we showed new special functions that can be obtained from such generators. We
emphasize that the methods described may be extended to higher dimensions and more complicated
generators than the one used for illustration in the previous section. The hypothesis that a finitely
generated algebra is useful and sufficient may be tested by examining the vector fields of growth at
different times and confirming this space of vector fields is approximately finitely generated. This
development from empirical data to Lie algebras with associated special functions is the principal
idea in the paper. It is our hope that developments of the work presented here will be useful in
creating new approaches to computational modeling and prediction of brain growth and to improve
qualitative understanding of the physiological drivers of growth and form.
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Appendix

A. One-dimensional cortical contour model

We briefly describe the energy density terms in the cortical contour model described in [114]. u(s)
is a 2D vector with components (u1(s), u2(s)) which denote the x−and y− components of the position of
the curve in the plane in parametric form, parametrized by s ∈ [0, 1]. The prime denotes differentiation
with respect to s. K denotes the curvature vector (i.e., the acceleration of u with respect to a variable
representing arc-length parametrization). l in the White matter entry refers to length along the curve,
while | | denotes the usual Euclidean distance in the plane. Θ is the usual Heaviside function, i.e, 1
when its argument is positive and 0 otherwise. The point denoted c is an approximate “center”of the
curve, or that of its approximately semicircular ceiling. This point could be taken as the origin of
coordinates.

Table 1. Energy terms.

Phenomenon
simulated

Continuum model energy
density

Discrete model energy
per node or constraint

Stretching [|u′| − l0]2/l2
0 (li − lio)2

Bending (σ|K| − σ0|K0|)2 (θi − θio)2 or (hi − hio)2

“Floor” (d − uy)2 × Θ(d − uy) φi ∈ [o, π]

“Ceiling” (|u−c|−r0)2×Θ(|u−c|−r0) R1 ≤ ri ≤ R2

Self-avoidance
∫ 1

0
ds′|u(s) − u(s′)|−p

∑
j

[dist(i, j)]−p

White matter
∫ 1

0
ds′

[
length(u(s),u(s′))

]p

|u(s) − u(s′)|p
∑

j

 [
∑k=max(i, j)

k=min(i, j) lk]

dist(i, j)


p

Shear
[

d
ds
|u − c|

]2n

(ri − ri−1)2 or (Ri − Ri−1)2

In the discrete model there are a set of nodes numbered 0 to N + 1. The various energy terms must
be summed over the number of variables. For example, the stretching term must be summed from
i = 1 to i = N. Referring to Figure 2(b), the lengths l are those of the polygon sides, and the angles are
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those between adjacent sides. There are many equalities that connect the various variables, all from
elementary plane geometry.

The total energy is an integral over s in the interval [0, 1] of the sum of the terms listed above, and
the actual curve is obtained as follows. First an initial curve is prescribed with total length equal to∫ 1

0
dsl0 (s). Then, in an actual placement of the curve in the plane, the energy density (energy per unit

parameter s) is the sum of the terms listed above. The first term is the energy of stretching with a non-
zero rest length (per unit s), and is just Hooke’s law. The second is an energy of bending, again with a
stress-free state with curvature K0. The multipliers which are the signs of the curvatures are needed to
make the energy density invariant with respect to rotations. As can be seen, there are non-local terms,
or double integrals in the expression of the energy, despite this being a model using mechanics by
contact. This is because we can approximate the effects of the white matter “cables”without modeling
these explicitly. As is often the case, when we eliminate a set of variables, especially ones that mediate
interactions, a local theory of action by contact becomes one of “action at a distance”. We didn’t
actually derive this nonlocal potential from a local theory, but simply postulated it. See [114] for
details.

A.1. Gradients of the energy density

Below we list the (non-zero) gradients of the energy density with respect to the dependent variables
and their differentials, as needed to write down the Euler-Lagrange conditions for the extremals. The
self-avoidance term mentioned in Table 1, which would be E5, is omitted since it is not needed in the
model when the terms E6 and E7 are included.

E1 := [|Du| − l0]2/l2
0

∂E1
∂(Du) = 2

l0

(
1 − l0

|Du|

)
Du

E2 :=
∫ 1

0
ds (σ|K| − σ0|K0|)2 =

∫ 1

0
ds (K ∓ K0)2 according to whether the sign (well defined for

planar curves) of the two curvatures are the same or not.
∂E2
∂u1

= 2σ (K ∓ K0)
(
−
Ju2

|u1 |
3 − 3 |K|

|u1 |
2 u1

)
where J

(
ux, uy

)
:=

(
−uy, ux

)
∂E2
∂u2

= 2σ (K ∓ K0) Ju1

|u1 |
3

E3 :=
∫ 1

0
ds (d − uy)2 × Θ(d − uy)

∂E3
∂uy

= 2(uy − d) is the only non-zero component of the gradient of E3.

E4 :=
∫ 1

0
ds (|u − c| − r0)2 × Θ(|u − c| − r0)

∂E4
∂u = 2 |u−c|−r0

|u−c| (u − c)

E6 :=
∫ 1

0
ds1

(∫ s
s1

ds2|Ds2 u|
)p

(|u(s)−u(s1)|+ε)p

∂E6
∂u = − 1p

∫ 1

0
ds1


(∫ s

s1
ds2|Ds2 u|

)p

(|u(s)−u(s1)|+ε)p+1 |u(s)−u(s1)|

 +
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p(p + 1)
∫ 1

0
ds1

[(∫ s

s1
ds2

∣∣∣Ds2u
∣∣∣)p (u−u(s1))(u−u(s1))

(|u(s)−u(s1)|+ε)p+2 |u(s)−u(s1)|2

]
+

p
∫ 1

0
ds1

[(∫ s

s1
ds2

∣∣∣Ds2u
∣∣∣)p (u−u(s1))(u−u(s1))

