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Abstract: N4-methylcytosine (4mC) is a kind of DNA modification which could regulate multiple 

biological processes. Correctly identifying 4mC sites in genomic sequences can provide precise 

knowledge about their genetic roles. This study aimed to develop an ensemble model to predict 4mC 

sites in the mouse genome. In the proposed model, DNA sequences were encoded by k-mer, enhanced 

nucleic acid composition and composition of k-spaced nucleic acid pairs. Subsequently, these features 

were optimized by using minimum redundancy maximum relevance (mRMR) with incremental feature 

selection (IFS) and five-fold cross-validation. The obtained optimal features were inputted into random 

forest classifier for discriminating 4mC from non-4mC sites in mouse. On the independent dataset, our 

model could yield the overall accuracy of 85.41%, which was approximately 3.8% - 6.3% higher than 

the two existing models, i4mC-Mouse and 4mCpred-EL respectively. The data and source code of the 

model can be freely download from https://github.com/linDing-groups/model_4mc. 
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1. Introduction  

     

DNA modifications, such as demethylation and methylation, play important roles in the regulation 

of gene expression [1]. At the site of (5'-C-phosphate-G-3'), the methylation of cytosine is an important 
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epigenetic trait, which is closely related to cell proliferation and chromosomal stability protection [2,3]. 

5-methylcytosine (5mC), 4-methylcytosine (4mC), and 3-methylcytosine are the most common 

methylations of cytosine in eukaryotic and  prokaryotic genomes [4,5]. 5mC is the common kind of 

methylation of cytosine and, relates to many cancerous and neural diseases [6,7]. 4mC is also an 

effective modification that guards its own genetic information from deterioration through restriction 

enzymes [8–10]. Accurate recognition of 4mC could provide key clues for understanding its regulation 

roles. Currently, several experimental methodologies, including mass spectrometry, reduced-representation 

bisulfite sequencing, and single-molecule real-time sequencing, have been developed to identify 4mC 

sites [11–13]. Although these methodologies are helpful in the identification of 4mC sites, they are 

highly expensive when implemented on extensively large sequencing data. Thus, a bioinformatics tool 

to identify 4mC sites is urgently needed. At present, some computational methods have been presented 

to identify 4mC sites. In 2017, an innovative prediction model based on the confirmed 4mC dataset 

was constructed to predict 4mC sites in several species [14]. Afterwards, an iterative feature 

representative algorithm was designed based on the benchmark dataset of Chen et al. [15], which 

helped to learn and train the features from numerous progressive models to predict 4mC sites. 

iEC4mC-SVM [16] was developed to predict the 4mC in the Escherichia coli by using light gradient 

boosting machine feature selection technology. DNA4mc-LIP [17], a linear integration tool, was 

developed by combining existing prediction methods to identify 4-methyl cytosine sites in multiple 

species. Then, Meta-4mCpred [18] was developed to predict 4mC sites in the genomes of six species. 

However, to date, only two predictors, i4mC-Mouse and 4mCpred-EL are available for recognizing 

4mC sites in mice [19,20]. These two methods employed various features and machine learning 

algorithms on the sequence data of mice derived from the Meth-SMRT database [21]. Although both 

i4mC-Mouse and 4mCpred-EL can produce good outcomes, there is still room for further improvement 

by extracting more feature information.  

 

Figure 1. The workflow of the prediction of 4mC sites in mouse genome. 
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To address the aforementioned issues, an ensemble model was established to predict 4mC sites 

in mice. Figure 1 shows the workflow of the proposed model. First, three types of feature descriptors, 

k-mer, enhanced nucleic acid composition and composition of k-spaced nucleic acid pairs, were used 

as features to input into a random forest classifier [22] for identifying 4mC sites. After this, the 

mRMR [23] with IFS [24,25] technique was utilized to get optimal feature vectors. Finally, the best 

model was examined on an independent dataset. The outcomes on independent-samples indicated 

that the proposed model outpaced the two existed predictors, i4mC-Mouse and 4mCpred-EL.  

 

2. Materials and methods 

 

A reliable and accurate dataset is necessary to establish a prediction model. Therefore, we obtained 

the benchmark dataset from Hasan et al. work [20], and Manavalan et. al. [19]. In their study, they 

excluded similar sequences using 70% as cutoff of sequence identity [26]. After this elimination 

procedure, they finally obtained the benchmark dataset of 906 positive and 906 negative sequences 

with length of 41bp. Subsequently, the benchmark data were separated into 80% training data and 20% 

independent data to objectively estimate the efficiencies and performances of predictors, as shown in 

Table 1.  

