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Abstract: In this paper, we propose a new ECG compression method using the fractal technique. 

The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists 

of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. 

Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). 

Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing 

points (decompression phase). The proposed (suggested) methodology is tested for different records 

selected from PhysioNet Database. The obtained results showed that the proposed method has 

various compression ratios and converges to a high value. The average compression ratios are 

between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to 

other methods. Results depict also that the ECG signal can adequately retain its detailed structure 

when the PSNR exceeds 40 dB. 

Keywords: electrocardiogram (ECG); compression method; Douglas-Peucker algorithm (DP); 

fractal interpolation; Iterated Function System (IFS) 

 

1. Introduction 

The electrocardiogram or ECG is a major examination in cardiology [1,2]; it is used to make a 

precise diagnosis, particularly arrhythmias, infarction or pericarditis [3,4]. An electrocardiogram 
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(ECG) records the heart’s electrical activity [1,2]. Electrical stimulation of a heart muscle cell results 

in the appearance of Electrical and mechanical activities that can be recorded, specifically; the ECG 

studies the electrical activity of the atria and ventricles [3,4]. They use electrodes, which are placed 

on the different areas, such as on the patient’s chest, wrists and ankles, the recorded electrical activity 

can be done away from the heart [5,6]. The electrodes record either a difference in electric current 

between two points (bipolar leads with two electrodes) or the electric current directly through a 

single electrode (unipolar leads). For each lead, an ECG trace is recorded, 12 leads are 

conventionally recorded on the ECG trace and can be extended to 18 leads under certain 

circumstances. Indeed, the recorded ECG signals number is huge, which poses a big problem in 

terms of storage space (either in servers or in storage devices) and transfer time between 

cardiologists or between a cardiologist and his patient [7,8]. 

In this study, we were interested in improving the ECG signal compression, to limit the storage 

space required on the server and the transfer times of these signals [9–13]. In this regard, we have 

proposed the fractal method for the ECG signals compression and decompression. In order to 

achieve this aim, the DP method used to compress data signals [14–19]. Then, the fractal 

interpolation and the IFS algorithm were implemented to rebuild this signal [23–33]. 

This document is organized as follows; Section 2 summarizes the work related to the signals 

and images interpolated by fractal interpolation. Subsequently, the proposed methods steps are 

described in Section 3. Section 4 presents the ECG signal and its characteristics. In Section 5, the DP 

algorithm is detailed. Then, Section 6 presents the mathematical approach applied in fractal 

interpolation. Section 7 described the obtained results and Section 6 these are discussed. Finally, 

Section 8 details the conclusions. 

2. Related works 

Many of the previous works have employed to compress the electrocardiogram (ECG) records. 

Ranjeet et al. [10] have proposed three techniques for the compression of electrocardiogram (ECG) 

signal. The first technique depends on the Discrete Wavelet Transform (DWT) method. The second 

technique used Fast Fourier Transform (FFT) method. The last technique is based on Discrete Cosine 

Transform (DCT) method. Abo-Zahhadet al. [11] suggested a strategy for maximum reduction in the 

data volume of ECG signals while ensuring the reconstruction quality. Theirs proposed method is 

based on the optimal selection of wavelet filters and threshold levels in different sub-bands. They 

begin by segmenting the ECG signal into frames, these frames are broken down into m sub-bands 

using optimized wavelet filters. They removed any resulting wavelet coefficients that have absolute 

values less than the specified threshold levels, the remaining coefficients are encoded with a 

modified version of the serial length encoding scheme. Before encoding, they adjust the threshold 

levels optimally to achieve the preset compression rate and signal quality. Abo-Zahhad et al. [12] 

have introduced a method to compress the electrocardiogram (ECG) signals. Their method is based 

on QRS detection, estimation and thresholding of 2D DWT coefficients. In the preprocessed phase, 

they detected the QRS-complex. Then, they estimated the difference between the preprocessed ECG 

signal and the estimated QRS-complex waveform. Later, they cutted and aligned the error signal to 

form a 2-D matrix which will be transformed into wavelets. The 2-D matrix gave wavelet 

coefficients as results, the previous are segmented into categories by two grouping techniques, and 

they threshold it (The threshold level of each group of coefficients is calculated based on the entropy 
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of the coefficients). The resulted threshold DWT coefficients are coded by the Abo-Zahhad coding 

technique [13]. Rebollo-Neira [36] has introduced a fast wavelet transform for compression of ECG 

signals. This technique falls within the transform lossy compression category. Her proposed method 

is divided into major three steps: 1) Approximation Step 2) Quantization Step 3) Organization and 

Storage Step. 

