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Abstract: This paper addresses the pinning synchronization of nonlinear multiple time-varying
coupling complex networks. Time-varying inner coupling in the single node state space and time-
varying outer coupling among nodes in an entire complex network are taken into consideration. The
main contribution is to propose some pinning synchronization criterion by which time-varying complex
networks can be synchronized to the desired state. Besides, different parameters of linear controllers,
adaptive controllers and adaptive coupling strength on the synchronization have been investigated.
It is found that complex networks can achieve global synchronization by adaptively adjusting the
coupling strength or controllers. Finally, simulation examples of random networks are given to verify
the theoretical results.
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1. Introduction

In recent years, complex networks research has aroused particular concern in many different realms
of science. With the development of the telecommunication, internet and international exchange, the
conception of complex networks increasingly appears in humans productive activity, scientific research
and daily life, such as e-commerce warehouse logistics, multinational social media and unmanned
aerial vehicle (UAV) formation. Erds and Rnyi Explored a random graph model firstly in 1959 [1].
In a random graph, the probability of a connection emerged between a pair of nodes is a random
constant. Watts and Strogatz [2] investigated the mechanism that a regular graph gradually converts
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to a random graph and proposed a small-world network model. Newman and Watts [3] modified it
to generate another variant of the small-world model. In 1999 [4], Barabsi and Albert proposed a
scale-free network model that aroused intense scholarly interest. The degree distribution of nodes in a
scale-free network follows a power-law form. The founding of scale-free networks is significant since
plenty of real-word systems have the power-law property.

The research of complex networks simultaneously raised the attention on synchronization. Pecora
and Carrolls work was the early research on synchronization [5]. Wu studied a linearly coupled
identical dynamical system and obtained synchronization sufficient conditions of the system [6].
Louis M. Pecora and Thomas L studied a coupled oscillator array described as a complex network [7].
The author put the complex network into a simple form so that the determination of the stability of the
synchronous state can be done by a master stability function. Substantial work has been devoted to
the study of synchronization since there are many systems in real-word that can be described by
complex networks [8, 9]. A synchronization of heterogeneous dynamics networks via three-layer
communication framework was established in [10]. An explicit synchronization algorithm was
proposed, in which the synchronization errors of all the agents are decoupled. In [11], the author
addresses the leader-follower consensus for linear and nonlinear multi-agent systems with three-layer
network framework and dynamic interaction jointly connected topology. Wang [12] studied
heterogeneous uncertain dynamical networks under switching communication typologies. This work
established an explicit synchronization framework and solved the zero error synchronization problem.
Based on this work, Wang further studied the leader-follower consensus of a high-order nonlinear
complex system [13]. In [14], A united directed complex network with multi-links was studied and
exponential synchronization conditions were obtained. Multi-agent systems are typical complex
networks. Li utilized linear feedback control and adaptive linear feedback control to achieve
successive lag synchronization in a multi-agent system.

The works as mentioned above have studied the synchronization of complex networks in various
angles, however, most of which focus on the networks with time-invariant couplings under the global
control and pinning synchronization of complex networks with time-varying coupling have been
seldom explored. Many systems in the real word have time-varying feature. Time-varying exists in
interior parts of systems, links and coupling among systems. Besides, it is impossible to control all
nodes in a system to achieve global synchronization. Yu [15] investigated how the local controllers on
pinned nodes affect global network synchronization. The research gave a general criterion for
ensuring network synchronization and obtained appropriate coupling strengths for achieving network
synchronization. Today, many results of pinning synchronization have been established [16, 17].
Zhang [18] investigated the synchronization of complex networks with time-varying coupling
matrices and established suitable linear controllers and adaptive controllers. Furthermore, a large
amount of research on synchronization with the time-varying feature have been proposed [19, 20].
Time-varying inner coupling and outer coupling are common and complicated situations in complex
networks. In a single system, state variables do not transform separately. We regard variables
affecting each other from different angles along the entire dynamic process as the inner coupling of
systems. In large-scale systems and complex systems, small components and parts are not isolated.
They are often connected by electric wires or signal wires. That is, they are coupled by each other and
their states depend on the neighbors states, external magnetic field and electric field. We regard this
situation as the outer coupling of systems. Complicated inner coupling and outer coupling lead
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systems hardly to be controlled or be stabilized. It prompts us to find effective methods to decompose
the coupling and design feedback controllers. Motivated by Yu and Zhangs contributions, this paper
aims to the synchronization of time-varying random networks by respectively setting linear pinning
controllers and adaptive pinning controllers. We take inner, outer coupling and stochastic behaviors
into consideration. Potential correlations among the parameters are also investigated in this paper.

