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Abstract: N4-methylcytosine (4mC) is a kind of DNA modification which could regulate multiple
biological processes. Correctly identifying 4mC sites in genomic sequences can provide precise
knowledge about their genetic roles. This study aimed to develop an ensemble model to predict 4mC
sites in the mouse genome. In the proposed model, DNA sequences were encoded by k-mer, enhanced
nucleic acid composition and composition of k-spaced nucleic acid pairs. Subsequently, these features
were optimized by using minimum redundancy maximum relevance (mMRMR) with incremental feature
selection (IFS) and five-fold cross-validation. The obtained optimal features were inputted into random
forest classifier for discriminating 4mC from non-4mcC sites in mouse. On the independent dataset, our
model could yield the overall accuracy of 85.41%, which was approximately 3.8% - 6.3% higher than
the two existing models, i4mC-Mouse and 4mCpred-EL respectively. The data and source code of the
model can be freely download from https://github.com/linDing-groups/model 4mc.
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1. Introduction

DNA modifications, such as demethylation and methylation, play important roles in the regulation
of gene expression [1]. At the site of (5'-C-phosphate-G-3), the methylation of cytosine is an important
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epigenetic trait, which is closely related to cell proliferation and chromosomal stability protection [2,3].
5-methylcytosine (5mC), 4-methylcytosine (4mC), and 3-methylcytosine are the most common
methylations of cytosine in eukaryotic and prokaryotic genomes [4,5]. SmC is the common kind of
methylation of cytosine and, relates to many cancerous and neural diseases [6,7]. 4mC is also an
effective modification that guards its own genetic information from deterioration through restriction
enzymes [8—10]. Accurate recognition of 4mC could provide key clues for understanding its regulation
roles. Currently, several experimental methodologies, including mass spectrometry, reduced-representation
bisulfite sequencing, and single-molecule real-time sequencing, have been developed to identify 4mC
sites [11-13]. Although these methodologies are helpful in the identification of 4mC sites, they are
highly expensive when implemented on extensively large sequencing data. Thus, a bioinformatics tool
to identify 4mC sites is urgently needed. At present, some computational methods have been presented
to identify 4mC sites. In 2017, an innovative prediction model based on the confirmed 4mC dataset
was constructed to predict 4mC sites in several species [14]. Afterwards, an iterative feature
representative algorithm was designed based on the benchmark dataset of Chen et al. [15], which
helped to learn and train the features from numerous progressive models to predict 4mC sites.
1IEC4mC-SVM [16] was developed to predict the 4mC in the Escherichia coli by using light gradient
boosting machine feature selection technology. DNA4mc-LIP [17], a linear integration tool, was
developed by combining existing prediction methods to identify 4-methyl cytosine sites in multiple
species. Then, Meta-4mCpred [ 18] was developed to predict 4mC sites in the genomes of six species.
However, to date, only two predictors, i4mC-Mouse and 4mCpred-EL are available for recognizing
4mC sites in mice [19,20]. These two methods employed various features and machine learning
algorithms on the sequence data of mice derived from the Meth-SMRT database [21]. Although both
14mC-Mouse and 4mCpred-EL can produce good outcomes, there is still room for further improvement
by extracting more feature information.
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Figure 1. The workflow of the prediction of 4mC sites in mouse genome.
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To address the aforementioned issues, an ensemble model was established to predict 4mC sites
in mice. Figure 1 shows the workflow of the proposed model. First, three types of feature descriptors,
k-mer, enhanced nucleic acid composition and composition of k-spaced nucleic acid pairs, were used
as features to input into a random forest classifier [22] for identifying 4mC sites. After this, the
mRMR [23] with IFS [24,25] technique was utilized to get optimal feature vectors. Finally, the best
model was examined on an independent dataset. The outcomes on independent-samples indicated
that the proposed model outpaced the two existed predictors, i4mC-Mouse and 4mCpred-EL.

2. Materials and methods

A reliable and accurate dataset is necessary to establish a prediction model. Therefore, we obtained
the benchmark dataset from Hasan et al. work [20], and Manavalan et. al. [19]. In their study, they
excluded similar sequences using 70% as cutoff of sequence identity [26]. After this elimination
procedure, they finally obtained the benchmark dataset of 906 positive and 906 negative sequences
with length of 41bp. Subsequently, the benchmark data were separated into 80% training data and 20%
independent data to objectively estimate the efficiencies and performances of predictors, as shown in
Table 1.

Table 1. The distribution of sample numbers in benchmark dataset.

