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Abstract: Lockdown and social distancing, as well as testing and contact tracing, are the main
measures assumed by the governments to control and limit the spread of COVID-19 infection. In
reason of that, special attention was recently paid by the scientific community to the mathematical
modeling of infection spreading by including in classical models the effects of the distribution of
contacts between individuals. Among other approaches, the coupling of the classical SIR model with
a statistical study of the distribution of social contacts among the population, led some of the present
authors to build a Social SIR model, able to accurately follow the effect of the decrease in contacts
resulting from the lockdown measures adopted in various European countries in the first phase of the
epidemic. The Social SIR has been recently tested and improved through a fruitful collaboration with
the Health Protection Agency (ATS) of the province of Pavia (Italy), that made it possible to have at
disposal all the relevant data relative to the spreading of COVID-19 infection in the province (half a
million of people), starting from February 2020. The statistical analysis of the data was relevant to fit
at best the parameters of the mathematical model, and to make short-term predictions of the spreading
evolution in order to optimize the response of the local health system.
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1. Introduction

The recent spreading of the COVID-19 epidemic led the central governments to introduce
restrictions such as social distancing and lockdown policies. These non-pharmaceutical containment
measures were adopted with the aim of reducing the epidemic peak, in order to guarantee public
health and the efficiency of the national health system in periods of strong increase in the number of
infected. The effects of the restrictions were recently tested by resorting to mathematical models of
compartmental epidemiology [1, 2], namely models in which the population is divided into
compartments in order to simulate the epidemic evolution. In the Italian case, the actual evolution of
the number of registered infected people immediately appeared subject to unavoidable
incompleteness of the data during the entire emergency. It has therefore proved necessary to develop
forecasting techniques to understand the impact of uncertain quantities during a health emergency.
Furthermore, the necessary easing of lockdown measures has raised new questions about how to
preserve production capacity while guaranteeing public health.

Such non-pharmaceutical measures, however, necessarily entail significant social and economic
costs, which can only be incurred over limited time horizons. Therefore, to optimize containment
strategies which save at possible these costs, it results necessary to adopt a new approaches to
mathematical modeling combining both clinical information of the disease and a realistic social
structure of the population.

The study of mathematical models to understand the spread of an epidemic represents a consolidated
scientific field of applied mathematics. A fundamental step is furnished by the pioneering work of
Kermark and McKendrick on compartmental epidemiology [3], which has given rise to a widely used
model in which the initial population is divided into susceptible (S), who can contract the disease,
infected (I), who have already contracted it and can transmit it, and recovered (R), who are immune
or cured of the disease. This model is often mentioned as the SIR model, using the acronym of the
categories just introduced.

The hypothesis made by Kermack and McKendrick is that of homogeneous mixing: it is assumed
that every individual has the same probability of contacting any other individual in the population. It is
understandable that this hypothesis is unrealistic since the intensity and nature of contact with people
from our family, our workplace, school class, or a group of friends are very different, and on the other
hand we rarely come into contact with those who live in different social realities.

For these reasons, starting from the original SIR model, more articulated models have been
examined, capable of representing the population more realistically, dividing it in more detail. Several
models are currently able to consider characteristics related to the mobility or age of the subjects,
together with further sociological factors that determine the social interactions that can favor the
transmission of the infection [1, 2, 4–6].

Nevertheless, the accuracy of a predictive model, at least in the first phase of the spread of a
pandemic, is very difficult to assess. A problem that cannot be ignored is the uncertainty present in
the official data provided by different countries in relation to the number of infected people. The
heterogeneity of the procedures used to carry out the tests of positivity to the disease, the delays in
recording and communicating the results and the high percentage of asymptomatic patients make the
construction of predictive scenarios affected by high uncertainty. In general, the actual number of
infected and recovered people is typically underestimated, causing delays in the implementation of
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public health policies in the face of the spread of epidemic fronts.
A few months after the outbreak of the COVID-19 epidemic, and in the face of containment policies

operated by governments, we now have a lot of data available [7,8], which allow us to understand how
much and in how the measures of social distancing have succeeded in the containment. Starting from
these data, an essential aspect for the development of a predictive mathematical model is to build
it in such a way as to accurately take into account the influence of social contacts in the contagion
mechanism, and which, tested on the various measures of containment operated by different countries,
can provide a correct answer in different situations.