(|u(s)−u(s1)|+ε)p+1 |u(s)−u(s1)|3

]
∂E6
∂u1

= p(p − 1)u1u1

|u1 |
2

∫ 1

0
ds1


(∫ s

s1
ds2|Ds2 u|

)p−2

(|u(s)−u(s1)|+ε)p

 +

E7 :=
∫ 1

0
ds [ d

ds |u − c|]2n

∂E7
∂u = n ([u−c]·u1)2n−1

|u−c|2n

[
Du− ([u−c]·Du)

|u−c|2 (u − c)
]

∂E7

∂ (Du)
= n

([u − c] · Du)2n−1

|u − c|2n
(u − c)

A.2. Hessian of the energy density

We use what is sometimes called “dyadic” notation below. For example

u2u2

is a matrix whose components are (u2)i (u2) j , i, j = x, y. Further, I is the identity matrix.
E1 := [|Du| − l0]2/l2

0
∂2E1

∂(Du)∂(Du) = 2
l0

[(
1 − l0

|Du|

)
I + l0

|Du|3 (Du) (Du)
]

E2 :=
∫ 1

0
ds (σ|K| − σ0|K0|)2

∂2E2
∂u1∂u1

= 2σ
(
−
Ju2

|u1 |
3 − 3 |K|

|u1 |
2 u1

) (
−
Ju2

|u1 |
3 − 3 |K|

|u1 |
2 u1

)
+2σ (K ∓ K0)

(
− 3
|u1 |

5 u1Ju2 + 6K
|u1 |

4 u1u1 −
3K
|u1 |

2I
)

∂2E2
∂u1∂u2

= 2σ Ju1

|u1 |
3

(
−
Ju2

|u1 |
3 − 3 |K|

|u1 |
2 u1

)
− σ 6

|u1 |
5 (K ∓ K0) u1Ju1

∂2E2
∂u2∂u2

= 0

E3 :=
∫ 1

0
ds (d − uy)2 × Θ(d − uy)

∂2E3
∂u2

y
= 2 is the only non-zero component of the Hessian of E3.

E4 :=
∫ 1

0
ds (|u − c| − r0)2 × Θ(|u − c| − r0)

∂2E4
∂u∂u = 2

[
(1−|u−c|[|u−c|−r0])

|u−c|2
(u − c) (u − c) + |u−c|−r0

|u−c| 1
]
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E6 :=
∫ 1

0
ds1

(∫ s
s1

ds2|Ds2 u|
)p

(|u(s)−u(s1)|+ε)p

∂2E6
∂u∂u = − 1p

∫ 1

0
ds1


(∫ s

s1
ds2|Ds2 u|

)p

(|u(s)−u(s1)|+ε)p+1 |u(s)−u(s1)|

 +

p(p + 1)
∫ 1

0
ds1

[(∫ s

s1
ds2

∣∣∣Ds2u
∣∣∣)p (u−u(s1))(u−u(s1))

(|u(s)−u(s1)|+ε)p+2 |u(s)−u(s1)|2

]
+

p
∫ 1

0
ds1

[(∫ s

s1
ds2

∣∣∣Ds2u
∣∣∣)p (u−u(s1))(u−u(s1))

(|u(s)−u(s1)|+ε)p+1 |u(s)−u(s1)|3

]
∂2E6

∂(Du)∂(Du) = p(p − 1) (Du)(Du)
|Du|2

∫ 1

0
ds1


(∫ s

s1
ds2 |Du|

)p−2

(|u(s)−u(s1)|+ε)p

 +

1p 1
|Du|

∫ 1

0
ds1


(∫ s

s1
ds2|Ds2 u|

)p−1

(|u(s)−u(s1)|+ε)p

−
p (Du)(Du)
|Du|3

∫ 1

0
ds1


(∫ s

s1
ds2|Ds2 u|

)p−1

(|u(s)−u(s1)|+ε)p


∂2E6
∂u′i∂u j

= −p2 Du
|Du|

∫ 1

0
ds1


(∫ s

s1
ds2|Ds2 u|

)p

(|u(s)−u(s1)|+ε)p+1
u−u(s1)
|u−u(s1)|


E7 :=

∫ 1

0
ds [ d

ds |u − c|]2n

∂2E7
∂u∂u =

n (2n − 1) ([u−c]·Du)2n−2

|u−c|2n (Du) (Du)

−2n2 ([u−c]·Du)2n−1

|u−c|2n+2 {(u − c) (Du) + (Du) (u − c)}

+2n (n + 1) ([u−c]·Du)2n

|u−c|2n+4 (u − c) (u − c) − n ([u−c]·Du)2n

|u−c|2n+2 1

∂2E7
∂(Du)∂u =

n (2n − 1)
([u − c] · Du)2n−2

|u − c|2n
(u − c) (Du)

− 2n2 ([u − c] · Du)2n−1

|u − c|2n+2
(u − c) (u − c) + n

([u − c] · Du)2n−1

|u − c|2n 1

∂2E7
∂(Du)∂(Du) = n (2n − 1) ([u−c]·Du)2n−2

|u−c|2n (u − c) (u − c).
These Hessians enter into the expressions in section 2.2.2. In turn as mentioned there, the total

derivatives need to be expanded and finally equations result for the generators Q, which if solved, give
us the analog of the Lie-symmetry approach to growth and form from mathematical equations thereof.
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B. Supplementary information

We describe here the datasets used and created for our illustrations in section 3. We use the same
terminology to aid cross reference. All of the folders referred to by name here are available at
https://tinyurl.com/RaghavanSuppInfo at the time of this writing.