Attribute Training Data  Independent Data Total
Positive 746 160 906
Negative 746 160 906

Total 1492 320 1812

2.1.  Feature descriptors

Selecting the feature-encodings that are instructive and autonomous is an important stage in
creating machine learning based models, such as BioSeq-Analysis2.0 [27], IDP-Seq2Seq [28],
ACPred [29], iBitter-SCM [30], iTTCA-Hybrid [31], Meta-iAVP [32], PseKRAAC [33], iBLP [34]
and so on [35,36]. Expressing the DNA sequences with a mathematical manifestation is very
important in functional element identification. Zhang et al. obtained optimal nonamer composition to
represent the sequences of mMRNA [37]. Dao et al. used three types of feature encodings physiochemical
properties, binary encodings and nucleotide chemical properties [38]. Yang et al. identify
recombination site based on k-mer composition [39]. Dou et al. used k-mer nucleotide composition,
nucleotide chemical properties and pseudo dinucleotide composition to identify RNA modification
site [40]. Wei et al. identified circRNA-disease associations based on matrix factorization [41]. Zheng
et al. developed reduced amino acid clusters [42]. Lv et al. applied k-tuple nucleotide frequency
component, nucleotide pair spectrum encoding and natural vector in 3D genome [43]. Here, three types
of feature-encoding approaches were presented to describe the DNA sequences.

2.1.1.  k-mer nucleotide compositions (k-mer NC)

k-mer NC can reflect short-range nucleotide interaction of sequences [44—46]. The (N-k+1)
nucleotide residues can be obtained via a sliding window method by setting the window size of k bp
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with step size of 1 bp to examine a sequence with N bp. An arbitrary sample M with the sequence
length of N (here N is 41bp) can be characterized as

M ES Rl RZ R3 e ..Ri e "R(N—l) RN (1)

where R; signifies the nucleotide (A, T, C, and G) at the i-th position. The sequences can be transformed
into the 4*-D vector using k-mer nucleotide composition as follows

Mk — [flk—tuple 2k—tuple .ﬁk—tuple . .fﬁc—tuple]T (2)
where T denotes the transposition of the vector, and /77" symbolizes the occurrence of the i-th k-mer
nucleotide composition in the sequence. When k=1, a DNA sample can be deciphered into a 4-D vector
M, =[f(A), (G), f(C), {T)]". When k = 2, the DNA sample can be described by a 16-dimension vector.

In this study, the value of k£ was set as (1, 2, ... 6). Therefore, a sequence sample can be transformed
into a 5460 (4' + 4° + 4> + 4* + 4° + 4%) dimension vectors formulated as follows

M=M1UM2UM3UM4_ UM5UM6 (3)
2.1.2.  Enhanced nucleic acid composition (ENAC)

The ENAC calculates the nucleic acid composition based on the sequence window. It can be used
to formulate the sequence with equal length. The enhanced nucleic acid composition can be
calculated as

_ tNawini Negwin1 Ncwini NTwini NAwinz NegwinL-k+1 NTwinil—k+1
Q=[— L —CRL i AWz ol el i (4)
In Equation (4), k characterizes the size of the sliding window, N4 wi» denotes the number of nucleotide
A in the sliding window p, T € [G, C, A, T], and (p = 1, 2, ..., L-k+1). In this study, the sliding
window was set to 5. Then the feature dimension is 148.

2.1.3.  Composition of k-spaced nucleic acid pairs (CKSNAP)

The CKSNAP embodies the incidence of nucleotide pairs disconnected by any & nucleotide (k= 0,
1,2,3,45). The composition of k-spaced nucleic acid pairs feature comprises 16 nucleotide pairs [AA,
AG, ... TG, TT]. By taking k£ = 1 as an instance, composition of k-spaced nucleic acid pairs can be
specified as follows:

Q= Nasa Nasg N7+¢  NruT (5)
- e 16
NTotal ’ NTotal ’ NTotal ’ NTotal

where * signifies (A, G, C, and T), Ny*z signifies the number of nucleotides Y *Z pairs in the sequence,
and Nrw embodies the total number of single-spaced nucleotide pairs in the sequence. If the nucleic
acid pair AA appears j times in the nucleotide sequence, the composition of the nucleic acid pair AA
can be equal to j divided by the total number of 0-spaced nucleic acid pairs Nz in the nucleotide
sequence. For k=0, 1, 2, 3, 4 and 5, the value of Nryswis P —1, P -2, P— 3, P—4, P—5and P —
6 for a nucleotide sequence of length P, respectively. In this study, £ = 2 and the dimension of the
composition of k-spaced nucleic acid pairs feature was 48.
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2.1.4. Feature selection with mRMR and IFS

The insertion of noisy features might result in the unsatisfactory performance of a model. Dao et
al. proposed a two-step feature selection strategy to exclude noise [47]. Feng et al. used a mRMR
technique to reduced noise [48]. Shao et al. performed three ranking algorithms to exclude irrelevant
features [49]. Cheng et al. used MetaMap to reduced noisy features [50]. Other computational works
did the similar works [51-53]. Therefore, the selection of features is an obligatory phase to remove the
less important features and increase the productivity of a model [54]. Many feature selection and
ranking techniques are available, such as f-score , mRMR [23], MRMD [55], chi-square [56]. In this
study, mRMR with IFS [24,57] was applied to obtain the optimal feature subset. mRMR is a filter-
based selection technique [58] to achieve an optimal model. Compactness functions are described as y
and z, and P (y) and P (z) are the two corresponding probabilities. P (), z) is the possibility of
compactness, and the common information between the two functions can be demarcated as