Contacts between individuals occur according to interaction matrices that depend on the age of the
individuals in the social activity considered (for example, school, work, family). Extensive studies
have been carried out on this aspect. Among these, the recent works [9, 10] provided an updated and
complete picture of the statistical distribution of the daily social contacts of the population by age, sex,
profession and more in various countries. The social contact matrices are very similar for European
and non-European countries. These matrices show a peak of contacts in correspondence to people of
school age, and of working age. Furthermore, two contact strips are highlighted between people of
different ages, corresponding to the interactions between family members.

Taking into account the homogeneity of the social contact matrices with respect to different
countries [10], a statistical model in which the populations of susceptible (S), infected (I) and
recovered (R) are characterized by the number of daily social contacts has been proposed [11]. The
resulting SIR-type model (in brief S-SIR or Social SIR) is in this case characterized by an
inhomogeneous mixing. Unlike the classical model, the probability of contagion is considered
proportional to the average of the contacts of the individuals in the population, and the increase of the
infected is directly proportional to the product between the average of the daily contacts of the
populations of infected and susceptible. The probability of contact is now characterized by a function
that takes into account memory effects linked to the percentage of infected over a limited time span.

The model is further based on the hypothesis that the time scale that controls social contacts is
much faster than the time scale on which the pandemic develops, a very reasonable hypothesis on
which, among other things, the government provisions aimed at changing social contacts via
lockdown policies. The characteristic parameters of the model are obtained starting from the
statistical distribution of contacts observed in [9].

In [11], the output of the new model has been tested resorting on public data made available on
the web, which allowed to evaluate accurately the key function characterizing the evolution of the
epidemic in terms of the amount of social contacts of infectious people. These experiments showed a
good agreement in the evolution of compartments predicted by the model with the data relative to the
containment of the epidemic consequent to the lockdown policies in various countries.

These first results encouraged further study. This has been made possible by a joint effort of two
groups, one from the University of Pavia, the other from the the Health Protection Agency (ATS) of
the province area of Pavia, who analyzed the data relative to the COVID-19 infection starting from the
early appearance, in February 2020, to extract from them the correct values of the parameters to be
inserted into the S-SIR model developed in [11]. These data are relative to a population of about half
a million of people in Northern Italy, a population which is sufficiently large to give stable statistics
about diffusion and recovery rates in terms of age and sex.

By means of this joint work, it has been possible to improve the original model developed in [11],
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and to use the new version to follow at best the numbers of the compartments in the pandemic. A
better adherence of the model to real situations, and a prediction in the short term of the availability
of places for people to be hospitalized, has been obtained by resorting to the available detailed data.
This allowed a statistical but coherent knowledge both of the percentage of people to be hospitalized
in relation to the population of infectious, and of the recovery time of hospitalized people.

2. The Social SIR model

One of the main goal of the mathematical models of infectious diseases is the possibility to
evaluate control and prevention strategies by comparing their cost with effectiveness, and to support
public health decisions [12, 13]. With the sudden spreading of COVID-19 epidemic, and the
consequent containment measures adopted to limit its diffusion, special attention was paid by the
scientific community to previous researches devoted to estimate the distribution of contacts between
individuals (cf. [9, 14–16] and the references therein).

Starting from the analysis of [9], a mathematical framework to connect the distribution of social
contacts with the spreading of a disease in a multi agent system was recently developed in [11]. The
new model has been obtained by integrating the epidemiological dynamics given by the classical SIR
compartmental model [5,17,18] with an approach based on kinetic equations, which furnish a detailed
mechanism for the formation of social contacts at a rapid scale.

Since this model will be the starting point of the forthcoming analysis, let us briefly recall it with
some details. Given a population of individuals, we denote by fS (x, t), fI(x, t) and fR(x, t) the
distributions at time t > 0 of the number x ≥ 0 of social contacts of susceptible (S), infected (I), and
recovered (R) individuals, respectively. The distribution of contacts of the whole population is then
recovered as the sum of the three distributions

f (x, t) = fS (x, t) + fI(x, t) + fR(x, t).

Assuming for simplicity that the population in the system remains constant, the total distribution of
social contacts is assumed to be a probability density for all times t ≥ 0∫

R+

f (x, t) dx = 1.