Three dimensional vector fields in a volume (NIH data [15] used for Figures 3 and 4).
We used 16 MRI datasets obtained with permission from the NIH in-vivo NMR Center, of a child

aged 3 years at the starting date of 23 January 1996, and ending on 7 November 2000 (see reference
for details and how to obtain these datasets). The data has a starting date of Aug 1996 and the last of
the pair is Nov 2000. The specific dates at which these images were obtained are:

1. 0682 Study 2189, Series 2 23 Jan 1996 11:59:28 (3 years old)
2. 810 Study 3458, Series 3 20 Aug 1996 17:47:27
3. 871 Study 3981, Series 2 12 Nov 1996 13:06:09
4. 1019 Study 4911, Series 2 22 Apr 1997 13:13:29
5. 1090 Study 5348, Series 3 01 Jul 1997 11:39:47
6. 1169 Study 5796, Series 3 09 Sep 1997 09:29:19
7. 1251 Study 6513, Series 3 30 Dec 1997 06:50:53
8. 1387 Study 7680, Series 3 09 Jun 1998 13:21:27
9. 1552 Study 8877, Series 3 22 Dec 1998 14:02:36

10. 1662 Study 9468, Series 4 30 Mar 1999 12:47:58
11. 1740 Study 9962, Series 3 16 Jun 1999 13:41:28
12. 1778 Study 10170, Series 2 20 Jul 1999 17:06:22
13. 1930 Study 10983, Series 3 23 Nov 1999 10:15:00
14. 2058 Study 11869, Series 4 28 Mar 2000 13:56:20
15. 2130 Study 12314, Series 3 15 Jun 2000 16:52:34
16. 2284 Study 13116, Series 3 07 Nov 2000 13:11:06 (8 years old)

The datasets in our repository pertaining to these data are in the folders (A) NIHto682dispVector,
(B) NIH GrowthVecDataInterpolated, and (C) NIH GrowthVecAnimationGIFS.

The original datasets from the NIH were all 256 × 256 × 124 volume datasets with pixel size
0.9375 mm and slice separation 1.5 mm. These latter numbers are irrelevant for the viewing of the
vector data and the displays. The folder A contains 15 volumes, all co-registered to the first “0682”
dataset, and consist of the (x, y, z) components of the growth vectors in a 256 × 256 × 124 volume.
Each component is a floating point real (32−bit, 4−byte) number. With the information provided, any
image viewer that displays vector field data may be used to view the data. (See below for a different
example where we have actually provided vectors in an Excel spreadsheet). The process by which
these vectors were obtained is outlined below. Folder B consists of the same data now interpolated
month by month resulting in a total of 51 volumes over the time period of collection of the data.
However the arrangement of the data in B is different. For the purposes of subsequent animation we
arranged the data in a 256 × 256 × 51 volume which consists of a vector at each voxel in a single slice
at the 51 different times noted. As before, the vector is three 32-bit floating point numbers. Due to the
size, we have separated these volumes into four sub-folders, comprising in sequence, the vectors at
Slices 0 − 30, 31 − 70, 71 − 100, and 101 − 123. Different views of the vectors as 51 volumes in
256 × 256 × 124 format are available, though they may also be reconstructed from the data in the
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repository.
We used the magnitudes of the vectors as images and constructed volume renderings (the opacity

maps used for these renderings are available on request) of the 51 such volumes. These are available
in Folder C. With reference to the frame in which the data is constructed, the view point of the volume
rendered maps were from a rotation around the X−axis of 30◦, and around the Y−axis of 20◦. Different
viewpoints were selected according the viewing angle of rotation about the Z−axis as noted in the
names of the files. Any particular frame of the animation, as well as the speed with which the animation
is displayed, may be controlled through viewers available on the web. One such that we have used is
available at https://onlineimagetools.com/gif-player as of February 15, 2021.

The process by which the vectors were obtained is now outlined. Some preprocessing of the data
is required to obtain standard left-right alignment. A pullback transformation is applied to map a
destination point to a source point (the first dataset). Thus there is a volume B which needs to matched
to a source volume A, A and B being acquired adjacently in time, in that order. In our case both
are registered to the coordinate system of the first data set which we call O. We do not describe the
methods because such registration methods are described in detail in the source quoted below for the
cortical surface data. Our procedure consisted of the following steps: (i) a voxel to scan coordinate
transformation on A; (ii) an inverse affine matrix to convert to the O space; (iii) a local cross correlation
optimized in each iteration step, and (iv) minimizing a global mutual information measure. This allows
us to generate a point correspondence between two datasets.

Three-dimensional vector fields on the cortical surface (Data sourced from [13] used for Figure
5). The cited paper may be consulted for the source and repositories of the original data at
balsa@wustl.edu. As that website informs, BALSA stands for Brain Analysis Library of Spatial maps
and Atlases and is a database for hosting and sharing neuroimaging and neuroanatomical datasets for
human and primate species. The website also links to tools provided in the more general Connectome
Project and Workbench for viewing and processing (via MatLab) the data. Using the Workbench, one
can click on a “scene” file, which will open all files relevant to that figure and allows dataviewing.
The surface files in Figure3 scene are the ones we first used to create vector fields. The Excel file
Garcia ConsolidatedData Large in the folder Garcia et al that we have provided is based on the
surface files we mentioned, provided in GIFTI (.gii) format. The Connectome Workbench provides
MatLab tools for reading such files, but we used our own Python programs to do so. In the different
sheets of the file we have listed the surface points as well as the vector that leads from a point at one
time to the corresponding one at the succeeding time.