The rest of this paper is organized as follows. In Section 2, some preliminaries are outlined. In
Section 3, the main theorems and corollaries for pinning synchronization on complex networks are
given. In Section 4, simulation examples are shown to demonstrate the effectiveness of the proposed
method. Finally, conclusions are drawn in Section 5.

2. Preliminaries

Consider a complex network consisting of N identical coupled nodes, described by

ẋi (t) = f (xi (t) , t) + c (t)
N∑

j=1, j,i

Gi j (t)Γ (t)
(
x j (t) − xi (t)

)
, (2.1)

where, i = 1, 2, ...,N, xi (t) = (xi1 (t) , xi2 (t) , ..., xin (t))T
∈ Rn is the state vector of the ith node. The

node in the system is an n dimensional nonlinear time-varying dynamical system. c (t) is the time-
varying outer coupling strength. f : Rn × R+ → Rn is a nonlinear continuously differentiable vector
function. Γ (t) ∈ Rn×n is the time-varying inner coupling matrix. G(t) = [Gi j(t)]n

i, j=1 ∈ RN×N represents
the topological structure and the coupling strength of the the complex network at time t, where Gi j (t)
is defined as follows: If there is a connection between nodes j to i time, then Gi j (t) > 0; otherwise
Gi j (t) = G ji (t) = 0 ( j , i). The corresponding Laplacian matrix with respect to this complex network
is given by

Li j =

{
−Gi j, i , j∑N

j=1, j,i Gi j, i = j
, (2.2)

Definition 1 ([33]). The matrix L (t) is said to be dissipative if

N∑
j=1

Li j (t) = 0. (2.3)

Obviously, L (t) in Eq (2.2) satisfies the dissipative condition.
In this paper, the complex network is an random network in which the probability that Gi j = 1 is a

constant p ∈ [0, 1]. When p = 0, all nodes in are isolated; when p = 1, the complex network is a fully
coupled network; and when p ∈ (0, 1) the coupling strength between nodes i and j is the expectation
of the connection

E
(
Li j (t)

)
= Li j (t) p . (2.4)

Remark 1. In random networks, the existence of links between nodes depends on the probability value
p. Large p creates dense complex networks and vice versa. Note that isolated nodes do not have
information exchange with other nodes and it is hard to synchronize in complex networks if there is
no common equilibrium in the nonlinear dynamic. If the number of links are too small, nodes in
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complex networks turn to hardly achieve synchronization since the information exchanging is
ineffective. Therefore, p can be regarded as an external condition. As the value of p changes, the
controllability of the complex systems changes accordingly. In this paper, the complex network is a
jointly connected network. The complex network topology is under arbitrary switching during the
entire dynamic process and may be not connected in every single switching state since the value of p
could be very small that leads some isolated nodes. However, in the entire dynamic process, the
superposition of all switching states is a connected network. Equivalently, Eq (2.1) can be simplified
as follows

ẋi (t) = f (xi (t) , t) − pc (t)
N∑

j=1

Li jΓ (t)
(
x j (t)

)
(i = 1, 2, ...,N) . (2.5)

Set s (t) be the solution of an isolated node with

ṡ (t) = f (s (t) , t) , (2.6)

whose trajectory may be may be an equilibrium point, a periodic orbit, or a chaotic orbit of the
nonlinear function f (xi (t) , t). The aim of this paper is to find out some appropriate controllers such
that the state of all nodes in complex network with time-varying inner and outer coupling Eq (2.5)
synchronize with the solution of Eq (2.6)

lim
t→∞
‖xi (t) − s (t)‖ = 0 (i = 1, 2...,N ) , (2.7)

where ‖·‖ is the Euclidean vector norm.
Assumption 1 ( [21]). The nonlinear function satisfies the Lipschitz condition, that is, for any time,

there exists a constant matrix K and ∀x, y ∈ Rn, such that

(x − y)T ( f (x, t) − f (y, t)) 6 (x − y)T KΓ (t) (x − y) , (2.8)

Lemma 1 ( [22]). Assume that A is a dissipative coupling matrix and satisfies ai j > 0 (i , j), then
the following results hold
(1) 0 is an eigenvalue of matrix A and the associated eigenvector is (1, 1 · · · 1)T ,
(2) The real parts of all eigenvalues of matrix A are less than or equal to 0 and all possible eigenvalues
with zero real part are the real eigenvalue 0,
(3) If A is irreducible, then 0 is its eigenvalue of multiplicity 1.