Table 1. The distribution of sample numbers in benchmark dataset. 

 

 

 

2.1.  Feature descriptors 

Selecting the feature-encodings that are instructive and autonomous is an important stage in 

creating machine learning based models, such as BioSeq-Analysis2.0 [27], IDP-Seq2Seq [28], 

ACPred [29], iBitter-SCM [30], iTTCA-Hybrid [31], Meta-iAVP [32], PseKRAAC [33], iBLP [34] 

and so on [35,36]. Expressing the DNA sequences with a mathematical manifestation is very 

important in functional element identification. Zhang et al. obtained optimal nonamer composition to 

represent the sequences of mRNA [37]. Dao et al. used three types of feature encodings physiochemical 

properties, binary encodings and nucleotide chemical properties [38]. Yang et al. identify 

recombination site based on k-mer composition [39]. Dou et al. used k-mer nucleotide composition, 

nucleotide chemical properties and pseudo dinucleotide composition to identify RNA modification 

site [40]. Wei et al. identified circRNA-disease associations based on matrix factorization [41]. Zheng 

et al. developed reduced amino acid clusters [42]. Lv et al. applied k-tuple nucleotide frequency 

component, nucleotide pair spectrum encoding and natural vector in 3D genome [43]. Here, three types 

of feature-encoding approaches were presented to describe the DNA sequences.  

 

2.1.1.  k-mer nucleotide compositions (k-mer NC) 

 

k-mer NC can reflect short-range nucleotide interaction of sequences [44–46]. The (N-k+1) 

nucleotide residues can be obtained via a sliding window method by setting the window size of k bp 

Attribute Training Data Independent Data Total 

Positive 746 160 906 

Negative 746 160 906 

Total 1492 320 1812 
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with step size of 1 bp to examine a sequence with N bp. An arbitrary sample M with the sequence 

length of N (here N is 41bp) can be characterized as  

                 𝑀 =   𝑅1 𝑅2 𝑅3 … . . 𝑅𝑖 … . . 𝑅(𝑁−1) 𝑅𝑁                   (1) 

where Ri signifies the nucleotide (A, T, C, and G) at the i-th position. The sequences can be transformed 

into the 4k-D vector using k-mer nucleotide composition as follows      

                   𝑀𝑘 = [𝑓1
𝑘−𝑡𝑢𝑝𝑙𝑒𝑓2

𝑘−𝑡𝑢𝑝𝑙𝑒 … … . 𝑓𝑖
𝑘−𝑡𝑢𝑝𝑙𝑒 … . . 𝑓

4𝑘
𝑘−𝑡𝑢𝑝𝑙𝑒

]𝑇         (2) 

where T denotes the transposition of the vector, and f1
k-tuple symbolizes the occurrence of the i-th k-mer 

nucleotide composition in the sequence. When k =1, a DNA sample can be deciphered into a 4-D vector 

M1 = [f(A), f(G), f(C), f(T)]T. When k = 2, the DNA sample can be described by a 16-dimension vector. 

In this study, the value of k was set as (1, 2, … 6). Therefore, a sequence sample can be transformed 

into a 5460 (41 + 42 + 43 + 44 + 45 + 46) dimension vectors formulated as follows  

                𝑀 =  𝑀1 ∪ 𝑀2 ∪ 𝑀3 ∪ 𝑀4   ∪  𝑀5 ∪ 𝑀6                 (3) 

2.1.2.  Enhanced nucleic acid composition (ENAC) 

The ENAC calculates the nucleic acid composition based on the sequence window. It can be used 

to formulate the sequence with equal length. The enhanced nucleic acid composition can be 

calculated as  

     𝑄 = [
𝑁𝐴,𝑤𝑖𝑛1

𝑘

𝑁𝐺,𝑤𝑖𝑛1

𝑘
,

𝑁𝐶,𝑤𝑖𝑛1

𝑘
,

𝑁𝑇,𝑤𝑖𝑛1

𝑘
,

𝑁𝐴,𝑤𝑖𝑛2

𝑘
… .