3. Material and methods 

3.1. Block diagram of the proposed method 

Figure 1 illustrates the block diagram of the proposed methodology for compression and 

decompression ECG signal using a fractal technique. The suggested method has three main steps. 

First, reading the file containing the ECG signals and detecting the curve shapes. Then, detecting the 

critical points using the Douglas-Peucker algorithm according to the different tolerance values ε. 

eventually, we are presenting the fractal interpolation and IFS method. This step is divided into two 

sub-parts; we begin by calculating the coefficient valuesan, cn, dn, fn and en, aiming to determine the 

transfer equation Wn. In the second sub-part, we use the transfer equation to generate the new points 

(see Figure 1). 

 

Figure 1. Block diagram of the proposed methodology. 

3.2. Electrocardiogram signal (ECG) 

The electrocardiogram (ECG) is used to see the electrical activity of the heart, as it produces 

small electrical impulses. This simple, non-invasive measurement make easy to identify different 

heart conditions, as it is used to assess symptoms that can be attributed to heart problems (chest pain, 

breathing problems, tachycardia or a heart rhythm disorder or leg swelling). Figure 2 shows the 

different parts of the normal ECG signal, the previous is divided into three main parts (atria systole, 

atria diastole and ventricular systole, and ventricular systole). It is also characterized by five peaks 

and valleys marked by the letters P, Q, R, S, T [5–8]. 
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Figure 2. Typical ECG signal. 

Indeed, the P wave represents the first stage of the cycle, where the atria systole allowing blood 

to pass through the auriculo-ventricular valves to the ventricles. The QRS complex symbolizes both 

the ventricular systole (allowing the blood ejection towards the arteries) in particular by the peak in 

R, simultaneously; the atria diastole causes the filling of these while waiting for a new cycle. The T 

wave presents the ventricular diastole following their systole phase [7,8]. 

3.3. Identification of critical points 

The line simplification algorithm is used to simplify lines and polygons. It is employed in order 

to reduce the complexity entities retains the critical points that describe the overall line shape (while 

retaining the inherent character and shape) and removes all other points. There are several 

simplification algorithms that will generate slightly different results, such as the Douglas-Peucker 

algorithm (DP), the Area-Based algorithm, the Visvalingam algorithm, etc [14–19]. In the same 

context, many studies control the deviation between the resulting spline and the vertices of the 

original plot for different simplification algorithms. Especially we cited the McMaster study [20], 

which showed that mathematically and conceptually, the Douglas-Peucker algorithm was superior to 

other algorithms. It is the same for White study [21] which uses Marino work [22] with three types 

of simplification algorithms. [21] He showed that the results obtained by the Douglas-Peucker 

algorithm give the best examples of lines compared to the original lines with an 86% efficacy rate at 

all the tests. The Douglas-Peucker algorithm works recursively. The algorithm 1 takes as input a 

polygon or a curve (ordered sequence of points on plane, p =  (p1, p2, . . . , pn),) and a tolerance ε. 

Algorithm 1 illustrates the dynamics and the main steps of the algorithm, and Figure 3(a)–(e) shows 

the recursively generated tasks of a segmentation example (see Figure 3(a)). In the initial step, the 

first and last points of the curve are connected by an H line (see Figure 3(b),(c)). Most of the 

calculation work is done in Steps 2 and 3 (see Figure 3(d),(e))all the curve points are traversed and 

the maximum perpendicular distance is calculated with the line H, the farthest point of the segment is 

selected. If the maximum perpendicular distance is less than the tolerance ε, all points are deleted 

and the algorithm ends. If it is greater, the curve is divided into two subparts (the first point to the 

maximum distant point, and from the maximum distant point to the end point). We recursively redo 

the algorithm on these two sub-parts of the curve [14–19]. 
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Algorithm 1. Douglas-Peucker algorithm. 

Algorithm 1. Douglas-Peucker algortihm (C, ɛ, Startpoint, Endpoint) 

%% Curve C (an ordered set of points (P1,..., Pn)) (Figure 3(a)) 

%% Threshold value ℇ (ℇ > 0) 

%% Startpoint = P1 (x1,y1) and Endpoint = Pn (xn,yn).  