The knowledge of the functions fJ(x, t), J ∈ {S , I,R} allows to compute all relevant observable
quantities. The integrals

J(t) =

∫
R+

fJ(x, t) dx, J ∈ {S , I,R} (2.1)

denote the fractions at time t ≥ 0 of the three sub-populations. Analogously we can compute moments,
defined, for any given constant α > 0 by

mα
J (t) =

∫
R+

xα fJ(x, t) dx, J ∈ {S , I,R}.

The mean values, corresponding to α = 1, are denoted by mJ(t), J ∈ {S , I,R}.
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The evolution of the densities is built in [11] by assuming that the various classes in the model could
act differently in the social process constituting the contact dynamics. The kinetic model then follows
combining the epidemic process with the contact dynamics, as modeled in [19]. This gives the system

∂ fS (x, t)
∂t

= −K( fS , fI)(x, t) +
1
τ

QS ( fS )(x, t)

∂ fI(x, t)
∂t

= K( fS , fI)(x, t) − γ fI(x, t) +
1
τ

QI( fI)(x, t)

∂ fR(x, t)
∂t

= γ fI(x, t) +
1
τ

QR( fR)(x, t)

(2.2)

where τ � 1 is a relaxation time, γ > 0 is the recovery rate while the transmission of the infection is
governed by the function K( fS , fI), the local incidence rate, expressed by

K( fS , fI)(x, t) = fS (x, t)
∫
R+

κ(x, y) fI(y, t) dy. (2.3)

According to the literature on the subject [5], in Eq (2.3) the contact function κ(x, y) is a nonnegative
function growing with respect to the number of contacts y of the population of infected, and such
that κ(x, 0) = 0, which expresses the fact that the epidemic can not spreading in absence of infected
people. Thus, the evolution of the epidemic depends heavily on the shape of the function κ(·, ·) used to
quantify the rate of possible contagion in terms of the number of social contacts between the classes of
susceptible and infected.

Note that the evolution of the mass fractions J(t), J ∈ {S , I,R} then obeys to the classical SIR model
by choosing κ(x, y) ≡ β > 0 [5], thus considering the spreading of the disease independent of the
intensity of social contacts. In [11] the contact function has been considered of the form κ(x, y) = βxy,
leading to an incidence rate of the form

K( fS , fI)(x, t) = β x fS (x, t)mI(t), (2.4)

which implies an incidence of the contagion proportional to the product of the mean values of the
populations of infectious and susceptible.

In system (2.2) the operators QJ, J ∈ {S , I,R} describe the formation of the social contacts of
the populations, and are constructed to rapidly push the densities fJ(x, t), J ∈ {S , I,R} towards the
equilibrium densities of daily contacts, which are given by suitable Gamma density functions. This
choice is consistent with the results of empirical studies based on a precise analysis of a heterogeneous
sample of French population, which established that Gamma densities are the most suitable to describe
the daily number of contacts in the pre-pandemic scenario [9]. Further, a theoretical basis to the
formation of this equilibrium profile has been recently done in the recent paper [11]. A simple choice
for the relaxation operators is given by the linear BGK-type model [20]

QJ( fJ)(x, t) = f∞J (x, t) − fJ(x, t)

where the Gamma-like equilibrium density is given by

f∞J (x, t) =
J(t) xν−1

Γ(ν) xJ(t)ν
exp
{
−
νx

xJ(t)

}
, J ∈ {S , I,R}
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where ν > 0 is a parameter measuring the heterogeneity of the population, and

xJ(t)J(t) = mJ(t).

We remark that the equilibrium density is built to have the same mass and mean value of the function
fJ(x, t), J ∈ {S , J,R}. Another choice is given by relaxation operators in the form of Fokker-Planck-type
operators. We point the interested reader to [11] for a detailed discussion.

Integrating the equations of the system (2.2) with respect to the contact variable x leads to the
system for the evolution of the proportions J(t) defined in Eq (2.1), J ∈ {S , I,R}

∂S (t)
∂t

= −βmS (t)mI(t),

∂I(t)
∂t

= βmS (t)mI(t) − γI(t),

∂R(t)
∂t

= γI(t).