𝑁𝐺,𝑤𝑖𝑛𝐿−𝑘+1

𝑘
,

𝑁𝑇,𝑤𝑖𝑛 𝑙−𝑘+1

𝑘
]     (4) 

In Equation (4), k characterizes the size of the sliding window, NA,win denotes the number of nucleotide 

A in the sliding window p, T ∈  [G, C, A, T], and (p = 1, 2, ..., L-k+1). In this study, the sliding 

window was set to 5. Then the feature dimension is 148. 

 

2.1.3.  Composition of k-spaced nucleic acid pairs (CKSNAP) 

 

    The CKSNAP embodies the incidence of nucleotide pairs disconnected by any k nucleotide (k = 0, 

1, 2, 3, 4 5). The composition of k-spaced nucleic acid pairs feature comprises 16 nucleotide pairs [AA, 

AG, ... TG, TT]. By taking k = 1 as an instance, composition of k-spaced nucleic acid pairs can be 

specified as follows: 

                𝑄 = [
𝑁𝐴∗𝐴

𝑁𝑇𝑜𝑡𝑎𝑙
,

𝑁𝐴∗𝐺

𝑁𝑇𝑜𝑡𝑎𝑙
, . .

𝑁𝑇∗𝐺

𝑁𝑇𝑜𝑡𝑎𝑙
,

𝑁𝑇∗𝑇

𝑁𝑇𝑜𝑡𝑎𝑙
]16                    (5) 

where * signifies (A, G, C, and T), NY ⃰ Z signifies the number of nucleotides Y*Z pairs in the sequence, 

and NTotal embodies the total number of single-spaced nucleotide pairs in the sequence. If the nucleic 

acid pair AA appears j times in the nucleotide sequence, the composition of the nucleic acid pair AA 

can be equal to j divided by the total number of 0-spaced nucleic acid pairs NTotal in the nucleotide 

sequence. For k = 0, 1, 2, 3, 4 and 5, the value of NTotal is 𝑃 −1, 𝑃 −2, 𝑃 − 3, 𝑃 −4, 𝑃 −5 and 𝑃 − 

6 for a nucleotide sequence of length 𝑃, respectively. In this study, k = 2 and the dimension of the 

composition of k-spaced nucleic acid pairs feature was 48. 
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2.1.4.  Feature selection with mRMR and IFS 

 

The insertion of noisy features might result in the unsatisfactory performance of a model. Dao et 

al. proposed a two-step feature selection strategy to exclude noise [47]. Feng et al. used a mRMR 

technique to reduced noise [48]. Shao et al. performed three ranking algorithms to exclude irrelevant 

features [49]. Cheng et al. used MetaMap to reduced noisy features [50]. Other computational works 

did the similar works [51–53]. Therefore, the selection of features is an obligatory phase to remove the 

less important features and increase the productivity of a model [54]. Many feature selection and 

ranking techniques are available, such as f-score , mRMR [23], MRMD [55], chi-square [56]. In this 

study, mRMR with IFS [24,57] was applied to obtain the optimal feature subset. mRMR is a filter-

based selection technique [58] to achieve an optimal model. Compactness functions are described as y 

and z, and P (y) and P (z) are the two corresponding probabilities. P (y, z) is the possibility of 

compactness, and the common information between the two functions can be demarcated as  

              𝐼(𝑦; 𝑧) =  ∬ 𝑃 (𝑦, 𝑧) 𝑙𝑜𝑔
𝑃(𝑦,𝑧)

𝑃(𝑦)𝑃(𝑧)
 𝑑𝑦𝑑𝑧                   (6) 

In shared information, searching a subset S with m optimum features helps to determine the feature 

transmission, which majorly depends on the target {y𝑖} class q.  

          𝑚𝑎𝑥 𝑑(𝑆, 𝑞), 𝑑 =  
1

|𝑆|
∑ 𝐼(𝑦𝑖, 𝑞)        (𝑖 = 1,2,3 … 𝑚)𝑦𝑖 ∈ 𝑆

          (7) 

Minimum redundancy can be defined as 

                 𝑚𝑖𝑛 𝑟(𝑆, 𝑞), 𝑟 =  
1

|𝑆|2
∑ 𝐼(𝑦𝑖, 𝑦𝑗)        𝑦𝑖,𝑦𝑗∈ 𝑆 

               (8) 

Final selection criteria can be articulated as: 

                        𝑚𝑎𝑥∅ (𝑑, 𝑟), ∅ = 𝑑 − 𝑟                     (9) 

The principle of the mRMR technique is to use a typical redundancy and relevance to rank features 

to acquire the best subset. Mostly, if a model was built on a high-dimensional feature subset, it can 

produce overfitting and informational redundancy problems. Therefore, mRMR (minimum 

redundancy maximum relevance) with the IFS (Incremental Feature Selection) [24,59] technique and 

five-fold cross-validation method was applied to examine the optimal feature subset with the maximum 

accuracy. We ranked all features according to the ∅ -values and obtained new feature vectors, which 

is given in the below equation 10. 