P(y,
1572) = [[ P (,7) log somls dydz (©)

In shared information, searching a subset S with m optimum features helps to determine the feature
transmission, which majorly depends on the target {yz} class gq.
1

max d(S,q),d = 5

Zyiesl(yi' q) (l =123 m) (7)
Minimum redundancy can be defined as
. 1
minr(S, .7 = 5 Xy s 1V )) (®)

Final selection criteria can be articulated as:
max® (d,r),0 =d —r 9)

The principle of the mRMR technique is to use a typical redundancy and relevance to rank features
to acquire the best subset. Mostly, if a model was built on a high-dimensional feature subset, it can
produce overfitting and informational redundancy problems. Therefore, mRMR (minimum
redundancy maximum relevance) with the IFS (Incremental Feature Selection) [24,59] technique and
five-fold cross-validation method was applied to examine the optimal feature subset with the maximum
accuracy. We ranked all features according to the @ -values and obtained new feature vectors, which
is given in the below equation 10.

I* = [hy, hy, hs... R, )T (10)

The first feature subset comprises the feature with the highest @ -value I* = [h;]7. By adding
the second highest @-value to the first subset, the second feature subset I* = [hy, h,]T is formed and
by adding the third highest @-value to the second feature subset, the third feature subset [ =
[hy, hy, h3]T is formed [47]. The process was repeated until all the features were considered.

2.1.5. Machine learning classifier

Support vector machine is very famous and has been used in many bioinformatics tools [44-46].
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It performs binary classification on data in supervised learning. We have used a free available package
LibSVM version 3.21, which can be easily downloaded from
https://www.csie.ntu.edu.tw/~cjlin/libsvm/ to train and test the model. We have used rbf kernel
function due to its efficiency in non-linear classification. We have optimized cost and gamma
parameters of RBF kernel function by using grid search with searching space [27,2°] for cost and
[2712,21] for gamma. Naive Bayes classifier has been widely used in bioinformatics due to its simplicity
and better performance [60]. It is a classification technique and totally depends on Bayes theorem. Ada
boost classifier is also very famous and has been widely used in bioinformatics [61]. It is an ensemble
technique and combines various classifiers to enhance the accuracy. The main idea of this is to set the
classifiers weights and trained the data in each iteration. We implemented these classifiers in Weka
(version 3.8.4) [62]. Random forest is a combined knowledge technique extensively applied in
bioinformatics [63,64]. The underlying principle is to combine several weak classifiers. The outcome
is attained by the voting process therefore, the outcome of the model has higher exactness and
simplification. The model was constructed using a random forest algorithm [22] and the complete
procedure is clearly described in [65]. Scikit - learn package (v - 0.22.1) [66,67] was used to execute
the random forest classifiers. Firstly, we used randomized search CV and then grid search CV to tune
hyperparameter. The best tuned parameters of the proposed model are given in Table 3.

2.1.6. Evaluation metrics

Matthews correlation coefficient (MCC), accuracy (Acc), sensitivity (Sn) and specificity (Sp)
were used in this study to check the overall efficiency of the model defined as Equation 11.

— TP
Sn =
TP+ FN

Sp = —= (11)

TN + FP

TP+ TN
TP +FP+ TN + FN

Acc =

TP X TN — FP XFN
_ MCC = (TP + FN) x (TN +FN) x (TP + FP) X (TN + FP)

where TP represents the correctly identified 4mC sequences in benchmark data and FP signifies the
4mC sequences false-classified as non-4mC. Likewise, TN represents the correctly recognized non-
4mC sequences in the data and FN signifies the non-4mC sequences, which were false-classified as
4mC. Consequently, the receiver operating characteristic (ROC) curve was used to illustrate the
efficiency of the model graphically. The ROC curvature could assess the projecting ability of the
proposed model on the whole assortment of resultant values. The area under the curve was
premeditated to check the efficiency of the model. A good classifier gave AUC = I, and the arbitrary
performance gave AUC = (.5.

3. Results and discussion

3.1.  Composition analysis of sequences
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The sequence pattern around the modification site is an operative stage to predict and interpret the
genetic meanings of variations [68,69]. In this study, Two Sample Logo [70]
(http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi) was used to examine the distribution of nucleotides
around 4mC. Figure 2 shows that nucleotide distribution among positive and negative sequences are
different in regions flanking the nucleotide C. Both T and C nucleotides were individually abundant at
the upstream and downstream of the positive sequences, whereas A and G were correspondingly
enriched at the upstream and downstream of the negative samples. Some nucleotides tend to act
continuously along the sequences.

For example, five sequential C nucleotides (6—10, 13—17 and 35-39) were found in positive
sequences, while three successive A nucleotides (1-3), (8—10) and six repeated A nucleotides (36—41)
were observed in negative sequences. Figure 2 also shows that there was significant difference between
4mC samples and non-4mC samples (#-test, P-value < 0.05). Above results suggested that the
nucleotides distribution in different positions are helpful for the accurate classification of 4mC and
non-4mC samples.