(2.5)

Unlike the classical SIR model, system (2.5) is not closed, since the evolution of the mass fractions
J(t), J ∈ {S , I,R} depends on the mean values mJ(t).

Hence, fixing the mass of the large time contact distribution of infectious individuals equal to I(t),
its momentum is given by

mI(t) = x̄I I(t)H(I(t)). (2.6)

Analogously, if the mass of the large time contact distribution of susceptible individuals is S (t), its
momentum is given by

mS (t) = x̄S S (t)H(I(t)).

In Eq (2.6) the constant x̄I denotes the mean number of social contacts of infectious, while the function
H captures the actual intensity of social contacts, in dependence of the amount, at time t ≥ 0, of
infected people. Proceeding as in classical dynamics of fluids, we obtain the closure

∂S (t)
∂t

= −β̄ S (t) I(t) H2(I(t)),

∂I(t)
∂t

= β̄ S (t) I(t) H2(I(t)) − γI(t),

∂R(t)
∂t

= γI(t).

(2.7)

In system (2.7) we defined β̄ = βx̄I x̄S . This identifies the classical transmission parameter of the SIR
model, where however now the difference is that this quantities are not postulated but instead derived
starting from microscopic considerations.

The key point in [11] was to quantify in a proper way the function H, describing the action of the
variation of the intensity of social contacts on the evolution of the epidemic. For a given constant
N � 1, the function H was assumed to be the decreasing function

H(r) =
1

√
1 + Nr

, 0 ≤ r ≤ 1, (2.8)
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which describes a possible way in which, in presence of the spread of the disease, the susceptible and
the infected population tend to reduce the mean number of daily social contacts x̄J, J ∈ {S , I}. This
choice produces a SIR model with global incidence rate

D(S , I)(t) =

∫
R+

K( fS , fI)(x, t) dx = β̄S (t)
I(t)

1 + N I(t)
, (2.9)

that fulfils all the properties required by the non-linear incidence rates considered in [3].
In addition to the form in Eq (2.8), the following function was considered in [11]

H(t, r) =
1√

1 + Nr(t)
∫ t

0
r(s)ds

, 0 ≤ r ≤ 1. (2.10)

This function satisfies the same properties of Eq (2.8) in terms of the incidence rate requests detailed
in [3] and takes into account memory effects on the population’s behavior. In fact, it is reasonable to
assume that both the restrictions operated by governments and the individual behavior are based not
only in terms of the daily contacts to answer to the actual pandemic situation as expressed by Eq (2.8),
but considering the evolution of the epidemic over a certain period of time.

The spreading of the COVID-19 pandemic in presence of lockdown measures has been tested in [11]
through system (2.7), where both the form of the function H and the values of the parameters β̄ and
γ have been computed by resorting to public available data. As we shall see, the possibility to have
at disposal more detailed data, will lead to an improvement of the Social SIR, and to and its better
adherence to epidemic reality. Analogous results have been obtained through an experimental approach
in [21] in the region of Wuhan and Shanghai.

3. Dataset description

The Social SIR model has been fitted and tested on the accurate dataset collected by the ATS,
representative of a local but extensive territory such as the province of Pavia. The dataset collects
all the confirmed COVID-19 cases from February 20, 2020, to November 15, 2020, covering a wide
period characterized by different behaviors in the spreading of the disease. For each confirmed case, all
the relevant dates related to the personal evolution of the disease are reported: date of the first positive
swab test, recovery date, death date, admission and discharge date in case of hospitalization. Age
and sex of each COVID-19 patient recorded in the dataset are also available. This information proved
essential to make the best estimate of the parameters of the Social SIR model leading to an accurate
picture of the spread of COVID-19 infection in the province of Pavia.

In Figure 1 the number of confirmed COVID-19 cases per day is displayed, for a total of 15,768
infectious individuals and 1415 cumulative deaths during the considered period. Figure 1 clearly shows
two different crucial periods: the first one represents the initial outbreak of the disease, and the second
one, with the restart of the activities.

The detailed information collected in the ATS dataset allows to extrapolate the time to viral
clearance (TVC), corresponding to the time from the first positive test to the second negative test
before October 12nd or the first negative test after October 12nd, in agreement with the policies of the
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Figure 1. Confirmed COVID-19 cases in the province of Pavia at November 15, 2020.

