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Abstract: A huge variety of phenomena are governed by ordinary differential equations (ODEs) and
partial differential equations (PDEs). However, there is no general method to solve them. Obtaining
solutions for differential equations is one of the greatest problem for both applied mathematics and
physics. Multiple integration methods have been developed to the day to solve particular types of
differential equations, specially those focused on physical or biological phenomena. In this work,
we review several applications of the Lie method to obtain solutions of reaction-diffusion equations
describing cell dynamics and tumour invasion.
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1. Introduction

Reaction-diffusion equations are a fundamental part in modelling the spread of biological popula-
tions. These equations were proposed in 1937 in papers by Fisher [1] and Kolmogorov et al. [2]. They
are based on the following equation:

ut = D uxx + ρu(1 − u). (1.1)

This equation represents the change of the amount of cells u = u(x, t) in time t and space x, for a
diffusion term D ∈ R and a proliferation rate ρ ∈ R. The so-called Fisher’s Equation (1.1) has been
extensively used in population dynamics studies [3, 4] and has been deeply analysed in the literature
[5, 6] in relation to their solutions and travelling waves. This equation has also been studied in other
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fields from mathematical biology in general [7–10]. The Fisher’s Equation and its extensions are a
family of reaction-diffusion models arising prominently also in cancer modelling [11,12], applications
to brain tumour dynamics [13], in the description of propagating crystallisation/polymerisation fronts
[14], chemical kinetics [15], geochemistry [16] and many others fields. We have considered then to
review the use of a mathematical tool, the so-called Lie symmetries, on mathematical models based on
reaction-diffusion equations. Considering the importance and application of several of these equations,
we have focused on those applied to cellular dynamics and tumour invasion characteristics.

Given the difficulty in obtaining exact solutions to many of these equations, mathematicians and
researchers have often resorted to numerical analysis in order to obtain insights into the dynamical
properties of a system. This type of analysis, however, lacks the analytic understanding that exact
solutions can provide. This is particularly true for the case of non-linear physical phenomena, which
is not as interpretable as linear processes. One of the most extended methods for retrieving exact
solutions is the Lie symmetries analysis of differential equations, also called group analysis. The Lie
classical method is employed to obtain reductions of a system to ODEs and, if possible, families of
exact solutions. It is based on the pioneering work of Lie, and gained popularity in recent decades due
to the work of Birkhoff, Sedov and Ovsiannikov [17]. Nowadays, this method is widely employed in
several branches of science, mainly belonging to physics and mathematics. Examples of the use of the
Lie classical method to find exact solutions can be found in [18–21].

Processes involving reaction and diffusion may require a generalization of the Fisher’s equation
in order to be appropriately modeled. These generalizations can also be studied by means of Lie
symmetries. For example, the invariance of the generalised Fisher’s Equation

ut = (A(u)ux)x + B(u)ux + C(u). (1.2)

was first studied by S. Lie for the case A = 1, B = C = 0 (classical heat equation), in terms of maximal
invariance algebra [22]. The general non-linear heat equation (B = C = 0) was classified with Lie
symmetries by Ovsiannikov [23]. The case with a source term (B = 0) was completely described
in [24], and the Lie symmetries of the full equation were later described in [25].
In this work, we focus on generalisations of Fisher’s equations with application to biological systems.
In particular, we describe the use of Lie symmetry groups to obtain analytic solutions related to tumour
dynamics. For instance, Lie symmetries of the density dependent reaction-diffusion equation

ut =
(
g(u)ux

)
x + f (u), (1.3)

were calculated in [26]. The optimal system of one-dimensional subalgebras of the invariant equa-
tion was obtained, together with reductions and exact solutions. Here, f (u) is an arbitrary function
representing proliferation. The diffusion coefficient g(u) depends on the variable u, with independent
variables x and t. Symmetries of the differential equations were also used to obtain non-trivial con-
servation laws [27]. An extension of this equation to a non-linear multidimensional reaction-diffusion
system with variables diffusivities was also considered in [28].