However, we were informed by Dr. Kara Garcia that the surfaces referred to in the paper had been
“resampled to the atlas resolution, which is higher than the resolution used for longitudinal registration
and strain energy minimization.” She provided new surface files “in which every vertex has been moved
to the optimal position (rather than the higher resolution surfaces that contain lots of extra, unoptimized
points).... Notably, each registration was run in both directions (older surface registered to younger
surface, and vice versa), leading to two pairs of surfaces for each time period (folders ab, bc, cd, bd).”
We therefore provide further Excel files noninjured.L.XY where XY = ab, bc, cd, and bd, respectively
obtained by reading the coordinates from the surface files. The nomenclature of the surface files in
each group used by Dr. Garcia and her collaborators is as follows:

“Forward” registration:
• YAS.LLR.surf.gii = original Younger Anatomical Surface mesh
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• configincaltrelaxforward.anat.LLR.reg.surf.gii = older anatomical surface mesh after
registration to younger

”Reverse” registration:
• OAS.LLR.surf.gii = original Older Anatomical Surface mesh
• configincaltrelaxreverse.anat.LLR.reg.surf.gii = younger anatomical surface mesh after

registration to older.”
Further we note the correspondence ab = Weeks (27, 31); bc = Weeks (31, 33); cd = Weeks (33, 37)

and bd = Weeks (31, 37). We have provided the individual Excel files in self-explanatory nomenclature
that were used to plot the vectors going from the earlier surface to the later. As stated, the plots in
Figure 5 are vectors obtained from the Forward registration mentioned above.

Two-dimensional vector fields on a curve (Data referenced in [118], [119] and used in Figure 6).
The data were provided by Dr. Shirley Bayer, originally in Adobe Illustrator form. The section images
in the folder YakovlevDataAnnotatedPDF are the same but converted to pdf for easier viewing. Further
we compiled them into volumes provided in the folder YakovlevData VolumeSet which may be viewed
again by any 3D Image viewing tool as for the first dataset above. All of the data in this set are 8−bit
(one byte). The data are taken from brain sections of fetuses at gestational weeks (GW) 29, 31, 34,
and 37 which are not entirely dissimilar to the times when the above MRI datasets were obtained.
The following information may be useful when viewing the volume data set. The data at GW 29 is
550 × 655 × 52, that at GW 31 is 632 × 596 × 91, that at GW 34 is 632 × 596 × 91, and that at GW
37 is 470 × 582 × 90. The sections shown in Figure 6 are taken directly from the pdf’s in the folder
YakovlevDataAnnotatedPDF provided.

C. Vector fields, Lie algebras and special functions

In this Appendix, we first mention some well known relationships between vector fields and Lie
algebras, and on constructing Lie algebras from special functions. The latter material is taken from
the extensive work of Feinsilver, Schott, and their colleagues, collectively hereafter referred to as FS.
The specific papers consulted have been referenced in section 4, as is the book series by Feinsilver
and Schott. Everything in these notes is to be found in their writings and we thank Professor
Feinsilver for patiently explaining the work. We summarize very succintly their methods illustrated
by the Heisenberg algebra. We hope that our description of the example shown is clear enough that it
can be carried through without difficulty for any finite dimensional Lie algebra. We first summarize
some introductory material on vector fields and Lie algebras.

C.1. Vector fields and Lie algebras

The basic material on vector fields and Lie algebras that underlies the symmetry and equivalence
approaches is widely available, and in partcular in [111]. A vector field is written in local coordinates
as the first order differential operator or derivation

v :=
d∑

i=1

Xi (x)
∂

∂xi (C.1)
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where x =
(
x1, x2, ....xd

)
are local coordinates for the tangent space of a manifold. Such a vector field

drives an evolution of points according to

dx (t)
dt

= X (x (t)) (C.2)

where X is the d−tuple of the Xi’s, with some initial values specified. This is a one parameter flow, with
parameter t. Given two vector fields in local coordinates in terms of functions X,Y, their Lie bracket
is given by the commutator of the corresponding differential operators, and thus is also a vector field
or, in local coordinates a derivation:

[v,w] =

d∑
i=1

d∑
j=1

[
X j∂Y i

∂x j − Y j∂Xi

∂x j

]
∂

∂xi (C.3)

which is used to generate a Lie algebra by successive commutation. This is familiar from the “parallel
parking” example. The generator ∂

∂x of a translation along x, the longitudinal axis of the car, and a
rotation y ∂

∂x − x ∂
∂yabout a vertical axis, allows one to translate along the transverse direction y. If the

resulting Lie algebra is finite dimensional of dimensionality N, we have an N−parameter flow. Then,
Lie’s theorems when applicable allow one to state that smooth deformations of the manifold can be
computed by composition of N one-parameter flows. Mathematically precise statements of these
remarks may be easily found, including in Olver’s book [111]. Two different ways of writing an
element of the group are used to develop the theory of generators of special functions. We therefore
now turn to construction of these diffeomorphisms which are elements of the Lie group obtained by
exponentiation of the Lie algebra. Only the structure of the Lie algebra is needed, not the specific
representation in terms of the local coordinates, until we come to constructing special functions
associated with representations on spaces of functions acting on the manifold in question.

C.2. Transformations of coordinates

We now describe the FS constructions. However, we caution that we have made a few changes in
notation so that the reader who cares to follow this while looking at the example in the papers can be
warned. The changes are listed in Table 2. The assertions made without proof here are results that FS
have obtained in various of their works, and are referenced in their papers. There are two fundamental
constructions (from X to XL and X′, see below), related to left and right actions, and one fundamental
result (from coordinates α of one kind (C.5) to coordinates A of another (C.6) which is of the Baker-
Campbell-Hausdorff type. Once these are understood, all the other assertions are easily stated and lead
to various possibilities for construction of special functions. In this paper, and in most of their other
work, FS use faithful matrix representations of the Lie algebras to carry through the first part of their
computation to derive the XL and X

′

operators, as well as the associated π matrices described below.
However, since our work is confined here to representation spaces of functions of one real variable,
we begin by using the conventional realization in terms of multiplication and differentiation operators.
(Later, we indicate how to use matrix representations.) For reasons that will be clear we use z to denote
a real variable and argument of functions, as well as a multiplication operator by z in the Lie algebra.
No confusion should arise. We begin with the Heisenberg algebra in the form

[X3, X1] = X2 (C.4)
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Table 2. Nomenclature change from Feinsilver et al. (FS).