1. Imax = 0 %% maximum point coordinateinitialization 

2. Distmax = 0 %% maximum orthogonal distance initialization 

3. Connect start and end point (P1 to Pn) with LineH (Figure 3(b),(c)) 

4. calculate the perpendicular distance of all the points on the line (Figure 3(d)) 

For i = 2 to length (C)-1 do 

Dist = computeDist (Pi, Startpoint, Endpoint) 

If dist > Dmax then  

Imax = I, Distmax = dist 

End If  

End For  

If Dmax > ℇ then  

C1 = curve (P1, PImax) 

C2curve (PImax, Pn) 

Result = Douglas-Peucker algortihm (C1, ɛ, P1, PImax) 

Result = Douglas-Peucker aAlgortihm (C2, ɛ, PImax, Pn) 

Else  

Result = (Startpoint, Endpoint) 

End if 

 

 

 

(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 3. Douglas-Peucker algorithm, (a) Segmentation example, (b) The start and end 

points, (c) Connect start and end points, (d) Calculate the perpendicular distances, (e) 

Two subparts of curve. 

(Figure 3(e)) 
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3.4. Fractals object construction 

We call fractal of a geometric object which by zooming on one (or more) part(s), we get the 

same as the initial object [23–27]. 

3.4.1. The Iterated Functions System (IFS) 

Definition 1. An Iterated Functions System (IFS) is a pair data (Y, (Wn)1≤n≤N) with Ya complete 

metric space and for alli ∈ ⟦1, N⟧, the application Wi: Y → Ybeing a contracting party [23–25]. 

Definition 2. Let (Y, (Wn)1≤n≤N)is an IFS. We defined by the following Eq (1): 

Wi: Y → Y 

A → ⋃ Wn(A)N
n=1                                                                       (1) 

Let (ℾ, dH) be a complete metric space. In the following, we will therefore be satisfied with 

treating the IFS case with the associated set being K. 

Definition 3. A set F ∈ ℾsuch that W(F) = F is called an SFI attractor [26,27]. 

3.4.2. Fractal interpolation 

We therefore consider a subdivision (x0, x1, … . . , xN) and yi = f(xi), with(x0 < x1 << xN). 

We set I = [x0, xn] the segment on which we will interpolate the function [27–30]. 

Let us assume, forn ∈ ⟦1, N⟧, the segment In = [xn−1, xn] and the affine application Eq (2): 

Ln: I → In 

                               x → anx + en                                                                          (2) 

With the parameters an and en fixed by the following Eq (3): 

                      Ln(x0) = xn−1; Ln(xN) = xn                                                                   (3) 

The purpose is to “zoom in” on the x-axis. We must now define the operation that takes place 

when zooming on the y-axis. 

We define the set C = {f ∈ C0(I), f(x0) = y0, f(xN) = yN} provided with the norm ‖ . ‖∞. 

Let the following Eq (4) [27–30]: 

Fn: ℝ2 → ℝ 

                        (x, y) → cnx + dny + fn                                                                      (4) 

With Fn(x0, y0) = yn−1 and Fn(xN, yN) = yn and the dnbeing free parameters in]−1,1[. 

Finally we define the operator Eq (5) [23–30]: 

T: C → C 

f → Tf                                                                                (5) 

Defines for x ∈ Inby Tf(x) = Fn(Ln
−1(x), f°Ln

−1(x)). 
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Corollary: T admits a unique fixed point f ∈ C with f(Ln(x)) = Fn(x, f(x)). 

Proposition: The f graph is the IFS attractor(I × ℝ, (Wn)1≤N) withthe following Eq (6) [25–33]: 

             Wn(x, y) = (
an 0
cn dn

) (
x
y) + (

en

fn
) = (

Ln(x)

Fn(x, y)
)                                         (6) 

Coefficients equations: 

an =
xn − xn−1

xN − x1
 

en =
xNxn−1 − x1xn

xN − x1
 

 cn =
yn−yn−1

xN − x1
− dn ∗

yN − y1

xN − x1
 

fn =
xNyn−1−x1yn

xN − x1
− di ∗

xNy1 − x1yN

xN − x1
 

𝑑𝑛 = (𝑁 − 1)𝐷𝐹−2 

With N is the total number of data points and DF is the fractal dimension. Based on the study 

by Marie [34] and Namazi and Kulish [35] the fractal dimension of the ECG signals can be 

determined. 