Including an explicit space dependence c(x) in the diffusion coefficient yields a generalised Fisher’s
equation of the form

ut =
(
g(u)c(x)ux

)
x + f (u). (1.4)

Reductions and symmetries of this equation were studied in [29]. This equation arises in a broad range
of biological processes [6] and specifically in cancer modeling problems [30]. For example, [11] used
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this equation to study the motility of cells in the complex geometry of the brain, distinguishing between
gray and white matter with different diffusion coefficients. This was also analysed in [13] in order to
describe malignancy of gliomas as an invasion of grey matter.

Some variations of these generalised equations may involve the choice of an specific system of
coordinates. For example, a particular Fisher’s equation with space-dependent diffusion coefficient in
cylindrical coordinates is given by

ut =
1
x
(
xg(u)ux

)
x + f (u), (1.5)

Again, f (u) is an arbitrary function and g(u) represents the diffusion coefficient dependent on variable
u, with independent variables x and t. In this case, x is the radial variable with assumption of radial
symmetry. Exact solutions for this equation were obtained in [31] by means of symmetry analysis.
Particular cases of functions f and g have been considered by Bokhari et al. [32]. This equation also
appears in the context of heat conduction problems. An example of the application of Lie symmetries
with a power law source term and rectangular, cylindrical or spherical coordinates can be found in [33].

The spatial dependence of the previous equation can be generalised again as follows:

ut =
1

c(x)
(
c(x)g(u)ux

)
x + f (u), (1.6)

Now the function c(x) accounts for both spatial heterogeneity of the medium and coordinate trans-
formation, with f , g and the independent variables having the same meaning as Eq. (1.5). Lie point
symmetries of this equation were studied in [34]. This equation is particularly suited for studies of
tumour growth, as shown by the many works that consider particular cases of functions f (u), g(u)
and c(x) [7, 11–13]. Further works related to the general equation include the derivation of non-trivial
conservation laws [35] and conservation laws associated to the symmetries for g = k fu and f (u), c(x)
arbitrary functions and k ∈ R [36]. Symmetry reductions and exact solutions obtained with classical
and potential symmetries can be found in [37].

One last equation that we will consider here is inspired by a recent proposition that mutations con-
ferring proliferative advantage drive super-exponential growth in tumours [38]. Given that mutations
are more likely to occur as tumour size increases, this can be mathematically implemented by including
a size-dependent term in the proliferation rate:

ut = uxx +

(
1 + δ

∫
Rn

u dx
)

u (1 − u), n = 1, 2, 3, (1.7)

where the logistic proliferation function incorporates a new term describing the total mass of the tumour
and δ ∈ R. Since the integral term only depends on t, we can simplify this equation to

ut = uxx + F(t) u (1 − u), (1.8)

with F(t) representing the way in which tumour size influences proliferation. The possibility to derive
biologically meaningful exact solutions of this equation was explored in [39].

Considering these particular equations, the structure of this Review is as follows: Firstly, the Lie
classical method for the derivation of solutions for differential equations is described in Section 2.
Secondly, we apply this method to obtain a group classification for Eqs. (1.3), (1.4), (1.5), (1.6) and
(1.8) in Section 3. Finally, in Section 4 we focus on cases with special biological meaning, and then
obtain some exact solutions.
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2. Lie symmetries and reductions

Lie classical method is used to determine point symmetries of ordinary and partial differential equa-
tions. This group of transformations are able to map solutions of the equation into one another. Lie
symmetry of Eqs. (1.3), (1.5), (1.4), (1.8) or (1.6) will be given by generators of the form

v = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u. (2.1)

These equations would admit a infinitesimal point symmetry whenever

pr(2)(v)(∆) = 0 when ∆ = 0, (2.2)

where ∆ = ∆i, for i = 1, ...5, are each of the Eqs. in study (1.3), (1.4), (1.5), (1.6) or (1.8):

∆1 = ut −
(
g(u)ux

)
x − f (u), (2.3a)

∆2 = ut −
(
g(u)c(x)ux

)
x − f (u), (2.3b)

∆3 = ut −
1
x
(
xg(u)ux

)
x − f (u), (2.3c)

∆4 = ut −
1

c(x)
(
c(x)g(u)ux

)
x − f (u), (2.3d)

∆5 = ut − uxx − F(t) u (1 − u), (2.3e)

and pr(2)(v) is the second prolongation of the vector field v:

pr(2)(v) = v + φt∂ut + φx∂ux + φxx∂uxx (2.4)

where
φJ(x, t, u(2)) = DJ (η − τut − ξux) + τuJt + ξuJx (2.5)

with J = ( j1, . . . , jk) , 1 ≤ jk ≤ 2 and 1 ≤ k ≤ 2 and u(2) denotes the sets of partial derivatives up to
second order [17].