FS Meaning Here Equation

ξ element of a Lie algebra of dimension N X C.4
‡ superscript, a dual operator L C.7
α, A coordinates of first and second kind respectively α, a C.5,C.6
R,V raising and lowering operators R,V C.35
ξ∗ a morphism of the Lie algebra X′ (a, ∂a) C.15
ξ̂ a different morphism X′′ (R,V) C.36
ξ̂ a different morphism (overloaded symbol) X′′′ (x, ∂x) C.54

π‡, π∗, π̂, π̂∗ “pi” matrices πL, π′, πLT , π′T

π̌ product of two pi matrices π̌

adjoint action AdX C.20
ξ̆ matrix of the adjoint representation XAd C.26

N × N identity matrix I C.31
vector representing X, acted upon by XAd χ C.27
map from χ to corresponding X: X̂ (χi) = Xi X̂ C.28

Y commuting operator set, related to X Y C.49, C.50
coordinate transform a→ α A (α) C.42
multivalued coordinate transform α→ a ←−α (a) C.47

Jacobians expressed as functions of α, a J (α) ,
←−
J (a) C.45,C.47

ordering operator N C.36
† superscript, transpose T C.11〈

m

n

〉
A

group matrix element Dnm (a) C.72

with other commutators vanishing. We choose the representation X1 = multiplication by z, X2 =

multiplication by a real number h which then belongs to the center of the algebra, and X3 = hd/dz, all
acting on functions of z. A group element may be represented either by

f (α, X) := exp

 3∑
i=1

αiXi

 (C.5)

or by

g (a, X) :=
3∏

i=1

exp (aiXi) (C.6)

where the α and the a are scalars, and, without subscripts, α is meant to denote the sequence (α1, α2, α3),
and so for a. Without confusion, we also use α, a to stand for the corresponding list or vector in vector
or matrix-vector equations, and sometimes for a single scalar. The context should make clear what is
meant. FS call these coordinates of the first and second kind, respectively.
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C.2.1. Left and right vector fields

We define some differential operators. Write

XL
i (a, ∂a) g := Xig (C.7)

The meaning of the arguments of XL
i will become clear in a moment. Arguments omitted in already

defined functions should be understood to be present as when first introduced. We obtain these
operators by pushing the Xi’s∗ through g. Note that the expressions in (C.7) remain operators, implied
to act on a function of z to the right of the operator g. For example, we see that

X3g = h
d
dz

(
ea1zea2hea3hd/dz

)
(C.8)

=

(
ha1 +

∂

∂a3

)
g =

(
a1

∂

∂a2
+

∂

∂a3

)
g (C.9)

=: XL (a, ∂a) g (C.10)

The other two operators cause no difficulty, so we have, regarded as a column vector,

XL (a, ∂a) =

(
∂

∂a1
,
∂

∂a2
, a1

∂

∂a2
+

∂

∂a3

)T

(C.11)

The corresponding pi-matrix is defined by them as

πL (a) ∂a := XL (C.12)

with the notation

∂a :=
(
∂

∂a1
,
∂

∂a2
,
∂

∂a3

)T

(C.13)

From these definitions, it follows that

πL (a) =


1 0 0
0 1 0
0 a1 1

 (C.14)

Similarly, the following operator is defined, requiring pulling the Lie algebra operators through to the
left:

X′ (a, ∂a) g := gXi (C.15)

Again the expressions are operators acting on a function of z to the right of the expression in question.
We have used a prime to denote a dual of the Lie algebra which is also a homomorphism thereof. Here,
as is easily seen, the multiplication by z is the only non-trivial operation:

ea1zea2hea3hd/dzz = (z + a3h) g (C.16)

=

(
∂

∂a1
+ a3

∂

∂a2

)
g (C.17)

∗We trust no confusion arises between our use of the apostrophe as here, and the primes which are used to denote various operators.
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The corresponding matrix satisfying
π′∂a := X′ (C.18)

is thus seen to be

π′ (a) =


1 a3 0
0 1 0
0 0 1

 (C.19)

Defining the adjoint operator corresponding to an element X on the Lie algebra vector space in the
usual way as

Ad
X

Y := [X,Y] (C.20)

we have
etXYe−tX = et AdX Y =

(
1 + t Ad

X

)
Y (C.21)

the last being true for our case since we have a 2-step nilpotent algebra, so we may truncate the series
at the second term. We then write

X3g = X3

(
ea1X1ea2X2ea3X3

)
(C.22)

= ea1X1e−a1 AdX1 X3ea2X2ea3X3 (C.23)
=

(
1 + a1∂a2

)
g (C.24)

which yields the same results as equation (C.10). FS use faithful matrix representations to obtain the
results. However, we need only the adjoint representation for this purpose, and this is very amenable
to automating via a computer program. Recall that with the structure constants c defined from[

Xi, X j

]
=

∑
k

ck
i jXk (C.25)

the (k j)th element of the adjoint matrix XAd
i representing Xi is ck

i j. Thus these matrices for (C.4) are

XAd
1 =


0 0 0
0 0 −1
0 0 0

 , XAd
2 =


0 0 0
0 0 0
0 0 0

 , XAd
3 =


0 0 0
1 0 0
0 0 0

 (C.26)

acting on the vectors corresponding to X1, X2, X3

χ1 =


1
0
0

 , χ2 =


0
1
0

 , χ3 =


0
0
1

 (C.27)

and which, since the algebra is nilpotent, cannot form a faithful representation. In this case, the adjoint
action of both the zero of the Lie algebra and of X2 are represented by the same matrix. However, the
adjoint representation remains useful to obtain the operators XL, X′ since

eXi X je−Xi = eAdXi X j = X̂
(
eXAd

i χ j

)
(C.28)
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where X̂ is the Lie algebra element corresponding to the vector argument. The definitions are meant to
be perfectly general, not tied to this example, but it is clear how to proceed in more complicated cases.
To summarize, we have