3.4.3. Algorithm 

Let N points {Pn = (P1, … , PN)} ∈ Eand N transformationWn = (W1, … , WN). We take a point 

P1 ∈ Eand we set all the new pointsP2̂ = Wn(P1). Then we repeat [30–33]. We thus obtain a 

continuation(Pi)i. We set F all these points, as shown in Figure 4: 

 

Figure 4. Algorithm IFS. 

3.4.4. Performance evaluation 

In this section, we examine the compression performance and the effect of varying parameters 

on the reconstructed signal quality. At this stage we introduce the PRD, CR and PSNR measurements 

to evaluate the results of the proposed procedure [12,36–40]. 

We assessed the compression performance using the Compression Ratio (CR) as is given by the 

following Eq (7) [12,36–40]: 
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CR =
Size of the uncompressed signal

Size of the compressed signal
                                                         (7) 

We evaluated the recovered signal quality by PRD value. The PRD definition is given by the 

following Eq (8) [12,36–40]: 

PRD = √
∑ (x(n)−x̂(n))

2N
n=1

∑ x(n)2N
n=1

× 100                                                         (8) 

The peak signal-to-noise ratio PSNR will be calculated using Eq (9) as follows:  

PSNR = 10 log10 (
M2

MSE
) = 10 log10 (

M2

√
1

N
∑ (x(n)−x̂(n))

2N
n=1

)           (9) 

where x(n) is the original signals, x̂(n) is the rebuilt signals, the constant M is the difference 

between the maximal value and the minimal value of the used test data, (MSE) is the mean square 

error and N is the test data length. 

4. Results 

The numerical simulations and the obtained results are performed using Windows 7 64-bit on an 

Intel Intel Pentium B960 CPU @ 2.20 GHz with 4 GB of memory. We implemented the 

Douglas-Peucker methods and fractal interpolation using MATLAB R2017a. To verify the 

correctness and effectiveness of the suggested method, we used real ECG signals on a publicly 

available PhysioNet database [52,53]. Each ECG signal in this dataset has at least two trajectories 

with 5000 points. The process of the proposed methodology is divided into three major phases. The 

first step is to read the ECG signal, the second is the compression phase, in which we use the PD 

algorithm, and the final phase is the reconstruction phase (decompression phase). 

4.1. The electrocardiogram signals read (ECG) 

The ECG signals used from PhysioNet database are MAT type files, in this spirit, we employed 

the ‘load’ instruction, which allows us to load the variables file in Matlab, as shown below: 

S = load (filename, ‘-mat’ % S is a structure array. 

The frequency margin for normal ECG signals is between 0.05 and 100 Hz, and its dynamic 

amplitude range from 1 to 10 mV. 

In the normal state of the heart, the normal heart rate is between 60 and 100 beats per minute, 

the time range for each ECG signal interval is as follows [8,52,54]: 

- For the P-R interval, it is between 0.12 and 0.2 seconds, 

- For the QRS interval, its time margin is between 0.04 and 0.12 seconds. 

- For Q-T interval, the time margin is less than 0.42 seconds. 

4.2. DP algorithm result 

In this section, the validity of the proposed DP algorithm is applied to the real trajectory ECG 
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signals set. The proposed DP algorithm is used to compress the ECG signal trajectories.  Figure 5 

shows the original and compressed trajectories for different threshold values ℇ. Figure 5(a) is the 

original trajectory of the ECG signal. The Figure 4(b)–(h) are respectively the compressed 

trajectories for the threshold values ℇ equal to 0.1 × 10-6, 0.4 × 10-6, 0.7 × 10-6, 1 × 10-6, 1.5 × 10-6, 

2.5 × 10-6 and 4.5 × 10-6, respectively. During this time, Figure 5(b)–(h) shows the point data before 

and after compression (red points represent the original trajectory and blue points represent the 

compressed trajectories). We can note from Figure 6 that the data volume is reduced under this 

algorithm, while keeping the original topological signal. 

 

Figure 5. DP algorithm results, (a) Original trajectory of the ECG signal, (b) Compressed 

trajectories for ℇ = 0.1 × 10-6, (c) Compressed trajectories for ℇ = 0.4 × 10-6, (d) 

Compressed trajectories for ℇ = 0.7 × 10-6, (e) Compressed trajectories for ℇ = 1 × 10-6, (f) 

Compressed trajectories for ℇ = 1.5 × 10-6, (g) Compressed trajectories for ℇ = 2.5 × 10-6, 

(h) Compressed trajectories for ℇ = 4.5 × 10-6. 