                         𝐼∗ = [ℎ1, ℎ2, ℎ3. . . ℎ𝑛]𝑇                     (10) 

The first feature subset comprises the feature with the highest ∅ -value 𝐼∗ = [ℎ1]𝑇. By adding 

the second highest ∅-value to the first subset, the second feature subset 𝐼∗ = [ℎ1, ℎ2]𝑇 is formed and 

by adding the third highest ∅ -value to the second feature subset, the third feature subset 𝐼∗ =

[ℎ1, ℎ2, ℎ3]𝑇 is formed [47]. The process was repeated until all the features were considered. 

 

2.1.5.  Machine learning classifier 

 

Support vector machine is very famous and has been used in many bioinformatics tools [44-46]. 
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It performs binary classification on data in supervised learning. We have used a free available package 

LibSVM version 3.21, which can be easily downloaded from 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/ to train and test the model. We have used rbf kernel 

function due to its efficiency in non-linear classification. We have optimized cost and gamma 

parameters of RBF kernel function by using grid search with searching space [2-5,25] for cost and 

[2-12,21] for gamma. Naïve Bayes classifier has been widely used in bioinformatics due to its simplicity 

and better performance [60]. It is a classification technique and totally depends on Bayes theorem. Ada 

boost classifier is also very famous and has been widely used in bioinformatics [61]. It is an ensemble 

technique and combines various classifiers to enhance the accuracy. The main idea of this is to set the 

classifiers weights and trained the data in each iteration. We implemented these classifiers in Weka 

(version 3.8.4) [62]. Random forest is a combined knowledge technique extensively applied in 

bioinformatics [63,64]. The underlying principle is to combine several weak classifiers. The outcome 

is attained by the voting process therefore, the outcome of the model has higher exactness and 

simplification. The model was constructed using a random forest algorithm [22] and the complete 

procedure is clearly described in [65]. Scikit - learn package (v - 0.22.1) [66,67] was used to execute 

the random forest classifiers. Firstly, we used randomized search CV and then grid search CV to tune 

hyperparameter. The best tuned parameters of the proposed model are given in Table 3.  

 

2.1.6.  Evaluation metrics 

 

Matthews correlation coefficient (MCC), accuracy (Acc), sensitivity (Sn) and specificity (Sp) 

were used in this study to check the overall efficiency of the model defined as Equation 11. 

𝑆𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 

                          𝑆𝑝  =   
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                         (11) 

 𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

                             𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 ×𝐹𝑁

√(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 +𝐹𝑁) × (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑃)
 

where TP represents the correctly identified 4mC sequences in benchmark data and FP signifies the 

4mC sequences false-classified as non-4mC. Likewise, TN represents the correctly recognized non-

4mC sequences in the data and FN signifies the non-4mC sequences, which were false-classified as 

4mC. Consequently, the receiver operating characteristic (ROC) curve was used to illustrate the 

efficiency of the model graphically. The ROC curvature could assess the projecting ability of the 

proposed model on the whole assortment of resultant values. The area under the curve was 

premeditated to check the efficiency of the model. A good classifier gave AUC = 1, and the arbitrary 

performance gave AUC = 0.5.  

3. Results and discussion 

3.1.  Composition analysis of sequences 



3354 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 3348–3363. 

The sequence pattern around the modification site is an operative stage to predict and interpret the 

genetic meanings of variations [68,69]. In this study, Two Sample Logo [70] 

(http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi) was used to examine the distribution of nucleotides 

around 4mC. Figure 2 shows that nucleotide distribution among positive and negative sequences are 

different in regions flanking the nucleotide C. Both T and C nucleotides were individually abundant at 

the upstream and downstream of the positive sequences, whereas A and G were correspondingly 

enriched at the upstream and downstream of the negative samples. Some nucleotides tend to act 

continuously along the sequences. 