Ministry of Health. Furthermore, since we considered in the recovered compartment also deceased
patients, the computation of the TVC considers in this case the date of the patient’s death. Figure 2a
shows the global distribution of TVC computed in days with a minimum value of 0 and a maximum
value of 250. The values 0 and greater to 100 may be due to anomalies in the registration of swab
tests in the period of first emergency. To deeper study the type of distribution of the TVC we focus the
analysis on the interval between 4 and 50 days, as reports in Figure 2b. This interval includes the 82%
of the recovered patients. The corresponding distribution has been estimated by testing a Beta density
function on the empirical distribution of the available data on the bounded interval [4,50]. The
method of Maximum Likelihood Estimation has been implemented to estimate the relevant
parameters, and to realize that B(2, 4) is the Beta distribution capable to best approximate the
registered times to viral clearance.

According to several studies, the TVC during the early phase of the epidemic can approximately
span from 10 to 24 days (cf. [2,22,23] for further discussions). The present analysis, based on the data
of the province of Pavia, is substantially in agreement with the aforementioned works. In Figure 3 we
present the boxplots for TVC by month. We may observe how the presence of outliers appears strongly
reduced after July 2020, whereas the median TVC remains stable in the considered period.

Since the age component influences significantly the morbidity and mortality of COVID-19
patients [24], we have preliminarily investigated the dependency of the recovery of patients from the
age variable a ∈ [0, 100]. Figure 4a shows that heterogeneities in registered time to viral clearance
with respect to age exist in terms both of range values and median value. In particular, the median
time to viral clearance in days increases with the age of patients, from a minimum value of 15 days if
a ≤ 18 till a value of 25 days if a ≥ 75.

This difference is presented in Figure 4b where the bootstrap confidence intervals (confidence level
equal to 95%) for the median values of the recovery rates are estimated for each value of age reported
on x axis. The analysis on median values has been preferred with respect to the mean values since
recovery distributions for each group age are strongly positive skewed, as displayed in Figure 4a, and
the median value is a more robust statistic with respect to outliers.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3384–3403.



3392

0.00

0.01

0.02

0.03

0 50 100 150 200 250

TVC (days)
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Figure 2. Time to viral clearance (in days).
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Figure 3. Distribution of times to viral clearance (in days) for each month registered in the
Province of Pavia. The month represents the first swab test date.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3384–3403.



3393

Table 1. Estimated parameters of the age dependent recovery rate (3.1).

Age interval pi qi

i = 1 0.0764 0.0128
i = 2 0.0455 0.000
i = 3 0.169 0.0183
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(a) Distribution of recovery in days for each age group.
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(b) Confidence intervals for the median of the recovery rates
and interpolation with a piecewise function.

Figure 4. Dependencies between recovery rates and age.

Resorting to these results the constant recovery rate γ of the original continuous model (2.7) can be
substantially improved. An age-dependent recovery rates γ(a) in the form of the following piecewise
function

γ(a) =


p1e−q1a 0 ≤ a ≤ 40
p2e−q2a 40 < a ≤ 70
p3e−q3a a > 70.

(3.1)

is depicted in Figure 4b. The parameters p1, p2, p3 and q1, q2, q3 can be obtained by solving a least
square optimization problem in the three introduced subcategories. The results of the optimization
problem are reported in Table 1.

Recovery distribution has been also analyzed comparing different months of the considered period
in order to understand if significant changes have occurred during the evolution of the epidemic.
Figure 3 displays a particular trend in the first months of the outbreak (March, April, May and June)
characterized by a right-skewed distribution and a wide range of times to viral clearance. From July to
September the distributions become more and more stable around the median value of 25 days.

This significant difference, between the first months of the epidemic and the following ones, can be
explained considering that collections of data of first period have been affected by lot of imprecisions

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3384–3403.



3394

0.0%

10.0%

20.0%

30.0%

40.0%

Mar Apr May Jun Jul Aug Sep Oct Nov

%
 h

o
s
p

it
a

liz
a

ti
o

n

Figure 5. Percentage of hospitalized COVID-19 patients per each day.

due to the overwhelming activities which have involved the ATS of Pavia because of this new
emergency.