The Compression Ratio values (CR) for the reconstructed signal obtained from ten tested signals for 

different threshold values ℇ (0.1 × 10-6, 0.4 × 10-6, 0.7 × 10-6, 1 × 10-6, 1.5 × 10-6, 2.5 × 10-6 and 4.5 × 10-6) 

are listed in Table 1. The numerical experiments are implemented and a DP algorithm simulation on ten 

different classes of ECG signals. 
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Table1. The Compression Ratio values (CR). 

ℇ 0.1 × 10-6 0.4 × 10-6 0.7 × 10-6 1 × 10-6 1.5 × 10-6 2.5 × 10-6 4.5 × 10-6 

Person_01/rec_1 3.531 7.764 12.077 16.181 19.841 25 34.722 

Person_02/rec_1 3.073 7.072 11.389 14.326 16.077 19.607 25 

Person_03/rec_1 3.291 7.728 13.054 15.7234 19.305 22.123 25.125 

Person_04/rec_1 3.168 7.385 12.019 15.480 18.315 21.367 25 

Person_05/rec_1 3.084 7.173 11.627 13.927 16.949 21.008 27.472 

Person_06/rec_1 3.146 7.610 12.077 14.705 16.393 20.408 29.762 

Person_07/rec_1 3.037 6.877 10.822 14.005 16.949 19.920 26.738 

Person_08/rec_1 3.148 7.396 11.820 14.492 16.722 21.834 26.881 

Person_09/rec_1 3.113 7.173 11.261 14.204 16.02 21.008 29.239 

Person_10/rec_1 3.340 7.740 12.5 15.974 19.455 21.459 25.906 

Average 3.19 7.39 11.86 14.90 17.60 21.37 27.58 

The results in Table 1 show that: 

-The average compression ratios are between 3.19 and 27.58. 

-It can be seen from Table 1 that the average compression ratio values are 3.19, 7.39, 11.86, 

14.90, 17.60, 21.37, 27.58 for the threshold values ℇ = 0.1 × 10-6, 0.4 × 10-6, 0.7 × 10-6, 1 × 10-6, 

1.5 × 10-6, 2.5 × 10-6 and 4.5 × 10-6, respectively. 

-In addition, the smaller the threshold values ℇ, the lower the average compression ratios are, 

e.g., for ℇ = 0.1 × 10-6the average compression ratio value is 3.19, vice versa, the larger the threshold 

values ℇ, the higher the compression ratio are, as shown in Table 1, for ℇ = 4.5 × 10-6, the average 

compression ratio value approximates to 27.5. 

4.3. IFS results 

Figure 7 shows the results of the suggested method for a selected record from the PhysioNet 

database Person_01/rec_1, for different threshold values ℇ and for an iteration number K = 500. 

Figure 6 evaluation show that the reconstructed ECG signal retained the most information of the 

original signal (red points represent the original trajectory and blue points represent the 

reconstructed trajectories). 
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Figure 6. IFS result for iteration number k = 500. 

Figure 7 shows the error measurement for various threshold values ℇ and for an iteration 

number K = 500. This measurement reflects the distance between the original ECG signal and the 

reconstructed ECG signal. The error calculation is based on the following Eq (10): 

               E(n) = x(n) − x̂(n), n = 1, … , N                                                   (10) 

where E(n) is the error signal, x(n) is the original signals, x̂(n) is the reconstructed signals 

and N is the signal length. 

 

Figure 7. Signal error at various threshold values ℇ. 
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From the obtained result, we can see that the more the threshold values ℇ the more 

tangible the margin of error. Contrariwise, the lower the threshold values ℇ, the smaller the 

margin of error, as a greater signal precision, as shown in Figure 7. The detailed structure of the 

error measurement of various threshold values ℇ and for an iteration number K = 500 is shown 

in Figure 7. The PSNR value with the same criteria is given in Table 2. It is obviously seen that, 

with more interpolation points, ECG signal detailed structure emerges, exhibiting a closest to 

the original signal. 

Table 2. PSNR value at various threshold values ℇ. 