Lemma 2 ( [23]). Let λ1, λ2 · · · λn be eigenvalues of matrix A ∈ Rn and µ1, µ2 · · · µn are eigenvalues
of matrix B ∈ Rn, then, there is |λmin| |µmin| Inm×mn 6 A ⊗ B 6 |λmax| |µmax| Inm×mn in which ⊗ is the
Kronecker product, λmax and λmin are the maximum and the minimum eigenvalues of A, while µmax and
µmin are the maximum and the minimum eigenvalues of B.

To realize the synchronization, pinning control will be used in part of nodes. As the complex
network is a jointly connected network, without loss of generality, we randomly choose one node in
minimal spanning tree of every connected component as the controlled node. Suppose nodes i1, i2, ..., il

are selected to be controlled, where l represents the integer part of the real number N. The complex
network with pinning control can be rewritten as

ẋi (t) =

 f (xi (t) , t) − pc (t)
∑N

j=1 Li j (t)Γ (t)
(
x j (t)

)
− ui (t) , i = 1, 2..., l

f (xi (t) , t) − pc (t)
∑N

j=1 Li j (t)Γ (t)
(
x j (t)

)
, i = l + 1, 2...,N

, (2.9)
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where

ui (t) =

{
−pc (t)Γ (t) di (xi (t) − s (t)) , i = 1, 2..., l

0, i = l + 1, 2...,N
. (2.10)

The error dynamic equation can be described by

ė (t) =

{
f (xi (t) , t) − f (s (t)) − pc (t)

∑N
j=1 Li j (t)Γ (t)e j (t) − pc (t) diΓ (t) ei (t) , i = 1, 2..., l

f (xi (t) , t) − f (s (t)) − pc (t)
∑N

j=i Li j (t)Γ (t)e j (t) , i = l + 1, 2...,N
,

(2.11)
where ei (t) = xi (t) − s (t) , (i = 1, 2...,N ). Denote e (t) =

(
eT

1 (t) , eT
2 (t) , ..., eT

N (t)
)T

.

3. Pinning synchronization of complex networks

3.1. Pinning synchronization

In this section, some general criterion of pinning synchronization are derived.
Theorem 1. Suppose that Assumption 1 is established, under the control of linear controllers (2.10),

complex network (2.9) can achieve synchronization and the synchronous solution is asymptotically
stable if the following condition is satisfied

IN ⊗ KΓ (t) − pc (t)
(
Li j (t) + D

)
⊗ Γ (t) < 0, (3.1)

where IN is the N-dimensional identity matrix and D = diag (d1, d2, · · · , dl, 0 · · · 0) ∈ Rn×n.
Proof. For simplicity, we first investigate the connected network with l randomly choosed controlled

nodes. Consider the Lyapunov functional candidate

V (t) =
1
2

N∑
i=1

eT
i (t) ei (t). (3.2)

The declarative of V (t) along the trajectories of Eq (2.11) gives

V̇ (t) =

N∑
i=1

eT
i (t) ėi (t)

=

N∑
i=1

eT
i (t)

 f (xi (t) , t) − f (s (t)) − pc (t)
N∑

j=1

Li j (t)Γ (t)
(
e j (t)

) − l∑
i=1

pdieT
i (t) c (t)Γ (t) ei (t)

6
N∑

i=1

eT
i (t)

KΓ (t) ei (t) − pc (t)
N∑

j=1

Li j (t)Γ (t)
(
e j (t)

) − l∑
i=1

pdieT
i (t) c (t)Γ (t) ei (t)

= eT (t)
[
IN ⊗ KΓ (t) − pc (t) L (t) ⊗ Γ (t) − pc (t) D ⊗ Γ (t)

]
e (t) . (3.3)

If L (t) + D is large such that IN ⊗ KΓ (t) − pc (t) (L (t) + D) ⊗ Γ (t) < 0 hold, then V̇ (t) < 0 and
complex network (2.9) is globally synchronized.