πL
i =

 i−1∏
k=1

eakXAd
k

 χi (C.29)

π′i =

 i+1∏
k=N

eakXAd
k

 χi (C.30)

where the suffix π•i denotes the i’th row of the matrix. If i = 1 in equation (C.29) or i = N in (C.30),
we set the matrix in brackets to be the identity matrix I. Alternatively, we can set the variable limit of
the index to be i in both cases instead of i ± 1 and perform the pointless operation eaiXAd

i χi = χi. In the
Heisenberg algebra example, we see that

eakXAd
k = I+ akXAd

k (C.31)

No summation of an infinite series is required to evaluate the exponential of any finite dimensional
matrix representation of the algebra. However, the calculations soon become unwieldy enough that a
symbolic manipulation program is most helpful. Further,

X′ = π′
(
πL

)−1
XL (C.32)

which follows immediately from the definitions. Note that the definitions of the π−matrices demand
that the X’s in (C.32) be regarded as columns. We notice the following, which also happen to be
general.

XL, X′ are mutually commuting sets of operators (C.33)
X → X′ is a homomorphism; X → XL is an antihomomorphism (C.34)

We now construct the double dual which will also be a homomorphism. Define, abstractly, R, V (not
usually adjoints of each other) to be raising and lowering operators for each element of the algebra
satisfying:

[V,R] = δi j (C.35)

and define N to be an ordering operator that moves all the raising operators to the leftmost position
in an expression, and if there are lowering operators or derivatives, they are moved to the rightmost
positions. Then

X′′ := N
(
πL (V)R

)
(C.36)

forms another homomorphism of the algebra. Explicitly for example, since the third row of πL (V)
would read (0,V1, 1), we get

X′′3 = R2V1 + R3 (C.37)

Thus [
X′′3 , X

′′
1
]

= [R2V1 + R3,R1] = R2 = X′′2 (C.38)
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which satisfies the Lie algebra commutation.
The relation between the two kinds of coordinates is obtained by the method of characteristics,

according to FS. Namely, consider the equations

Ȧ (α, t) = απL (A (α, t)) (C.39)

where α is a row vector comprising the αi’s. Then

f (α, X) = g (a, X)→ a = A (α, 1) (C.40)

where A (α, 1) are the solutions at time 1 of (C.39) with the integration constants set to zero.
Henceforth, we denote A (α, 1) under these conditions simply as A (α). In this case we have,

Ȧ1

Ȧ2

Ȧ3

 =


α1

α2 + A1α3

α3

 (C.41)

Setting the integration constants to zero yields

A1 (t) = α1t; A2 (t) = α2t + α1α3t2/2; A3 (t) = α3t (C.42)

We therefore have

f (α) := eα1X1+α2X2+α3X3 = eα1X1e(α2+α1α3/2)X2eα3X3

= g (A (α) , X) =:←−g (α, X) (C.43)

The first set of canonical polynomials for the Lie algebra may be defined by considering ←−g (α, x) to
be the generating functions of polynomials in the x−variables, where x is a (set of) scalar(s). In other
words, the canonical polynomials are Pn (x) defined by the equality of the expressions below.

←−g (α, x) =
∑

n1,n2,n3>0

αn1
1 α

n2
2 α

n3
3

n1!n2!n3!
Pn1,n2,n3 (x1, x2, x3)

=:
∑
n>0

αn

n!
Pn (x) (C.44)

The righthand-most expression defines a multi-index notation for the integers and polynomials. Before
we specialize to obtain some familiar polynomials, we introduce further quantities which may serve to
define other canonical polynomial sets. First we define the Jacobian matrix

J (α) :=
∂A (α)
∂α

(C.45)

We have from (C.42)

J (α) :=
∂A (α)
∂α

=


1 0 0

α3/2 1 α1/2
0 0 1

 (C.46)
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Next we define
←−
J (a) :=

(
J ◦ ←−α

)
(a) (C.47)

In other words we compute the Jacobian and replace the α’s by solving for them as a function of the
A’s. Since A (α) is in general nonlinear in the α, it is remarkable that this difficulty does not confront
us in the Jacobian. Since α1 = A1, α3 = A3, we get, in terms of the values,

←−
J (a) =


1 0 0

a3/2 1 a1/2
0 0 1

 ;
←−
J −1 (a) =


1 0 0
−1

2a3 1 −1
2a1

0 0 1

 (C.48)

It is purely accidental that the functions J,
←−
J coincide in this case. Then a commuting set of differential

operators in x−variables are defined from

Y := N
[
x
←−
J

(
∂

∂x

)]
(C.49)

=
[

x1 x2 x3

] 
1 0 0

1
2

∂
∂x3

1 1
2

∂
∂x1

0 0 1


=

[
x1 + 1

2 x2
∂
∂x3

x2 x3 + 1
2 x2

∂
∂x1

]
(C.50)

where it is understood that the differential operators are to be placed rightmost in (C.49). As stated the
Y’s are commuting operators, but they yield a remarkable result upon application to the constant 1:

exp
(∑

αY
)

1 =
∑
n>0

αn

n!
Pn (x) =←−g (α, X) =

∏
exp (A (α) x) (C.51)

In other words eα1Y1+α2Y2+α3Y3acting on the constant 1 is the function←−g (α, X) given in (C.43). We shall
assume N−ordering of the differential operators in the expressions. In other words, we have

Yn1 = Pn (x) (C.52)

We can do a spot check on this. We find

∂2←−g (α, x)
∂α3∂α2∂α

2
1

= x2
1x2 + x2

1x2x3 = Y3Y2Y2
1 1 (C.53)

where the Y’s are read off from (C.50). Speculatively, the joint eigenfunctions of Y may be worth
exploring.