Finally, we consider the number of hospitalizations in terms of admission and discharge dates in
the hospitals of Pavia. This allows to estimate the daily percentage of hospitalized patients over all
the daily confirmed cases. The percentage trend is represented in Figure 5. This value shows a peak
during the first outbreak of the epidemic, between March and April, achieving 50% and becomes more
and more constant starting from the beginning of June, with an average value equal to 4.7%. It is
reasonable to consider this last one as a more accurate estimate of the real hospitalization rate, since
data collected from March to May are altered by the low number of swab tests performed during this
period.

4. Calibration of S-SIR model and forcastings

In this section we perform the estimation of epidemiological parameters of the introduced S-SIR
model taking into account the ATS dataset. It is worth to mention that the estimation of such parameters
for compartmental models is generally a difficult task and is strongly related on the assumptions of
the adopted model. A comparison between several available models and methods has been recently
presented in [25]. Furthermore, available epidemiological data represent typically a lower bound of the
real diffusion of the epidemic since according to recent results of the serological campaigns promoted
in Italy around 80% of infected are asymptomatic [26]. Another source of uncertainty is given by the
limited testing capacity which is particularly evident at the beginning of the epidemic. Therefore data
are partial and heterogeneous with respect to their assimilation making the fitting problem challenging.
We mention in this direction the detailed discussions in [27–30].

Several approaches have been developed to infer the time-course of infections of COVID-19 in
Italy from available aggregated data through specific compartmental analysis of the population. In
particular, a common trait in existing literature relies in considering the compartment of hospitalized
or infected acutely symptomatic whose evolution depends on specific choice of parameters [1, 2, 31].

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3384–3403.



3395

Nevertheless, we have observed in Figure 5 how the percentage of hospitalizations in the Province
of Pavia remain quite stable from June 2020 up to November 15 around the 5% of the current cases.
Interestingly enough, from February to April 2020 the registered hospitalizations increased a lot in the
reference area with a peak of more than 40% of the current cases. Hence, the hospitalizations decreased
constantly from April to June 2020. This fact may be explained by the limited testing capacity in the
early phases of the epidemic. In agreement with [26] the real number of infected has been largely
underestimated.

We will predict the number of hospitalized patients using the percentage of hospitalizations
estimated from the last available month before the time interval considered for the prediction. As
already pointed out, we will show that this percentage appears stable from July to October.

4.1. Extrapolation of the contact function

In the following, we present a calibration approach which is based on a strategy with two main
optimization horizons related to the pre-lockdown and lockdown time spans. We consider first the time
interval t ∈ [t0, t`], being t` the day in which lockdown started in Italy and t0 the day in which reported
cases hit 30 units. The lower bound has been imposed to reduce the limited testing capacity in the early
phase of the infection.

We estimate the recovery rate γ > 0 from data by computing the median value of the empirical
recovery rates distribution, γ = 0.0476 corresponding approximatively to a median time to viral
clearance of 21 days. Hence, to determine β, we solve a least square problem based on the
minimization of a cost functional J which takes into account the sum of two relative L2([t1, t2])
norms over the time horizon [t1, t2]. In particular, we consider a cost functional taking into account the
difference between the reported number of infected and the reported total cases, i.e., Î(t) and
Î(t) + R̂(t), and the evolution of I(t) and I(t) + R(t) given by the S-SIR model (2.7) with H ≡ 1 and
t ∈ [t1, t2]. In details, we solve the constrained optimization problem

min
β∈[0,1]

J(Î, R̂, I,R), t ∈ [t0, t`], (4.1)

subject to the dynamics in Eq (2.7). In Eq (4.1) the cost functionalJ is a convex combination between
two relative L2 norms

J(Î, R̂, I,R) = µ
‖Î(t) − I(t)‖L2([t1,t2])

‖Î(t)‖L2([t1,t2])
+ (1 − µ)

‖Î(t) + R̂(t) − I(t) − R(t)‖L2([t1,t2])

‖Î(t) + R̂(t)‖L2([t1,t2])
,

with µ = 10−2. We solved the introduced optimization problem confronting different integration
methods and we obtained β = 0.218.