The transformation group associated to the Lie symmetry generator (2.1) with group parameter ε is
given by

(t, x, u)→ (t∗, x∗, u∗) = exp(εv)(t, x, u) (2.6)

where the identity transformation is

(t∗, x∗, u∗)|ε=0 = (t, x, u). (2.7)

We can solve then the system

∂t∗

∂ε
= τ(t∗, x∗, u∗),

∂x∗

∂ε
= ξ(t∗, x∗, u∗),

∂u∗

∂ε
= η(t∗, x∗, u∗), (2.8)

with initial conditions
t∗|ε=0 = t, x∗|ε=0 = x, u∗|ε=0 = u. (2.9)
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We can then apply the symmetry (2.1) on a solution u(t, x) to any of the Eqs. (2.3). We denote this
by u = u(t, x)→ u∗ = u∗(t, x), this is, solution u is mapped into u∗, with

u∗ = u + ε
(
η(t, x, u) − τ(t, x, u)ut − ξ(t, x, u)ux

)
+ O(ε2). (2.10)

The so-called characteristic form of the infinitesimal point symmetry (2.1) is defined by

ṽ = P ∂u, P = η − τ ut − ξ ux, (2.11)

Applying the invariance condition from Eq. (2.2) it yields

pr(2)(ṽ)(∆) = 0 when ∆ = 0 (2.12)

for
pr(2)(ṽ) = pr(2)(v) − τDt − ξDx when ∆ = 0. (2.13)

A system of determining equations for the infinitesimals ξ = ξ(x, t, u), τ = τ(x, t, u) and η = η(x, t, u)
is then obtained by means of Eq. (2.12). The corresponding determining system is expanded in the
respective papers [26, 29, 31, 34, 39]. This method will be used in Section 4 to obtain solutions of each
of the Eqs. (1.4), (1.6) and (1.8).

3. Lie symmetry generators

We focus now in obtaining symmetries from Eqs. (1.3), (1.4), (1.5), (1.6) and (1.8). They admit a
Lie point symmetry provided that

pr(2)v(∆) = 0 when ∆ = 0,

where ∆ is the equation in study and pr(2)v is the second prolongation of the vector field (2.1). For each
Equation, we obtain a set of determining equations for the infinitesimals ξ = ξ(x, t, u), τ = τ(x, t, u)
and η = η(x, t, u). Here we present the corresponding symmetries.

3.1. Lie symmetry generators for Eqs. (1.3) and (1.4)

We recall Eq. (1.3) as
ut =

(
g(u)ux

)
x + f (u), (3.1)

whose Lie symmetries were published in [26] as shown in Table 1.
In [29] we presented Eq. (1.4) as a generalisation of Eq. (1.3):

ut =
(
g(u)c(x)ux

)
x + f (u), (3.2)

whose corresponding generators for special functions f , g and c are shown in Table 2.
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Table 1. Functions and generators for Eq. (1.3). Constants are denoted by m, n ∈ R − {0}.

Case f = f (u) g = g(u) vk

1 ∀ ∀ v1 = ∂x, v2 = ∂t

2 um un v1, v2, v3 = (n − m + 1)x∂x + 2(1 − m)t∂t + 2u∂u, n,m ∈ R − {0}
3 c2 un+1 −

c1 u
n g(u) = un, v1, v2, v4 = ec1t∂t −

c1ec1tu
n ∂u, n , 0

4 u−
1
3 u−

4
3 v1, v2, v3, v5 = e

2x√
3∂x −

√
3e

2x√
3 u∂u, v6 = e−

2x√
3∂x +

√
3e−

2x√
3 u∂u

5 enu emu v7 = (m − n)x∂x − 2nt∂t + 2∂u, n,m ∈ R − {0}

Table 2. Functions and generators for Eq. (1.4). Constants are denoted by fi, c j, g j ∈ R − {0}
for i = 1, 2, j = 1, 2, 3.