We now construct the third morphism. (FS denote both this and the second morphism above by the
same symbols, but here we introduce an extra prime to distinguish this morphism from the previous
ones). This is defined by

X′′′ := N
[
x
←−
J −1

(
∂

∂x

)
π̂L (∂)

]
(C.54)

with
π̂L :=

(
πL

)T
(C.55)
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Computing the right hand side of (C.54),[
X′′′1 X′′′2 X′′′3

]
(C.56)

= N

[ x1 x2 x3

] 
1 0 0
−1

2∂3 1 −1
2∂1

0 0 1




1 0 0
0 1 ∂1

0 0 1


 (C.57)

=
[

x1 −
1
2 x2∂3 x2 x3 + 1

2 x2∂1

]
(C.58)

and these operators form a morphism of our Lie algebra. Note that the relation between α’s and A’s in

exp (α1X1 + α2X2 + α3X3) = exp (A1 (α) X1) exp (A2 (α) X2) exp (A3 (α) X3) (C.59)

depends only on the commutation relations of the X′s and so is valid for all the morphisms. For
example, consider X′′. We have from

exp (α1R1 + α2R2 + α3 (R3 + R2V1)) = exp (α1R1) exp ((α2 + α1α3/2)R2)

× exp (α3 (R3 + R2V1)) (C.60)

Now let us apply both operators to the constant 1†. We can drop the lowering operator from the right
hand side since it acts independently on the first variable. Then on the right hand side we are left only
with commuting operators, so we may bring all the exponents together and add. We get

eα1R1+α2R2+α3R3+α3R2V11 = eα1R1+α2R2+α1α3R2/2+α3R31→
eα1R1+α3R2V11 = eα1R1+α1α3R2/21 (C.61)

We also note the following, which allows us to compute the matrix elements which are also special
functions. From (C.49), let us posit

x := N
[
Y
←−
J −1 ([)

]
= N

 Y1 Y2 Y3


1 0 0
−1

2[3 1 −1
2[1

0 0 1


 (C.62)

=
[

Y1 −
1
2Y2[3 Y2 Y3 −

1
2Y2[1

]
(C.63)

The action of raising and lowering operators on elements of the universal enveloping algebra are the
familiar expressions from quantum theory, namely

R1Xn1
1 Xn2

2 Xn3
3 = Xn1

1 ..X
ni+1
i ... (C.64)

V1Xn1
1 Xn2

2 Xn3
3 = niX

n1
1 ...X

ni−1
i ... (C.65)

†This may be considered the “vacuum” state from the point of view of quantum fields. However, note that the vacuum stated defined
as what is annihilated by the “number” operator can be different. Thus 1 is annihilated by d/dx, but the Heaviside function H (x) is
annihilated by xd/dx. d/dx alone on H will give the delta distribution which can be acted upon by d/dx an infinite number of times,
just as a constant can be acted upon by x an infinite number of times.
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Since the Y’s commute, we can see from (C.51) that

YPn = Pn+ei (C.66)

where ei adds a 1 to the power of the i’th coordinate function, and leaves all the others unchanged.
Therefore, from the definition of the x’s in (C.63), we get the recursion relations

x1Pn = Pn+e1 −
1
2

n3Pn+e2−e3 (C.67)

(see [121], below Eq (8) in their paper). Matrix elements of the group in this kind of number
representation also form a class of special functions. Before we discuss this, we introduce yet another
π−matrix, following [122]. We have already introduced notation in (C.55) for the transpose of the first
π−matrix introduced, and also the matrix product that relates XL, X′, see (C.32). We therefore
introduce

π̂′ :=
(
π′

)T (C.68)

π̄ := π′
(
πL

)−1
(C.69)

Then,
g
(
a, XAd

)
= π̄T (C.70)

In words, the product of exp
(
aXAd

i

)
, a being a number and XAd

i being the matrices in (C.26), result
in the matrix π̄T . Our final formula from FS is one for the group elements. We use the multi-index
notation, and use the Dirac notation |n〉 to represent an element

Xn := Xn1
1 Xn2

2 Xn3
3 (C.71)

of the universal enveloping algebra. Then the matrix elementDnm (a) is defined by

g (a, X) |n〉 =
∑

m

Dnm (a) |m〉 (C.72)

and the matrix elements are given as

Dnm (a) =
(
X′

)n am/m! (C.73)

≡
(
X′1

)n1
(
X′2

)n2
(
X′3

)n3
am1

1

m1!
am2

2

m2!
am3

3

m3!
(C.74)

the second line being the special case for an algebra consisting of three operators, in particular for the
Heisenberg algebra we have been using as an example. Note that X′ operators are expressed in terms
of the a’s and their derivatives as indicated in (C.15) and worked out explicitly below that in equation
(C.11). The X′s on the right hand side of equation (C.74) are replaced by the multiplication and
differentiation operators in the a′s and then applied to the monomials in the equation. The resulting
expression is the relevant matrix element. These matrix elements satisfy recurrence relations when
operated upon by the X′, which result in further special functions, sometimes related to the
hypergeometric functions, and are also “special functions” related to the algebra.
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C.2.2. Casimir operators

We have not made any use of these, but we quote the formula for the Casimir operators from [126]
for a special case of Lie algebras, of the form illustrated in section 4 of the paper. Consider the algebra
is generated by q (D) and x and has n elements so that it is n − 1–step nilpotent. Then the quadratic
Casimir operators are of the form

Cas (k|N) =
[
q(n−k−2) (D)

]2
+ 2

k∑
j=1

(−1) j q(n−k+ j−2) (D) q(n−k− j−2) (D) , (C.75)

k = 1, 2, .. bn/2c

We do not explore the eigenfunctions of such operators in part because they would not be useful for
empirically derived vector fields. If q (D) = Dn/n!, these operators evaluate to zero. If we use the
Lie algebra generators in the form q (x) ,D, the Casimir operators are multiplications by functions of
x. [126] also exhibits formulas for Casimir operators higher than the quadratic.