Once the epidemiological parameters have been estimated in the pre-lockdown time interval we can
proceed with the estimation of the shape of the contact function H in the time span [t`,T ]. In order to
reduce the fluctuations due to possible delays in the registration procedure, we solve the corresponding
least square problems for a sequence of time steps ti in [ti + κr, ti + κ`] where κr, κr ≥ 1 are integers
chosen to cover a window of seven days. We considered κr = 2 and κ` = 5 for regularization along one
week of available data. To this end, we considered a second optimization problem

min
H∈[0,1]

J(Î, R̂, I,R), t ∈ [ti + κr, ti + κ`], (4.2)
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(a) Real curve of confirmed cases and fitting of the Social SIR
model.

(b) Punctual estimate of contact function H.

Figure 6. Fitting of the Social SIR model on the ATS dataset.

where the parameters β, γ have been determined as a result of the optimization problem in Eq (4.1).
These optimization problems have been solved testing different optimization methods in combination
with RK4 integration method of the system of ODEs.

The available data start on February 20, 2020, when moderate social restrictions were already
enforced by the national government, and the lockdown started on March 9, 2020. In Figure 6 we
present the evolution of the current confirmed cases together with the result of the described fitting
procedure. The punctual evolution of the contact function H(t), t ∈ [t`,T ], is presented in the left
column. We highlighted a shaded gray zone to indicate the first wave of the infection for which we
can clearly observe that the contact function can be coherently approximated through a decreasing
function.

On the other hand, the beginning of the second wave of infections can be detected in the first days
of August since the function H returned rapidly to its early pandemic values remaining quite stable till
November 15th.

4.2. Forecasts of hospitalizations

In this Section we present the prediction results furnished by the improved S-SIR model for
expected hospitalizations due to COVID-19 acute symptoms. In particular, we will take into account
the information on the times to viral clearance presented in Section 3 where we have observed that the
experimental data are well approximated with a Beta distribution p(z) of the form

1
γ(z)

= h0z + h1, z ∼ B(2, 4), (4.3)

and h0 = 46, h1 = 4. In the following we will indicate the support of z with Γ = [4, 50].
The S-SIR model with stochastic recovery rate can be obtained in the same theoretical setting
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described in Section 2 and reads
∂S (z, t)
∂t

= −β̄ S (z, t) I(z, t) H2(z, I(z, t)),

∂I(z, t)
∂t

= β̄ S (z, t) I(z, t) H2(z, I(z, t)) − γ(z)I(z, t),

∂R(z, t)
∂t

= γ(z)I(z, t).

(4.4)

Figure 7. Evolution of E[Rt] of the S-SIR model (4.4) with γ(z) defined in Eq (4.3).

In order to handle efficiently the introduced stochasticity in the dynamics we will adopt a stochastic
collocation approach based on stochastic Galerkin methods (see [32] for an introduction and [27, 30]
for their application to epidemiological dynamics). These methods allow to handle efficiently the
stochasticities of a system when information on the uncertainties distribution are available thanks to
the fast convergence properties holding under suitable regularity assumptions.

We construct the sample {γ0, . . . , γM} from γ(z). The samples are obtained in a collocation approach
using Gauss-Jacobi polynomials with M = 10. For each fixed value γ j, j = 0, . . . ,M, we solve the
optimization problem (4.1) subject to the dynamics in Eq (2.7) to obtain the value β j > 0. Hence,
we estimate the contact function H j(t), j = 0, . . . ,M, in time by solving the subsequent optimization
problem (4.2) in the time interval [ti + k`, ti + kr], with κr = 2 and κ` = 5, and where γ = γ j, β = β j are
fixed.

In Figure 7 we report the expected value of Rt together with the 95% and 80% confidence intervals
with respect to the stochastic parameter z. The results show that, in presence of the marked reduction
of social contacts enforced by the lockdown measures of the government, the reproduction number Rt

has been drastically reduced and its expected value fell below one in the first week of April. Then, the
observed Rt remains stably below unity from May to the first week of August.