When the connected network degrades into a jointly connected network mentioned in Remark 1,
arbitrary one single node in minimal spanning tree of all connected components are chosen as pinning
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controlled nodes. Suppose that complex nework (2.9) contains l connected component and the sth
component contains Ns nodes, namely

∑q
s=1 Ns = N. Each component is associated with a zero

eigenvalue and l zero eigenvalues are associated with the l dimensions zero eigen-subspace that is
spun by the corresponding eigenvectors ζ1, · · · , ζl. The base vectors satisify

ζi = col {ζi1, · · · , ζil} , (3.4)

where ζi j = 1Ni , if j = i, otherwise ζi j = 0N j . 1n(0n) indicate the n-dimensional column vector with each
entry being 1(0). col {ζi1, · · · , ζil}means column a vector composed by ζi1, · · · , ζik. There exists a set of
constants `i, i = 1, · · · ,N such that arbitrary nonzero vector ∀ζ , 0 can be decomposed as ζi1, · · · , ζil

and ζT
i ζ j = 0. Set D = diag {D1, · · · ,Dk} be a block diagonal matrix, where each Di, i = 1, · · · , l are all

diagonal matrices. Since arbitrary single node in minimal spanning tree of all connected components
are chosen as pinning controlled nodes, there is at least 1 nonzero element in the main diagonal of each
Di, i = 1, · · · , l. If i > l, for ∀ζ , 0.

ζT (L (t) + D) ζ =

N∑
i=l+1

`2
i λi ‖`‖

2 +

 N∑
i=1

`iζ
T
i

 D

 N∑
i=1

`iζi

 > 0. (3.5)

ζ , 0 and at least one `i , 0. If there exis ts one `i , 0, i = k + 1, · · · ,N, the right-hand side of Eq (3.5)
is positive. If not, Eq (3.5) can be simplified as

ζT (L (t) + D) ζ =

 k∑
i=1

`iζ
T
i

 D

 k∑
i=1

`iζi

 =

k∑
i=1

ζT
i `iζi > 0. (3.6)

Therefore, jointly connected network status remains the L (t) + D conditon in Eq (3.3) that guarantees
the complex network synchronization. The proof is completed.

Remark 2. Equation (3.1) is a general condition to ensure the pinning synchronization of complex
networks. Note that Eq (3.1) is a N×n dimension matrix and it contains multiple parameters. Therefore,
it is difficult to realize these parameter conditions simultaneously. To solve this problem, based on
Eq (3.1), we will seek to derive a more practicable condition to guarantee the synchronization of
complex networks. Let Γ be a positive definite matrix. If Γ and K are commutable, let θ = ‖K‖ >
0 [33].

Corollary 1. Suppose that Assumption 1 is established and Γ (t) is a positive definite matrix. Under
the control of linear controllers (2.10), complex network (2.9) can achieve synchronization and the
synchronous solution is asymptotically stable if the following condition is satisfied

θIN − pc (t)
(
λmaxIN +Φ−1DΦ

)
< 0, (3.7)

where θ = ‖K‖ defined in Assumption 1. λi and λmax are the eigenvalues and maximum eigenvalue
of L (t). Lλi is the diagonal matrix of L (t) satisfies Φ−1L (t)Φ = Lλi . Lλmax is a diagonal matrix
composed by λmax.

Proof. First based on Eq (3.1) and Remark 2, the following inequality holds

IN ⊗ KΓ (t) − pc (t) (L (t) + D) ⊗ Γ (t) < (θIN − pc (t) (L (t) + D)) ⊗ Γ (t) . (3.8)
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Taking the similarity transformation on both sides of Eq (3.5) yields

Φ−1 (IN ⊗ KΓ (t) − pc (t) (L (t) + D) ⊗ Γ (t))Φ < Φ−1 ((θIN − pc (t) (L (t) + D)) ⊗ Γ (t))Φ. (3.9)

On the right-hand side, we have

Φ−1 (θIN − pc (t) (L (t) + D))Φ = θIN − pc (t) Lλ − pc (t)Φ−1DΦ

6 θIN − pc (t) Lλmax − pc (t)Φ−1DΦ = θIN − pc (t)
(
λmaxIN +Φ−1DΦ

)
. (3.10)

Γ (t) is a positive definite matrix. According to the property of Kronecker product, matrix
multiplication and similarity transformation, if θIN − pc (t)

(
λmaxIN +Φ−1DΦ

)
< 0, then

Φ−1 ((θIN − pc (t) (L (t) + D)) ⊗ Γ (t))Φ < 0. Furthermore, we can easily obtain
Φ−1 (IN ⊗ KΓ (t) − pc (t) (L (t) + D) ⊗ Γ (t))Φ < 0 and IN ⊗ KΓ (t) − pc (t)

(
Li j (t) + D

)
⊗ Γ (t) < 0.