C.2.3. Summary

We may summarize the procedure as follows.

1. From the basic Lie algebra commutation table, construct the matrices of the adjoint representation.
2. Compute the πL and π′ matrices from equations (C.29) and (C.30), respectively.
3. Obtain A (α) by solving equation (C.39).
4. Obtain the homomorphisms X′, X′′, X′′′, and the commuting set Y (see Table 2 for the defining

equations).
5. Express the identity f (α, X) = g (A (α) , X) for the various morphisms.
6. From the previously expressed identities, search for special functions by acting upon suitable

vectors such as the vacuum vector or eigenfunctions of the Y operators.
7. Construct the matrix elements from the enveloping algebra and explore these for special functions.

C.3. Special functions

We concisely list approaches to the construction of special functions suggested by FS. We did not
make use of any of the methods advocated by FS in our paper. The particular nature of the Lie algebra
allowed us to directly obtain the formulas displayed in section 4 of the paper. Roads 3, 8, and 10 were
the ones illustrated in the paper.

C.3.1. Ten Roads to special functions

We use α and A (α) to mean the respective lists, and we specialize to the case where the generators
of the Lie algebra are written q (x) ,D, though the methods can be generalized to other Lie algebras.
Further, αi is associated with Di−1q(x), i = 1, 2, ... and in this note we will associate α0 with D. X will
be any morphism of the Lie algebra, and the indexing will be the same, i.e., X0 ∼ D, X1 ∼ q and so on.
The order will be A1, A2, .....AN , A0 where the Lie algebra is N−step nilpotent.

Road 1: Generating functions Apply
∏

exp (AiXi) to some function f (x), conventionally chosen to

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3598–3645.
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be 1. Then consider the polynomials ∂J

∂αJ

 N∏
i=1

exp (Ai (α) Xi (x))


α=0

. (C.76)

where J is a multi-index.

Road 2. Generating functions, commuting operators We can apply the same method as above but
this time where the X′s are replaced by the commuting differential operators Y in the above.

Road 3. Orthogonal polynomials q(x) − D and D are operators that are formal adjoints of each
other in the space of functions which are square integrable with respect to the weight function
exp (−Q (x)), where Q′ (x) = q (x). They can be made adjoints with suitable zero boundary
conditions for the functions, or with addition of delta functions to address non-zero boundary
conditions. It is then natural to consider polynomials orthogonal with respect to the inner
product suitably defined with this weight. Let pn (x) be such polynomials.

Road 4. Fourier transforms The Fourier transforms

Pn (k) := F
[
exp

(
−

1
2

Q (x)
)

pn (x)
]

(C.77)

where F denotes the Fourier transform, can be checked to form an orthogonal family of functions
of k as well.

Road 5. Canonical transform Since q (−D) , x generate the same Lie algebra as q (x) ,D, we may
evaluate

∏
exp (AiXi) without the need to apply it to any function and follow the routes given in

1 and 2 above.

Road 6. Specialization of the α′s In the above differentiations, J was a multi-index since there were
many α′s. We may reduce the number of these in various ways. One way is to scale α0 = λ = α1

and the other α′s scale as λi so that each Ai becomes a homogeneous polynomial in λ. Then
the product of exponentials is a function of the single parameter λ and we may differentiate with
respect to this. This seems the natural choice, but another is to choose the scale for α0 to be a
constant (i.e., α0 = λ0) in which case we can choose all the other α′s to scale linearly with λ.

Road 7. Matrix elements Illustrated in the discussion following equation (C.74).

Road 8. Eigenfunctions I We may square the Lie algebra elements and seek the eigenfunctions of
q(x)2 + D2 or similar self adjoint operators in a suitable Hilbert space of functions.

Road 9. Eigenfunctions II From the remarks in Road 3, (q (x) − D) D is also self adjoint in a suitable
Hilbert space. Find the eigenfunctions of these.

Road 10. Application of generator Apply q (x) − D successively to a suitable function (the constant
function 1 will do), and orthonormalize the resulting polynomials or functions. We have
discussed this in section 4, and we make the following additional remarks. We see therefore that

g (x, α) := eQ(x)e−Q(x−α) =:
∑
n≥0

Pn (x)
αn

n!
(C.78)
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can be taken as a generating function for special polynomials Pn. In the case Q = x2, we get the
generating function for the Hermite polynomials. In general by differentiating with respect to α,
we get

q (x − α)
∑
n≥0

Pn (x)
αn

n!
=

∑
n≥1

Pn (x)
αn−1

(n − 1)!
(C.79)

By expanding q in powers of α, and equating coefficients of like powers of α, we get a recursion
relation in the index of the polynomials which has as many terms as there are non-zero differential
coefficients of Q. So for the quadratic, we recover the familiar three term recurrence for the
Hermite polynomials. Similarly if we differentiate with respect to x, we get

[
q (x) − q (x − α)

]∑
n≥0

Pn (x)
αn

n!

=
∑
n≥1

P′n (x)
αn−1

(n − 1)!
− q (x − α)

∑
n≥0

P′n (x)
αn

n!
(C.80)

Again, expansion of q (x − α) in powers of α will yield a recurrence expressing Pn in a series
with terms which are derivatives of lower order, and by inversion of the series, P′n may be
expressed in terms of the polynomials of lower order. These expressions generalize recursion
relations obtained for the Hermite polynomials, but orthogonality is lost. However, any finite set
of polynomials may be orthogonalized via the Gram-Schmidt or other procedure.
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