16.6%_

enriched

TN TN OO O - NM TN DN OGO Nﬂ'ﬂ'ﬂlﬂl‘-ﬂﬂﬂ“ﬂﬁﬂﬂlﬂb—ﬂﬂ%!‘
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depleted

16.6%

Figure 2. Compositional preferences of sequence between 4mC and non-4mcC sites.

3.2.  Performance evaluation

Based on sequence feature, we constructed a model to identify 4mC site. First, the training data
were converted into feature vectors using feature descriptors (k-mer, composition of k-spaced nucleic
acid pairs, enhanced nucleic acid composition, and feature fusion). Subsequently, the feature vectors
of each encoding model were evaluated by random forest classifier using a five-fold CV test. mRMR
with IFS method was used to pick out the best feature subset for the sake of better prediction accuracy.
Figure 3 shows the IFS curve for searching optimal features. Table 2 recorded that performances of
the three single-encoding models and the feature fusion model. The AUCs of single-encoding models
(k-mer, CKSNAP, and ENAC) were 0.88, 0.80, and 0.79, respectively. The AUC of k-mer was around
1%—4% higher than those of the other encodings. Fusion feature-based model could produce the best
results. In this optimal model, the Acc, MCC, Sn, Sp, and AUC were 79.91%, 0.598, 81.88%, 78.12%
and 0.908, respectively. Figure 4 also shows the AUC of random forest based fusion model on training
dataset and independent dataset by using five-fold cross validation. The best parameters were shown
in Table 3.
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Figure 3. IFS curve of the optimal features.

Method k FS Dimension  Ac (%) MCC Sn (%)  Sp (%) AUC
CKSNAP 2 No 48 72.28 0.448 71.09 70.00 0.787
Yes 7 72.54 0.450 72.00 71.00 0.800

ENAC 5 No 148 70.02 0.418 75.00 68.82 0.77.6
Yes 13 70.98 0.425 77.00 67.00 0.790

k-mer 6 No 5460 76.92 0.557 77.20 78.34 0.873
Yes 4088 75.66 0.539 76.80 77.34 0.863

Yes 2426 77.32 0.563 79.20 77.64 0.878

Yes 1221 78.12 0.568 80.20 78.14 0.883

Yes 100 78.57 0.571 80.77 77.18 0.887

Fusion No 5656 77.95 0.567 80.20 78.10 0.881
model Yes 4020 77.80 0.561 78.45 79.20 0.881
Yes 3105 78.30 0.581 80.25 79.10 0.893

Yes 2088 77.90 0.578 78.55 78.04 0.886

Yes 1023 79.54 0.596 81.32 78.40 0.903

Yes 120 79.91 0.598 81.69 78.12 0.908
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Figure 4. The ROC curve was evaluated on the training and independent dataset by a 5-

fold cross validation test.

Table 3. Best parameters of the proposed model by 5-fold CV test.

1-Specificity

Best Parameters

‘Bootstrap’ True
‘Max-depth’ 30
‘Max-features’ 2
‘Min-samples-leaf’ 1
‘Min-samples-split’ 8
‘n-estimators’ 40

3.3. Performance evaluation of different ML algorithms

k-mer, CKSNAP, ENAC and their fusion were inputted into three machine learning classifiers,
namely Adaboost, SVM, and Naive Bayes algorithm, for comparing with random forest classifier-
based models [71]. Cross-validation is a statistical analysis method and has been widely used in
machine learning to train and test model. A five-fold CV test was used to elevate their corresponding
machine learning constraints on individual encoding classifiers. In five-fold CV, the benchmark dataset
was arbitrarily separated into five groups of about equal size. Each group was individualistically tested
by the model which trained with the remaining four groups. Therefore, the five-fold CV method was
performed five times, and the average of the results was the final result. Finally, an ideal model was
achieved for each classifier. The results are shown in Table 4. We noticed that fused feature did produce
high accuracy except Adaboost (69.57%). Then, comparison between feature fusion-based models
with single-encoding based models indicates that the multiple information was effective to achieve
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better results. As shown in Figure 5, based on fused features, random forest model exhibits higher
accuracy compare with other three machine learning models. Particularly, the AUC of the feature
fusion model based on random forest classifier was 1%—10% higher than that of the other models,
indicating that the random forest model was the best for 4mC identification.

Table 4. Performances of all the models using different machine learning approaches.