Therefore, condition (3.1) is satisfied, complex network (2.7) can achieve synchronization. The proof
is completed.

Remark 3. Equation (3.7) is distinctly simpler. To ensure the global synchronization of the complex
networks, appropriate maximum eigenvalues of L (t) and outer coupling strength c (t) need to be
determined. Another problem is that the value of c (t) often determines the speed of the network
synchronization.The required theoretical value for the L (t) is too conservative, usually much more
extensive than that needed in practice.

3.2. Connection possibility and coupling strength in pinning synchronization

In this subsection, correlation between the random network connection possibility and coupling
strength are derived.

Corollary 2. Suppose that Assumption Assumption 1 is established, under the control of linear
controllers (2.10), complex network (2.9) can achieve synchronization and the synchronous solution is
asymptotically stable if one of the following condition is satisfied

(i) |ηmax| >
|λmax|

pc (t) |λmin|
,

(ii) p >
|λmax|

c (t) |λmin| |ηmin|
,

(iii) c (t) >
|λmax|

p |λmin| |ηmin|
,

where λmax and λmin are the norms of the maximum and minimum eigenvalues of L (t) . ηmax and ηmin

are the norms of the maximum and minimum eigenvalues of D, respectively.
Proof. First, based on Lemma 1 and Lemma 2, Eq (3.1) satisfies the following inequality

IN ⊗ KΓ (t) − pc (t) (L (t) + D) ⊗ Γ (t)

6 IN ⊗ KΓ (t) − pc (t) |µmin| |λmin| INn − pc (t) |λmin| |ηmin| INn

= θIN ⊗ Γ (t) − pc (t) |λmin| |ηmin| INn

= |λmax| − pc (t) |λmin| |ηmin| ,

(3.11)
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where µmin = 0 is the minimum eigenvalues of Γ (t). If |λmax|+ pc (t) |λmin| |ηmin| < 0, then IN ⊗KΓ (t)−
pc (t)

(
Li j (t) + D

)
⊗ Γ (t) < 0 holds. Condition (3.1) is satisfied, completing the proof.

Remark 4. In Corollary 2, condition (i) reveals that a cluster of appropriate pinning controllers can
synchronize the complex networks under the fixed topological structure and outer coupling strength.
Condition (ii) reveals that there is a lower bound of the connection probability, under the fixed
topological structure and outer coupling strength. Condition (iii) proposes a way to choose the
coupling strength with fixed network structure and pinning scheme (2.9).

From Corollary 2, we can see that random network connection possibility p has a inversely
proportional relationship with coupling strength c(t). When the network is sparse, strong coupling
strength is needed to synchronize all nodes and vice versa. However, we are interested in the question
if connection possibility is fixed and how to adequately lower the coupling strength c(t). Let
cp (t) = c (t) p. Next, adaptive technique are utilized to reduce the value of cp (t).

With the pinning controllers (2.10) and the adaptive coupling law, complex network (2.9) can be
expressed as

ẋi (t) =

 f (xi (t) , t) + pc (t)
∑N

j=1 Li j (t)Γ (t)
(
x j (t)

)
− pc (t) diΓ (t) (xi (t) − s (t)) , i = 1, 2..., l

f (xi (t) , t) + cp (t)
∑N

j=1 Li j (t)Γ (t)
(
x j (t)

)
, i = l + 1, 2...,N

ċp (t) = ρ

N∑
j=1

(
x j (t) − s (t)

)T
Γ (t)

(
x j (t) − s (t)

)
. (3.12)

Theorem 2. Suppose that Assumption 1 holds and Γ is a positive definite matrix. Then, the
adaptively controlled undirected network (2.9) is globally synchronized for a small constant ρ > 0.