For example, five sequential C nucleotides (6–10, 13–17 and 35–39) were found in positive 

sequences, while three successive A nucleotides (1–3), (8–10) and six repeated A nucleotides (36–41) 

were observed in negative sequences. Figure 2 also shows that there was significant difference between 

4mC samples and non-4mC samples (t-test, P-value < 0.05).  Above results suggested that the 

nucleotides distribution in different positions are helpful for the accurate classification of 4mC and 

non-4mC samples. 

 

Figure 2. Compositional preferences of sequence between 4mC and non-4mC sites. 

3.2.  Performance evaluation 

Based on sequence feature, we constructed a model to identify 4mC site. First, the training data 

were converted into feature vectors using feature descriptors (k-mer, composition of k-spaced nucleic 

acid pairs, enhanced nucleic acid composition, and feature fusion). Subsequently, the feature vectors 

of each encoding model were evaluated by random forest classifier using a five-fold CV test. mRMR 

with IFS method was used to pick out the best feature subset for the sake of better prediction accuracy. 

Figure 3 shows the IFS curve for searching optimal features. Table 2 recorded that performances of 

the three single-encoding models and the feature fusion model. The AUCs of single-encoding models 

(k-mer, CKSNAP, and ENAC) were 0.88, 0.80, and 0.79, respectively. The AUC of k-mer was around 

1%–4% higher than those of the other encodings. Fusion feature-based model could produce the best 

results. In this optimal model, the Acc, MCC, Sn, Sp, and AUC were 79.91%, 0.598, 81.88%, 78.12% 

and 0.908, respectively. Figure 4 also shows the AUC of random forest based fusion model on training 

dataset and independent dataset by using five-fold cross validation. The best parameters were shown 

in Table 3. 
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Figure 3. IFS curve of the optimal features. 

Table 2. Performance on the basis of single encoding model using random forest. 

Method k FS Dimension Ac (%) MCC Sn (%) Sp (%) AUC 

CKSNAP 2 No 

Yes 

48 

7 

72.28 

72.54 

0.448 

0.450 

71.09 

72.00 

70.00 

71.00 

0.787 

0.800 

ENAC 5 No 

Yes 

148 

13 

70.02 

70.98 

0.418 

0.425 

75.00 

77.00 

68.82 

67.00 

0.77.6 

0.790 

k-mer 6 No 

Yes 

Yes 

Yes 

Yes 

5460 

4088 

2426 

1221 

100 

76.92 

75.66 

77.32 

78.12 

78.57 

0.557 

0.539 

0.563 

0.568 

0.571 

77.20 

76.80 

79.20 

80.20 

80.77 

78.34 

77.34 

77.64 

78.14 

77.18 

0.873 

0.863 

0.878 

0.883 

0.887 

Fusion 

model 

 No 

Yes 

Yes 

Yes 

Yes 

Yes 

5656 

4020 

3105 

2088 

1023 

120 

77.95 

77.80 

78.30 

77.90 

79.54 

79.91 

0.567 

0.561 

0.581 

0.578 

0.596 

0.598 

80.20 

78.45 

80.25 

78.55 

81.32 

81.69 

78.10 

79.20 

79.10 

78.04 

78.40 

78.12 

0.881 

0.881 

0.893 

0.886 

0.903 

0.908 
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Figure 4. The ROC curve was evaluated on the training and independent dataset by a 5-

fold cross validation test. 

Table 3. Best parameters of the proposed model by 5-fold CV test. 

   

 

 

 

 

3.3. Performance evaluation of different ML algorithms 

k-mer, CKSNAP, ENAC and their fusion were inputted into three machine learning classifiers, 

namely Adaboost, SVM, and Naive Bayes algorithm, for comparing with random forest classifier-

based models [71]. Cross-validation is a statistical analysis method and has been widely used in 

machine learning to train and test model. A five-fold CV test was used to elevate their corresponding 

machine learning constraints on individual encoding classifiers. In five-fold CV, the benchmark dataset 

was arbitrarily separated into five groups of about equal size. Each group was individualistically tested 

by the model which trained with the remaining four groups. Therefore, the five-fold CV method was 

performed five times, and the average of the results was the final result. Finally, an ideal model was 

achieved for each classifier. The results are shown in Table 4. We noticed that fused feature did produce 

high accuracy except Adaboost (69.57%). Then, comparison between feature fusion-based models 

with single-encoding based models indicates that the multiple information was effective to achieve 

Best Parameters 

‘Bootstrap’                            True 

‘Max-depth’                             30 

‘Max-features’                            2 

‘Min-samples-leaf’                        1 

‘Min-samples-split’                        8 

‘n-estimators’                            40 
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better results. As shown in Figure 5, based on fused features, random forest model exhibits higher 

accuracy compare with other three machine learning models. Particularly, the AUC of the feature 

fusion model based on random forest classifier was 1%–10% higher than that of the other models, 

indicating that the random forest model was the best for 4mC identification. 