Case c = c(x) f = f (u) g = g(u) vk

1 ∀ ∀ ∀ v1

2 1
4 (c1 x + c2)2

∀ ∀ v1, v2

3 c3(c2 − x)c1 f2(g2 − u)− f1 g3(g2 − u)g1 v1, v3

4.1 ∀ f1 (u − g2) + f2 (g2 − u)g1+1 g3(g2 − u)g1 v1, v4a

4.2 ∀ f2 (g2 − u)g1+1 g3(g2 − u)g1 v1, v4b

5.1
(

(2 g1 +3)(c1 x+c2)
3 g1+4

) 3 g1+4
2 g1+3 f2 (g2 − u)− f1 g3(g2 − u)g1 v1, v5a,

5.2 c2 exp(c1x) f2 (g2 − u)− f1 g3(g2 − u)g1 v1, v5b

5.3 c2 exp(c1x) f2 (g2 − u)− f1 g3(g2 − u)g1 v1, v5c

6.1 c3 (c2 − x)c1 f2 (g1 u + g2)
f1
g1

(
−4

3 (g1 u + g2)−1
) 4

3 v1, v6a

6.2 c3 (c2 − x)c1 f2 (g1 u + g2)
f1
g1

(
−4

3 (g1 u + g2)−1
) 4

3 v1, v6b

7 ∀ f1

(
u +

g2
g1

)
+ f2

(
u +

g2
g1

)− 1
3

(
−4

3 (g1 u + g2)−1
) 4

3 v1, v7

8.1
(

(2 g1 +3)(c1 x+c2)
3 g1+4

) 3 g1+4
2 g1+3 f1 (u − g2) + f2(u − g2)g1+1 g3(g2 − u)g1 v1, v4a, v8a, v8b

8.2 −
f1 g2 x2

2 g3
+ c1 x + c2 f1 (u − g2) + f2(u − g2)g1+1 g3(g2 − u)g1 v1, v4a, v8c

8.3 c(x) such that f1 (u − g2) + f2(u − g2)g1+1 g3(g2 − u)g1 v1, v4b, v8d, v8e

c′′(x) =
c′(x)2 g3−4 c(x) f1

2 g3 c(x)

8.4 c2 exp(c1x) f1 (u − g2) + f2(u − g2)g1+1 g3(g2 − u)g1 v1, v4a, v8 f

9 −
(c1−x)2

2(2+g1) f1 (u − g2) + f2(u − g2)g1+1 g3(g2 − u)g1 v1,
1
f1

v4a, v9

10 1
4 (c1 x + c2)2 f1

(
u +

g2
g3

)
+ f2

(
u +

g2
g3

)− 1
3

(
−4

3 (g1 u + g2)−1
) 4

3 v1, v2, v7, v10

11.1 c2 ec1 x f2 e f1 u g2 eg1 u v1, v11a

11.2 c2 ec1 x f2 e f1 u g2 e f1 u v1, v11b

Generators vk from Table 2 stand as follows:
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v1 = ∂t,

v2 = (c1x + c2)∂x,

v3 = (c2 − x)∂x +
(c1−2)( f1+1)t

f1+g1+1 ∂t +
(c1−2)(u−g2)

f1+g1+1 ∂u, f1 + g1 + 1 , 0,
v4a = e− f1 g1 t∂t + e− f1 g1 t f1 (u − g2) ∂u, g1, f1 , 0,
v4b = t ∂t +

(u−g2)
g1

∂u, f1 = 0,
v5a = (c1 x + c2)∂x +

( f1+1)(g1+2)c1 t
(2 g1+3)(g1+ f1+1)∂t −

(g2−u)(g1+2)c1
(2 g1+3)(g1+ f1+1)∂u, f1 + g1 + 1 , 0,

g1 , 0,−4
3 ,−

3
2 ,

v5b =
−2 t( f1+1)c1

2 f1−1 ∂t + ∂x + 2 (g2−u)c1
2 f1−1 ∂u, g1 = −3

2 , f1 ,
1
2

v5c = c1 t
2 ∂t + ∂x + c1 (u − g2)∂u, g1 = −3

2 , f1 = 1
2 ,

v6a = (c2 − x)∂x +
3(c1−2)( f1−g1) t

3 f1+g1
∂t −

3 (u+g2)(c1−2)g1
3 f1+g1

∂u, 3 f1 + g1, g1, c1 , 0

v6b = t ∂t + 3
(u − g2)