Classifier Method Acc (%) MCC Sn (%)  Sp (%) AUC
RF CKSNAP 72.54 0.450 72.00 71.00 0.800
ENAC 70.98 0.425 77.00 67.00 0.790
k-mer 78.57 0.571 80.00 77.00 0.880
Fusion 79.91 0.598 81.88 78.12 0.908
AB CKSNAP 69.03 0.381 69.00 69.00 0.746
ENAC 67.02 0.342 72.40 65.40 0.736
k-mer 70.30 0.406 70.60 70.20 0.772
Fusion 69.57 0.391 69.20 69.70 0.766
SVM CKSNAP 66.75 0.335 65.50 67.20 0.668
ENAC 49.93 -0.01 59.90 49.90 0.499
k-mer 76.74 0.536 73.60 78.50 0.767
Fusion 77.56 0.571 77.25 77.10 0.862
NB CKSNAP 67.09 0.342 65.70 67.60 0.744
ENAC 68.83 0.377 68.60 68.90 0.755
k-mer 77.61 0.554 81.80 75.50 0.854
Fusion 78.75 0.576 81.60 77.20 0.863
1
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Figure 5. Matrix values of feature fusion models on four different ML algorithms.
Performances were evaluated on the training dataset by 5-fold cross-validation test.
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3.4. Comparison with existing models on an independent dataset

Independent dataset test was used to examine and compare the anticipated model with already
published models. Two existing models, 14mC-Mouse and 4mCpred-EL could provide 4mC
identification in mouse. Therefore, the efficiency of the proposed model was assessed against that of
the aforementioned two existed models on the same independent dataset (160 4mC, and 160 non-4mC),
as shown in Table 5. The MCC, Sn, Sp, Acc, and AUC of the i4mC-Mouse were 0.633, 80.71%,
82.52%, 81.61%, and 0.920, respectively. The MCC, Sn, Sp, Acc, and AUC of the 4mCpred-EL were
0.584, 75.72%, 82.51%, 79.10% and 0.881, respectively. The Feature Fusion model could produce
0.711, 82.00%, 89.13%, 85.41%, and 0.944, respectively for MCC, Sn, Sp, Acc, and AUC. Obviously,
our proposed model outpaced both existing models by 2.4% and 6.3% in AUC which is shown in
Figure 6. The good performance of the proposed model was due to the use of different and accurate
encoding schemes and the selection of suitable classifiers.

Table 5. Comparison between proposed model and existing methods.

Method Acc (%) MCC Sn (%) Sp (%) References AUC
4mCpred-EL 79.10 0.584 75.72 82.51 [19] 0.881
i4mC-Mouse 81.61 0.633 80.71 82.52 [20] 0.920
model_4mc 85.41 0.711 82.00 89.13 Our Work 0.944
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Figure 6. AUC of proposed model and two existing tools.

4. Conclusions

4mC is a DNA modification with a series of significant genetic progressions such as regulation of
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gene expression and cell differentiation. The identification of 4mC sites in the whole genome is vital
for understanding their genetic roles. To date, numerous predictors have been established to classify
4mC sites in diverse species [14,17,18,72—74], but only two methods 4mCpred-EL [19] and i4mC-
Mouse [20] exist for mice. In this study, an advanced ensemble model was established to identify 4mC
sites in the mouse genome. In the proposed model, DNA sequences were encoded using k-mer,
CKSNAP and ENAC. Then, these encoding-features were optimized by using mRMR with IFS. On
the basis of the top feature subset, the finest 4mC sorting model was achieved by the random forest
classifier using a five-fold CV test. The estimated outcomes on independent data showed that the
proposed model provided outstanding generalization capability. Further studies will aim to create a
user-friendly web server for the projected model. Also, additional feature selection methods and
algorithms will be implemented to further improve the efficiency to classify 4mC sites.

Acknowledgments

This work has been supported by the China Postdoctoral Science Foundation (2020M673188).

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. D.Liu, G.Li,Y. Zuo, Function determinants of TET proteins: The arrangements of sequence motifs
with specific codes, Brief Bioinform., 20 (2019), 1826—-1835.

2. A.Jeltsch, R. Z. Jurkowska, New concepts in DNA methylation, Trends Biochem. Sci., 39 (2014),
310-318.

3. D. Schiibeler, Function and information content of DNA methylation, Nature, 517 (2015), 321-326.

4. B. M. Davis, M. C. Chao, M. K. Waldor, Entering the era of bacterial epigenomics with single
molecule real time DNA sequencing, Curr. Opin. Microbiol., 16 (2013), 192—-198.

5. T. P. Meakin, N. Pillay, S. Beck, 3-methylcytosine in cancer: an underappreciated methyl lesion?
Epigenomics, 8 (2016), 451-454.

6. K. D. Robertson, DNA methylation and human disease, Nat. Rev. Genet., 6 (2005 ), 597-610.

7. M. M. Suzuki, A. Bird, DNA methylation landscapes: provocative insights from epigenomics, Nat.
Rev. Genet., 9 (2008), 465-476.

8. H. P. Schweizer, Bacterial genetics: Past achievements, present state of the field, and future
challenges, Biotechniques, 44 (2008), 633—-641.

9. L.M. Iyer, S. Abhiman, L. Aravind, Natural history of eukaryotic DNA methylation systems, Prog.
Mol. Biol. Transl. Sci., 101 (2011), 25-104.

10. W. He, C. Jia, Q. Zou, 4mCPred: Machine learning methods for DNA N4-methylcytosine sites
prediction, Bioinformatics, 35 (2019), 593—-601.