In Figure 8 we present the dynamics of the confirmed cases with respect to the available data in
four successive weeks from October 15, 2020 to November 15, 2020. In particular, we performed the
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(a) Week 1: October 19 - 25 (b) Week 2: October 26 - November 1

(c) Week 3: November 2 - 8 (d) Week 4: November 9 - 15

Figure 8. Prediction of the confirmed cases over four weeks from October 15 to November
15 in the province of Pavia. The results are based on S-SIR model with recovery rate of the
form of Eq (4.3) .

fitting procedure of the model up to the week of prediction. We fixed for the whole prediction horizon
H j(t) = H j(T ), t ∈ [T,T + 7]. We highlight in red the expected value of the predicted cases, i.e.,
E[I(z, t)] =

∫
Γ

I(z, t)p(z)dz. Together with the expected trends we plot the confidence intervals (CI) that
are obtained by imposing

Prob [I` ≤ I(z, t) ≤ Ir] = 1 − c,

and c = 0.05 for the 95% CI and c = 0.2 for the 80% CI. For any given week of interest, the previous
seven days have been neglected in the fitting procedure, and then plotted together with predictions to
establish the performance of the modelling setting. We can observe how through S-SIR model with
stochastic recovery rate we are capable to catch the epidemic dynamics with a good level of accuracy.

Once a sufficiently precise evolution of the infections has been obtained, we can infer the expected
hospitalizations thanks to the preliminary statistical results introduced in Section 3. In details, for
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(a) Week 1: October 19 - 25, HPP = 3.4% (b) Week 2: October 26 - November 1, HPP = 3.2%

(c) Week 3: November 2 - 8, HPP =3.3% (d) Week 4: November 9 - 15, HPP = 3.6%

Figure 9. Seven-days prediction of number of hospitalized individuals based on Social SIR
model.

each prediction week, we computed the percentage of hospitalized patients (HPP) taking into account
the previous 30 days of observations. Hence, the prediction is obtained by multiplying the predicted
cases with HPP. In Figure 9 we present the obtained predictions of hospitalized patients from the S-
SIR model with stochastic recovery rate (4.3). As before, we neglected the previous seven days of
observations for each week of interest to estimate the parameters of the model. The performance of the
model are compatible with the expected hospitalized patients E[I(z, t)].

We considered a prediction horizon of one week, since a complex phenomenon like the COVID-
19 diffusion in Italy embed a huge number of hidden uncertainties and variable factors. We briefly
discussed some of them in the previous paragraphs. In Figure 10 we present a comparison between a
1 week prediction horizon, i.e., the S-SIR model is calibrated taking into account data until November
8th 2020, and a 2 weeks prediction horizon, where the calibration is based only on data until November
1st 2020. For the left figure we also used the HPP relative to the week November 2-8, i.e., HPP = 3.3%.
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We may observe how we lose some accuracy in a longer prediction horizon even if we are qualitatively
able to catch the observed trends.

(a) Number of infectious individuals. (b) Number of hospitalized patients.

Figure 10. Comparison between fourteen-days and seven-days predictions (November 2–15)
based on Social SIR model.

5. Conclusions

The recent spreading of the COVID-19 epidemic led the scientific community to improve the
existing mathematical models of infections spreading by adding to them the possible effects of social
contacts about individuals. In this direction, the social S-SIR model introduced in [11] aimed to
quantify the effects of the lockdown policies operated by governments to limit the spreading of
COVID-19 epidemic in terms of a computable reduction of the contacts. Months after the early phase
of the epidemic, the huge amount of data at disposal of the authorities can be fruitfully used to
calibrate the parameters of the epidemic mathematical models to furnish a better knowledge of the
evolution of infections. In the present paper, by resorting to the ATS dataset relative to the province of
Pavia, we were able to correctly evaluate the key parameters of the S-SIR model. In particular, the
knowledge of data relative to the recovery rate of infectious allowed to substitute in the S-SIR model
the constant recovery rate parameter with a Beta distributed random variable, thus providing a better
adherence to real data. Further, a critical inspection of the dataset outlined the importance of
considering a novel mathematical model in which, in addition to the social contacts, one has to take
into account in a proper way the age variable, mainly responsible of the expected number of
hospitalized, and consequently of the possible critical situations in the health system. Nevertheless, in
absence of this new type of refined mathematical model, the merging of the evolution of spreading
obtained by means of the S-SIR model with a reasoned use of the dataset, led to an accurate output on
a one-week time horizon, with a uniform goodness in a period of four weeks, ranging from the middle
of October, 2020 to the middle of November, 2020. Based on the prediction performance of this
modeling approach, this joint research represents a first step towards a easy-to-handle fruitful
numerical approach to the mechanism of control of a local health system during the period of
epidemic spreading.
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