Proof. Consider the Lyapunov functional candidate

V (t) =
1
2

N∑
i=1

eT
i (t) ei (t) +

pϕ
2ρ

(
cp (t) − c∗

)2
, (3.13)

where ϕ and c∗ are positive constants. Based on lemma 1 and lemma 2, we yield

V̇ (t) =

N∑
i=1

eT
i (t) ėi (t) + ϕ

(
cp (t) − c∗

) N∑
i=1

eT
j (t) ė j (t)

=

N∑
i=1

eT
i (t)

[
f (xi (t) , t) − f (s (t)) − cp (t)

∑N
j=1 Li j (t)Γ (t)

(
e j (t)

)]
− pc (t)

l∑
i=1

dieT
i (t)Γ (t) ei (t) + ϕ

(
cp (t) − c∗

) N∑
j=0

eT
j (t)Γ (t) e j (t)

6 eT (t)
{[

IN ⊗ KΓ (t) − cp (t)
(
Li j (t) ⊗ Γ (t)

)
− cp (t) D ⊗ Γ (t) + ϕ

(
cp (t) − c∗

)
IN

]
⊗ Γ (t)

}
e (t)

6 eT (t)
{[

IN ⊗ KΓ (t) − cp (t) |µmin| |λmin| INn − cp (t) D ⊗ Γ (t) + ϕ
(
cp (t) − c∗

)
IN

]
⊗ Γ (t)

}
e (t)

= eT (t)
{[
θIN − cp (t) D + ϕ

(
cp (t) − c∗

)]
⊗ Γ (t)

}
e (t) , (3.14)

where µmin = 0 is the minimum eigenvalues of Γ (t). If θIN − cp (t) (ϕIN − D) − ϕc∗IN < 0 then the
V̇ (t) < 0 is negative definite. Complex network (2.9) can achieve synchronization, and the synchronous
solution is asymptotically stable.
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Remark 5. cp (t) can be caculated through the adaptive technique. Consequently, c (t) can be
obtained under a fixed p. Note that the value of feedback gain is another factor, which determines the
speed of network synchronization and the required theoretical value for the feedback gain is probably
much larger than that needed in practice. Therefore, in the same way, an adaptive technique is
exploited to compute the lower bound of feedback gain for achieving the complex network
synchronization.

3.3. Adaptive controllers in pinning synchronization

The pinning controllers selected by Eq (2.9) yield the following controlled network

ẋi (t) =

 f (xi (t) , t) + p
∑N

j=1 Li j (t)Γ (t)
(
x j (t)

)
− pc (t) diΓ (t) (xi (t) − s (t)) , i = 1, 2..., l

f (xi (t) , t) + p
∑N

j=1 Li j (t)Γ (t)
(
x j (t)

)
, i = l + 1, 2...,N

ḋi (t) = qieT
i (t)Γ (t) ei (t) , (3.15)

where qi are positive constants.
Theorem 3. Suppose that Assumption 1 holds and Γ is a positive definite matrix, then the undirected

network (3.15) is globally synchronized under the adaptive scheme.
Proof. Consider the Lyapunov functional candidate

V (t) =
1
2

N∑
i=1

eT
i (t) ėi (t) +

l∑
i=1

c (t)
2qi

(di (t) − d)2 (3.16)

where d is a positive constant. Based on Lemma 1 and Lemma 2, the derivative of V (t) gives

V̇ (t) =

N∑
i=1

eT
i (t) ėi (t) +

l∑
i=1

c (t) (di (t) − d) eT
i (t)Γ (t) ei (t)

=

N∑
i=1

eT
i (t)

[
f (xi (t) , t) − f (s (t)) + pc (t)

∑N
j=1 Li j (t)Γ (t)

(
x j (t)

)]
−

l∑
i=1

pc (t) di (t) eT
i (t)Γ (t) ei (t) +

l∑
i=1

pc (t) (di (t) − d) eT
i (t)Γ (t) ei (t)

=

N∑
i=1

eT
i (t)

 f (xi (t) , t) − f (s (t)) + pc (t)
N∑

j=1

Li j (t)Γ (t)
(
x j (t)

) − l∑
i=1

pc (t) deT
i (t)Γ (t) ei (t)

6
N∑

i=1

eT
i (t)

KΓ (t) ei (t) + pc (t)
N∑

j=1

c (t) Li j (t)Γ (t)
(
x j (t)