11. B. A. Flusberg, D. R. Webster, J. H. Lee, K. J. Travers, E. C. Olivares, T. A. Clark, et al., Direct
detection of DNA methylation during single-molecule, real-time sequencing, Nat. Methods, 7T
(2010), 461-465.

12. R. Doherty, C. Couldrey, Exploring genome wide bisulfite sequencing for DNA methylation
analysis in livestock: a technical assessment, Front. Genet., 5 (2014), 126.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3348-3363.



3360

13.J. Boch, U. Bonas, Xanthomonas AvrBs3 family-type III effectors: discovery and function, Annu.
Rev. Phytopathol., 48 (2010), 419—-436.

14. W. Chen, H. Yang, P. Feng, H. Ding, H. Lin, iDNA4mC: identifying DNA N4-methylcytosine sites
based on nucleotide chemical properties, Bioinformatics, 33 (2017), 3518-3523.

15. L. Wei, R. Su, S. Luan, Z. Liao, B. Manavalan, Q. Zou, et al., Iterative feature representations
improve N4-methylcytosine site prediction, Bioinformatics, 35 (2019), 4930-4937.

16. Z. Lv, D. Wang, H. Ding, B. Zhong, L. Xu, Escherichia coli DNA N-4-methycytosine site
prediction accuracy improved by light gradient boosting machine feature selection technology,
IEEE Access, 8 (2020), 14851-14859.

17. Q. Tang, J. Kang, J. Yuan, H. Tang, X. Li, H. Lin, et al., DNA4mC-LIP: A linear integration method
to identify N4-methylcytosine site in multiple species, Bioinformatics, 36 (2020), 3327-3335.

18. B. Manavalan, S. Basith, T. H. Shin, L. Wei, G. Lee, Meta-4mCpred: A sequence-based meta-
predictor for accurate DNA 4mC site prediction using effective feature representation, Mol. Ther.
Nucleic Acids, 16 (2019), 733-744.

19. B. Manavalan, S. Basith, T. H. Shin, D. Y. Lee, L. Wei, G. Lee, 4mCpred-EL: An ensemble learning
framework for identification of DNA N4-methylcytosine sites in the mouse genome, Cells, 8
(2019), 1332.

20. M. M. Hasan, B. Manavalan, W. Shoombuatong, M. S. Khatun, H. Kurata, i4mC-Mouse: Improved
identification of DNA N4-methylcytosine sites in the mouse genome using multiple encoding
schemes, Comput. Struct. Biotechnol. J., 18 (2020), 906-912.

21.P. Ye, Y. Luan, K. Chen, Y. Liu, C. Xiao, Z. Xie, MethSMRT: An integrative database for DNA
N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing,
Nucleic Acids Res., (2016), DOI: 10.1093/nar/gkw950.

22. A. Liaw, M. Wiener, Classification and regression by random forest, R. News, 2 (2002), 18-22.

23.N. D. Jay, S. P. Cavanagh, C. Olsen, N. E. Hachem, G. Bontempi, B. H. Kains, mRMRe: An R
package for parallelized mRMR ensemble feature selection, Bioinformatics, 29 (2013), 2365-2368.

24. W. Yang, X. J. Zhu, J. Huang, H. Ding, H. Lin, A brief survey of machine learning methods in
protein sub-golgi localization, Curr. Bioinform., 14 (2019), 234-240.

25. K. Liu, W. Chen, iMRM: A platform for simultaneously identifying multiple kinds of RNA
modifications, Bioinformatics, 36 (2020), 3336-3342.

26. L. Fu, B. Niu, Z. Zhu, S. Wu, W. Li, CD-HIT: Accelerated for clustering the next-generation
sequencing data, Bioinformatics, 28 (2012), 3150.

27. B. Liu, X. Gao, H. Zhang, BioSeq-Analysis2.0: An updated platform for analyzing DNA, RNA,
and protein sequences at sequence level and residue level based on machine learning approaches,
Nucleic Acids Res., 47 (2019), e127.

28.Y. J. Tang, Y. H. Pang, B. Liu, IDP-Seq2Seq: Identification of intrinsically disordered Regions
based on sequence to sequence learning,  Bioinformaitcs, (2020), DOI:
10.1093/bioinformatics/btaa667.

29. N. Schaduangrat, C. Nantasenamat, V. Prachayasittikul, W. Shoombuatong, ACPred: A computational
tool for the prediction and analysis of anticancer peptides, Molecules, 24 (2019), 1973.

30. P. Charoenkwan, J. Yana, N. Schaduangrat, C. Nantasenamat, M. M. Hasan, W. Shoombuatong,
iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with
propensity scores of dipeptides, Genomics, 112 (2020), 2813-2822.

31. P. Charoenkwan, C. Nantasenamat, M. M. Hasan, W. Shoombuatong, iTTCA-Hybrid: Improved

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3348-3363.



3361

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

and robust identification of tumor T cell antigens by utilizing hybrid feature representation, Anal.
Biochem., 599 (2020), 113747.