Table 4. Performances of all the models using different machine learning approaches. 

Classifier Method Acc (%) MCC Sn (%) Sp (%) AUC 

RF CKSNAP 72.54 0.450 72.00 71.00 0.800 

ENAC 70.98 0.425 77.00 67.00 0.790 

k-mer 78.57 0.571 80.00 77.00 0.880 

Fusion 79.91 0.598 81.88 78.12 0.908 

AB CKSNAP 69.03 0.381 69.00 69.00 0.746 

ENAC 67.02 0.342 72.40 65.40 0.736 

k-mer 70.30 0.406 70.60 70.20 0.772 

Fusion 69.57 0.391 69.20 69.70 0.766 

SVM CKSNAP 66.75 0.335 65.50 67.20 0.668 

ENAC 49.93 -0.01 59.90 49.90 0.499 

k-mer 76.74 0.536 73.60 78.50 0.767 

Fusion 77.56 0.571 77.25 77.10 0.862 

NB 

 

 

 

CKSNAP 67.09 0.342 65.70 67.60 0.744 

ENAC 68.83 0.377 68.60 68.90 0.755 

k-mer 77.61 0.554 81.80 75.50 0.854 

Fusion 78.75 0.576 81.60 77.20 0.863 

 

 

Figure 5. Matrix values of feature fusion models on four different ML algorithms. 

Performances were evaluated on the training dataset by 5-fold cross-validation test. 
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3.4.  Comparison with existing models on an independent dataset 

 

   Independent dataset test was used to examine and compare the anticipated model with already 

published models. Two existing models, i4mC-Mouse and 4mCpred-EL could provide 4mC 

identification in mouse. Therefore, the efficiency of the proposed model was assessed against that of 

the aforementioned two existed models on the same independent dataset (160 4mC, and 160 non-4mC), 

as shown in Table 5. The MCC, Sn, Sp, Acc, and AUC of the i4mC-Mouse were 0.633, 80.71%, 

82.52%, 81.61%, and 0.920, respectively. The MCC, Sn, Sp, Acc, and AUC of the 4mCpred-EL were 

0.584, 75.72%, 82.51%, 79.10% and 0.881, respectively. The Feature Fusion model could produce 

0.711, 82.00%, 89.13%, 85.41%, and 0.944, respectively for MCC, Sn, Sp, Acc, and AUC. Obviously, 

our proposed model outpaced both existing models by 2.4% and 6.3% in AUC which is shown in 

Figure 6. The good performance of the proposed model was due to the use of different and accurate 

encoding schemes and the selection of suitable classifiers. 

Table 5. Comparison between proposed model and existing methods. 

Method Acc (%) MCC Sn (%) Sp (%) References AUC 

4mCpred-EL 79.10 0.584 75.72 82.51 [19] 0.881 

i4mC-Mouse 81.61 0.633 80.71 82.52 [20] 0.920 

model_4mc 85.41 0.711 82.00 89.13 Our Work 0.944 

 

Figure 6. AUC of proposed model and two existing tools. 

4. Conclusions 

 

4mC is a DNA modification with a series of significant genetic progressions such as regulation of 
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gene expression and cell differentiation. The identification of 4mC sites in the whole genome is vital 

for understanding their genetic roles. To date, numerous predictors have been established to classify 

4mC sites in diverse species [14,17,18,72–74], but only two methods 4mCpred-EL [19] and i4mC-

Mouse [20] exist for mice. In this study, an advanced ensemble model was established to identify 4mC 

sites in the mouse genome. In the proposed model, DNA sequences were encoded using k-mer, 

CKSNAP and ENAC. Then, these encoding-features were optimized by using mRMR with IFS. On 

the basis of the top feature subset, the finest 4mC sorting model was achieved by the random forest 

classifier using a five-fold CV test. The estimated outcomes on independent data showed that the 

proposed model provided outstanding generalization capability. Further studies will aim to create a 

user-friendly web server for the projected model. Also, additional feature selection methods and 

algorithms will be implemented to further improve the efficiency to classify 4mC sites. 
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