ℇ 0.1 × 10-6 0.4 × 10-6 0.7 × 10-6 1 × 10-6 1.5 × 10-6 2.5 × 10-6 4.5 × 10-6 

Person_01/rec_1 55.50 48.73 45.94 42.88 41.97 41.64 38.87 

Person_02/rec_1 53.17 47.83 44.06 42.69 41.47 40.12 38.32 

Person_03/rec_1 55.21 50.17 43.38 42.41 40.99 39.82 36.78 

Person_04/rec_1 55.24 52.13 44.53 42.88 41.83 40.65 36.37 

Person_05/rec_1 51.38 45.59 45.22 42.74 41.26 39.73 36.99 

Person_06/rec_1 54.56 48.70 43.34 42.21 40.66 39.98 36.69 

Person_07/rec_1 55.29 51.91 43.49 41.53 40.72 38.96 36.87 

Person_08/rec_1 54.36 50.05 44.42 42.03 40.86 38.95 36.16 

Person_09/rec_1 55.22 51.34 44.88 42.21 40.93 38.50 35.64 

Person_10/rec_1 55.23 50.25 44.30 41.89 40.81 38.93 35.73 

Average 54.516 49.67 44.356 42.347 41.15 39.728 36.842 

According to the test result depicted in Table 2, the lower the threshold values ℇ, the lower 

the compression ratio, the more data points are retained, and the PSNR increases, which 

indicates a signal with less than distortion and better quality (e.g., for ℇ =0.1 × 10-6 the average 

PSNR value is 54.516 dB, the average PSNR value is approximately 41.15 dB and 36.842 dB 

for ℇ = 1.5 × 10-6 and ℇ = 4.5 × 10-6, respectively).It can be concluded from the obtained PSNR 

values in Table 2, the results of the ECG signal curves in Figure 6 and the detailed error 

structure in Figure 7 that when the PSNR exceeds 40 dB, the geographical characteristics of the 

ECG signals can be fully retained. 
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(a) 

 

(b) 

 

(c) 

Figure 8. PRD curves for the test ECG records. 

Figure 8 shows the PRD curves of the proposed method. Figure 8(a)–(c) and c illustrate the 

PRD results for three threshold values ℇ 0.1 × 10-6, 1 × 10-6 and 4.5 × 10-6, respectively, and at the 
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same time, for iteration numbers between 100 and 1000. This digital test aims to compare the ECG 

signals obtained with the original signals. It was noted that the mean PRD value in range from 0.28 

to 1.1%, for high values of ℇ, they are reported for the mean PRD value in the range 0.54 to 1.62%, 

and for mean values of ℇ the mean PRD value is between 0.46 and 1.28%. This leads us to conclude 

that the good reconstruction on is made on the basis of the low CR values, and therefore, for 

threshold values ℇ less than 1 × 10-6. As already noted if the iterations number K increases, the PRD 

value is deprived, vice versa, the smaller the K, the higher the PRD value are, as shown in Figure 8. 

5. Discussion 

The numerical results obtained from this study are compared with the previous compression 

methods available in the literature. To evaluate the performance of the proposed method with 

existing published works in the similar area [12,36–51], two parameters are employed: the first is 

the compression ratio (CR) and the second is the Percent Root-Mean Square difference (PRD), as 

outline in Table 3. 

Table 3. Comparison with previous study. 

No. Year Study CR PRD (%) 

  Proposed method 3.19–27.58 0.28–1.6 

1 2012 Abo-Zahhad et al. [12] 8.2–38.6 0.66–1.6 

2 2019 Rebollo-Neira [36] 23.17 0.53 

3 2016 Garg et al. [37] 1:20 1.26–2.51 

4 2009 Mohammadpour et al. [38] 8–24 0.52–2.8 

5 2005 Moazami-Goudarzi et al. 

[39] 

8–30 2–6.7 

6 2006 Chou et al. [40] 21.6–24.0 1.81–16.44 

7 2017 Kumar et al. [41] 9.02 3.72 

8 2014 Kumar et al. [42] Proposed + DCT 47.83 

Proposed + DWT 15.68 
 

10.52 

10.38 
 

9  Ranjeet et al. [43] 65 1.44–24.12 

10 2021 Kumar et al. [44] Arrhythmia 43.52 

Ompression 42.80 
 

2.52 

2.40 
 

11 2016 RajarshiGupta[45] mitdb, 8 bit (Bit rate Control) 50.74 

mitdb, 8 bit (Error Control) 9.48 
 

16.22 

4.13 
 

12 2018 Liu et al. [46] 10–120 10.04 

13 2017 Liu et al. [47] 1–100 0.2–1.1 

14 2018 Mukhopadhyay et al. [48] 63.93 8.09 

15 2017 Peng et al. [49] 6.15–27.45 4.15–10.21 

16 2017 Wanget al. [50] 106.45 8.00 

17 2018 Yildirimet al. [51] 32.25 2.73 

It is clear that the proposed algorithm has an acceptable CR value with a very low PRD, which 

implies that the proposed compression method is suitable for ECG signals. Table 3 depicts that the 