N. Schaduangrat, C. Nantasenamat, V. Prachayasittikul, W. Shoombuatong, Meta-iAVP: A
sequence-based meta-predictor for improving the prediction of antiviral peptides using effective
feature representation, Int. J. Mol. Sci., 20 (2019), 5743.

P. Charoenkwan, C. Nantasenamat, M. M. Hasan, W. Shoombuatong, Meta-iPVP: A sequence-
based meta-predictor for improving the prediction of phage virion proteins using effective feature
representation, J. Comput. Aided Mol. Des., 34 (2020), 1105-1116.

V. Laengsri, C. Nantasenamat, N. Schaduangrat, P. Nuchnoi, V. Prachayasittikul, W.
Shoombuatong, TargetAntiAngio: A sequence-based tool for the prediction and analysis of anti-
angiogenic peptides, Int. J. Mol. Sci., 20 (2019), 2950.

Y. Zuo, Y. Li, Y. Chen, G. Li, Z. Yan, L. Yang, PseKRAAC: A flexible web server for generating
pseudo k-tuple reduced amino acids composition, Bioinformatics., 33 (2017), 122—-124.

D. Zhang, H. D. Chen, H. Zulfiqar, S. S. Yuan, Q. L. Huang, Z. Y. Zhang, et al., iBLP: An xgboost-
based predictor for identifying bioluminescent proteins, Comput. Math. Methods Med., 2021
(2021), 15.

Z.Y.Zhang, Y. H. Yang, H. Ding, D. Wang, W. Chen, H. Lin, Design powerful predictor for mRNA
subcellular location prediction in homo sapiens, Brief Bioinform., 22 (2020), 526-535.

F. Y. Dao, H. Lv, Y. H. Yang, H. Zulfiqar, H. Gao, H. Lin, Computational identification of N6-
methyladenosine sites in multiple tissues of mammals, Comput. Struct. Biotechnol. J., 18 (2020),
1084-1091.

H. Yang, W. Yang, F. Y. Dao, H. Lv, H. Ding, W. Chen, et al., A comparison and assessment of
computational method for identifying recombination hotspots in Saccharomyces cerevisiae, Brief
Bioinform., 21 (2020), 1568—1580.

L.J. Dou, X. Li, H. Ding, L. Xu, H. Xiang, Is there any sequence feature in the RNA pseudouridine
modification prediction problem? Mol. Ther. Nucleic Acids., 19 (2020), 293-303.

H. Wei, B. Liu, iCircDA-MF: Identification of circRNA-disease associations based on matrix
factorization, Brief Bioinform., 21 (2020), 1356—-1367.

L. Zheng, D. Liu, W. Yang, L. Yang, Y. Zuo, RaacLogo: a new sequence logo generator by using
reduced amino acid clusters, Brief Bioinform., (2020), DOI: 10.1093/bib/bbaa096.

H. Lv, F. Y. Dao, H. Zulfigar, W. Su, H. Ding, L. Liu, et al., A sequence-based deep learning
approach to predict CTCF-mediated chromatin loop, Brief Bioinform., (2021), DOI:
10.1093/bib/bbab031.

F. Y. Dao, H. Lv, H. Zulfiqar, H. Yang, W. Su, H. Gao, et al., A computational platform to identify
origins of replication sites in eukaryotes, Brief Bioinform., 22 (2020), 1940-1950.

B. Liu, BioSeq-Analysis: A platform for DNA, RNA, and protein sequence analysis based on
machine learning approaches, Brief Bioinform., 20 (2019), 1280—-1294.

L. Zheng, S. Huang, N. Mu, H. Zhang, J. Zhang, Y. Chang, et al., RAACBook: A web server of
reduced amino acid alphabet for sequence-dependent inference by using Chou's five-step rule,
Database-Oxford., 2019 (2019), baz131.

F. Y. Dao, H. Lv, F. Wang, C. Q. Feng, H. Ding, W. Chen, et al., Identify origin of replication in
saccharomyces cerevisiae using two-step feature selection technique, Bioinformatics, 35 (2019),
2075-2083.

C.Q.Feng, Z.Y. Zhang, X. J. Zhu, Y. Lin, W. Chen, H. Tang, et al., iTerm-PseKNC: A sequence-based

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3348-3363.



3362

tool for predicting bacterial transcriptional terminators, Bioinformatics, 35 (2019), 1469—-1477.

49. J. Shao, K. Yan, B. Liu, FoldRec-C2C: protein fold recognition by combining cluster-to-cluster
model and protein similarity network, Brief Bioinform., (2020), DOI: 10.1093/bib/bbaal44.

50. L. Cheng, Computational and biological methods for gene therapy, Curr. Gene Ther., 19 (2019),
210-210.

51. L. Cheng, H. Zhao, P. Wang, W. Zhou, M. Luo, T. Li, et al., Computational methods for identifying
similar diseases, Mol. Ther. Nucleic Acids., 18 (2019), 590—604.

52. L. Cheng, C. Qi, H. Zhuang, T. Fu, X. Zhang, gutMDisorder: A comprehensive database for
dysbiosis of the gut microbiota in disorders and interventions, Nucleic Acids Res., 48 (2020),
D554-D560.