) − l∑
i=1

pc (t) deT
i (t)Γ (t) ei (t)

= eT (t)
[
IN ⊗ KΓ (t) − pc (t) [L (t) ⊗ Γ (t)] − pc (t) d

[
ĨN ⊗ Γ (t)

]]
e (t)

= eT (t)
[[

INθ − pc (t) L (t) − pdĨN

]
⊗ Γ (t)

]
e (t) , (3.17)

where ĨN = diag(1, ..., 1,︸    ︷︷    ︸
l

0, ..., 0)︸  ︷︷  ︸
N−l

. If INθ − pc (t) L (t) − pdĨN < 0, then

V̇ (t) = eT (t)
[[

INθ − pc (t) L (t) − pdĨN

]
⊗ Γ (t)

]
e (t) < 0 . Note that pc (t) L (t) and pdĨN are
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negative definite. INθ − pc (t) L (t) − pdĨN is also negative definite when p is sufficiently small.
Therefore we can select an appropriate d to guarantee V̇ (t) < 0. This completes the proof.

In the adaptive control process, if the initial value ofdi (0) is very large, then di (t) increases very
slowly according to the change of ei (t). Finally, the synchronization can be achieved when di (t) is
large enough and converges to a constant d∗. d∗ is the bound of adaptive controllers di (t).

4. Simulation examples

In this section, some numerical simulations are presented to verify the criteria established above.
Consider complex network (2.9) that consists of N identical Chen systems, described by

ẋi (t) = f (xi (t) , t) − pc (t)
N∑

j=1

Li jΓ (t)
(
x j (t)

)
, (i = 1, 2, ...,N) , (4.1)

where Γ =


3 + sin2 (t) 0 0

0 2 + sin2 (t) 0
0 0 5 sin2 (t)

 , and f (xi, t) =


35 (xi2 − xi1)

−7xi1 − xi1xi3 + 28xi2

xi1xi2 − 3xi3

.

It is found that the chaotic attractor
(
s1, s2, s3

)
of the Chen system satisfies |S 1| < M1, |S 2| < M2,

and |S 3| < M3, M1 = 23, M2 = 32, and M3 = 61. Based on Lemma 3

(xi − s)T ( f (xi, t) − f (s, t)) = 35e2
i1 + (28 + M) |ei1ei2| + 28e2

i2 − 3e2
i3 + M |ei1ei3|

6

(
−35 + υ

28 + M
2

+ ε
M
2

)
e2

i1 +

(
28 +

28 + M
2υ

)
e2

i2 +

(
−3 +

M
2ε

)
3e2

i3

6 θ
(
e2

i1 + e2
i2 + e2

i3

)
.

(4.2)

υ and ε are chosen as 1.3139 and 0.4715, then θ = 31.0122.

4.1. Pinning synchronization of complex networks with linear controllers

According to Theorem 1 and Corollary 2, when maximum eigenvalues of feedback matrix D
satisfies ηmax >

|λmax |

pc(t)|λmin |
, complex networks can realize synchronization. The states of error are under

different value of linear controllers illustrated in Figures 1 and 2.
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Figure 1. The time evolution of pinning synchronization errors with linear feedback
controllers.
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Figure 2. The time evolution of pinning synchronization errors with linear feedback
controllers.
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Figure 3. The time evolution of pinning synchronization errors with adaptive feedback
controllers.
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Figure 4. The time evolution of state trajectory with linear and adaptive feedback controllers.

4.2. Pinning synchronization of complex networks with adaptive controllers

According to Theorem 3, same parameters are chosen to simulate complex network (2.8) with
adaptive controllers. With different adaptive control factors, complex network can realize
synchronization. The states of error eit are illustrated in Figure 2. Moreover, state trajectories were
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simulated to show the rate of convergence under different controllers in Figure 4. The graphs from left
to right and top to bottom illustrate the system state evolution corresponding to Figures 1–3.

5. Conclusions

In this paper, we investigated the pinning synchronization problem for complex networks with
time-varying inner and outer coupling. We derived a general criterion for ensuring network
synchronization. Pinning controllers and adaptive pinning controllers were respectively obtained
based on the Lyapunov function theory. We found that the complex networks with two kinds of
time-varying coupling can achieve global synchronization by adaptively adjusting the coupling
strength or feedback gain. Simulations on random networks verify well the theoretical results.
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