PRD rates are lower in the proposed study compared to other studies in the literature. The CR rate is 
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lower compared to some other methods, but at an acceptable level. Therefore, the ECG signals were 

reconstructed without significant data loss compared to the original data. 

For ECG signals, fractal interpolation can produce more data points than initially observed; 

therefore the reconstructed signals have more natural and real details. Thus, the percent error can 

be reduced. 

The larger the threshold value ℇ, the more reduction the data is, and the higher the compression 

rate. On the other hand, the error is high in the signals reconstructed, so reconstructing the system 

leads to higher distortion; conversely, the smaller the threshold values ℇ, the more reduced reduction 

the data are, and the smaller the compression ratio. As a result, the ECG signals reconstructed with 

low error and less distortion will be closer to the original data. 

Moreover, the proposed method retains the critical points after compression. Compared to 

previous works which are summarized in Table 3, the proposed method can directly decompress the 

ECG signal by using affine transformation to add data points. Then, it can improve point-to-point 

simulation without parameter extraction or signal transformation. Since on the one hand the fractal 

interpolation is a complex formulation of affine transformation with certain linear functions, 

inasmuch, the ECG signals are regarded as a complex and irregular curve, we conclude that when the 

curve is within these type-curves, the fractal technique can better express the real undulation and 

natural attributes of the curve. Therefore, it is expected that the suggested method is more powerful 

than traditional techniques. 

On the other hand, the result shows that the proposed approach provides the best reconstruction 

quality as reported in Table 2 as well as in Figures 6 and 8. Furthermore, the proposed method is 

easily used in practice for remote healthcare, data storage system in healthcare, etc. 

The disadvantage of the proposed method is that the decompression phase requires very high 

computing power. However, this disadvantage can be eliminated using the Supercomputer or the DSP. 

6. Conclusions 

In this paper, we proposed an ECG compression method using the fractal technique. This 

approach exploits the fact that ECG signals are a fractal curve. Several algorithms were integrated 

integrated, including those for processing the ECG signals and converted it into a 2-D array. The next 

algorithm, which is described in this work, was the detection of critical points by the 

Douglas-Peucker algorithm; this algorithm is employed to reduce volume data (data reduction 

methods). At this point, different pre-set tolerances ℇ are used, and such critical points are used to 

calculate fractal interpolation functions. The fractal interpolation was adopted to rebuild the ECG 

signals at every compression rate, and for different iteration numbers between 100 and 1000. The 

numerical results show that the Douglas-Peucker algorithm has various compression ratios and 

converges to a high value, its range from 3.19 to 27.58. It should be noted that this algorithm is fast 

and easy to implement, not only with fast execution, but also acceptable compression ratio. In terms 

of signal reconstruction competence, the fractal method shows that ECG signals can appropriately 

retain its detailed structure without significant distortions. Also, it was noted that the main PRD 

value in the range from 0.2 to 1.6 for different threshold values ℇ (at every compression rate), and, at 

the same time, for iteration numbers between 100 and 1000.Besides, the obtained result shows that 

the ECG signal have an average PSNR value between 36 and 55 dB. We can conclude, the ECG 

signal can adequately retain its detailed structure when the PSNR exceeds 40 dB. Finally, it can be 
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noted that our proposed algorithm will take less time and therefore it will be less costly and it will 

provide a reproducible and reliable data. 

Our future work will focus on the optimization of the compression performance of ECG signals 

and on finding solutions for implementing the compression system proposed in programmable 

circuits such as FPGA, DSP, etc. Moreover, it is intended to the storage phase and the transmission of 

ECG signals between cardiologists or between a cardiologist and his patient on mobile devices. In a 

similar vein, it is planned to work more closely with the cardiologist, to evaluate the method and to 

improve it according to their comments. 
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