53. H. Zulfigar, M. S. Masoud, H. Yang, S. G. Han, C. Y. Wu, H. Lin, Screening of prospective plant
compounds as HIR and CLIR inhibitors and its antiallergic efficacy through molecular docking
approach, Comput. Math. Methods Med., 2021 (2021), 9.

54. X. J. Zhu, C. Q. Feng, H. Y. Lai, W. Chen, L. Hao, Predicting protein structural classes for low-
similarity sequences by evaluating different features, Knowl. Based Syst., 163 (2019), 787-793.

55. Q. Zou, J. Zeng, L. Cao, R. Ji, A novel features ranking metric with application to scalable visual
and bioinformatics data classification, Neurocomputing, 173 (2016), 346-354.

56. N. Rachburee, W. Punlumjeak, A comparison of feature selection approach between greedy, ig-
ratio, chi-square, and mRMR in educational mining, in 2015 7th International Conference on
Information Technology and Electrical Engineering (ICITEE), IEEE, (2015), 420-424.

57.Z.M. Zhang, J. S. Wang, H. Zulfiqar, H. Lv, F. Y. Dao, H. Lin, Early diagnosis of pancreatic ductal
adenocarcinoma by combining relative expression orderings with machine learning method, Front.
Cell Dev. Biol., 8 (2020), 1076.

58. H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy, /EEE Trans. Pattern Anal. Mach. Intell., 27
(2005), 1226—-1238.

59.J. X. Tan, S. H. Li, Z. M. Zhang, C. X. Chen, W. Chen, H. Tang, et al., Identification of hormone
binding proteins based on machine learning methods, Math. Biosci. Eng., 16 (2019), 2466-2480.

60. H. Lv, Z. M. Zhang, S. H. Li, J. X. Tan, W. Chen, H. Lin, Evaluation of different computational
methods on 5-methylcytosine sites identification, Brief Bioinform., 21 (2020), 982-995.

61. X. Li, L. Wang, E. Sung, AdaBoost with svm-based component classifiers, Eng. Appl. Artif. Intell.,
21 (2008), 785-795.

62. E. Frank, M. Hall, L. Trigg, G. Holmes, 1. H. Witten, Data mining in bioinformatics using weka,
Bioinformatics., 20 (2004), 2479-2481.

63. X. Ru, L. Li, Q. Zou, Incorporating distance-based top-n-gram and random forest to identify
electron transport proteins, J. Proteom. Res., 18 (2019), 2931-2939.

64. Z. Lv, J. Zhang, H. Ding, Q. Zou, RF-PseU: A random forest predictor for RNA pseudouridine
sites, Front. Bioeng. Biotechnol., 8 (2020), 134.

65. L. Breiman, Random forests, Mach Learn., 45 (2001), 5-32.

66. A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi, et al., Machine
learning for neuroimaging with scikit-learn, Front. Neuroinform., 8 (2014),14.

67. P. Liang, W. Yang, X. Chen, C. Long, L. Zheng, H. Li, et al., Machine learning of single-cell
transcriptome highly identifies mRNA signature by comparing f-score selection with DGE analysis,
Mol. Ther. Nucleic Acids., 20 (2020), 155-163.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3348-3363.



3363

68. Z. D. Smith, A. Meissner, DNA methylation: Roles in mammalian development, Nat. Rev. Genet.,
14 (2013), 204-220.

69. K. Liu, W. Chen, H. Lin, XG-PseU: An extreme gradient boosting based method for identifying
pseudouridine sites, Mol. Genet. Genom., 295 (2020), 13-21.

70. V. Vacic, L. M. lakoucheva, P. Radivojac, Two sample logo: a graphical representation of the
differences between two sets of sequence alignments, Bioinformatics., 22 (2006), 1536—1537.
71.Y. Zhang, Y. Li, R. Wang, J. Lu, X. Ma, M. Qiu, PSAC: Proactive sequence-aware content caching

via deep learning at the network edge, IEEE Trans. Netw. Sci. Eng., 7 (2020), 2145-2154.

72.H. Lv, F. Y. Dao, D. Zhang, Z. X. Guan, H. Yang, W. Su, et al., iDNA-MS: An integrated
computational tool for detecting DNA modification sites in multiple genomes, iScience, 23 (2020),
100991.

73. H. Xu, P. Jia, Z. Zhao, Deep4mC: Systematic assessment and computational prediction for DNA
N4-methylcytosine sites by deep learning, Brief Bioinform., (2020), DOI: 10.1093/bib/bbaa099.

74. Q. Liu, J. Chen, Y. Wang, S. Li, C. Jia, J. song, et al., DeepTorrent: A deep learning-based approach
for predicting DNA N4-methylcytosine sites, Brief Bioinform., (2020), DOI:10.1093/bib/bbaal24.

ﬁﬁ_éﬂ ©2021 the Author(s), licensee AIMS Press. This is an open access
aims AIMS Press article distributed under the terms of the Creative Commons
'l Attribution License (http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3348-3363.