4
∂u, 3 f1 + g1 = 0,

v7 = e−
4
3 f1 t∂t −

f1 (g1 u + g2) e−
4
3 f1 t

g1
∂u, g1 , 0,

v8a =
g1 (2 g1+3)(c1 x+c2)

c1 (g1+2) ∂x + (u − g2)∂u, f2 = 0,
g1 , −2,−4

3 ,−
3
2 ,−1

v8b = 2
g1 c1

(2 g1 + 3)(c1 x + c2)
(
x + c2

c1

)− g1+1
2 g1+3

∂x+ f2 = 0,

+ 2
c1

(g1 + 1)(u − g2)
(
x + c2

c1

)− g1+1
2 g1+3

∂u, g1 , −2,−4
3 ,−

3
2 ,−1

v8c = 1
2 r (x)

(
f1 g2 x2 − 2 g3 (c1 x + c2)

)
∂x+ f2 = 0, g1 = −1,

+ (g2 − u) (( f1 g2 x − c1 g3) r (x) + K) ∂u, r(x) = arctanh
(

c1 g3− f1 g2 x
K

)
,

K =
√

g3
(
c1

2g3 + 2 c2 f1 g2
)
,

v8d = ∂x +
(u−g2)c′(x)

2 c(x) , f2 = 0, g1 = −2
v8e = x ∂x + (u − g2)

(
x c′(x)
2 c(x) − 1

)
, f2 = 0, g1 = −2

v8 f = 3
2 c1
∂x + (u − g2)∂u, f2 = 0, g1 = −3

2
v9 = x−c1√

−2(2+g1)
∂x g1 , −2,−4

3 ,−1, f1 , 0

v10 = 1
2

(
x +

c2

c1

)
∂x. g3 = −1, g1 = −4

3

v11a =
c1 f1 t
f1 − g1

∂t + ∂x −
c1

f1 − g1
∂u f1 , g1

v11b = t ∂t −
1
f1
∂u f1 = g1

3.2. Lie symmetry generators for Eqs. (1.5) and (1.6)

Considering [31], Eq. (1.5)

ut =
1
x
(
xg(u)ux

)
x + f (u), (3.3)

yielded the generators present in Table 3.
We also present the corresponding generators for the generalisation of the prior equation, i.e. Eq.
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Table 3. Functions and generators for Eq. (1.5). Constants are denoted by m, n ∈ R − {0}.

Case f = f (u) g = g(u) vk

1 ∀ ∀ v1 = ∂t

2 um un v1, v2 = (n − m + 1)x∂x + 2(1 − m)t∂t + 2u∂u

3 un+1

n+1 un v1, v3 = nt∂t − u∂u

4 c2un+1 −
c1u
n un v1, v4 = nec1t∂t − c1ec1tu∂u

5 −
c1u
n un v1, v2, v4

6 c1u u−1 v1, v2, v4, v5 =
(
x log (x) − x

)
∂x − 2 u log(x)∂u

7 c2enu −
c1
n denu v1, v6 = nec1t∂t − c1ec1t∂u

8 −c1
n denu v1, v6, v7 = nx∂x + 2∂u

9 c2enu denu v1, v8 = nt∂x − ∂u

(1.6), which we recall as

ut =
1

c(x)
(
c(x)g(u)ux

)
x + f (u). (3.4)

In [34] the following function α = α(x) is introduced as α(x) =
c′(x)
c(x) , yielding

ut = f + αgux + guu2
x + guxx. (3.5)

For arbitrary functions f = f (u), g = g(u), and α, the only symmetry generator admitted by Eq.
(3.5) is

v1 = ∂t. (3.6)

Moreover, whenever the function α(x) is constant, Eq. (3.5) also admits the symmetry generator

v2 = ∂x. (3.7)

Considering the case whenever g is not arbitrary, other symmetry generators can be obtained, with

1. g = g0ug1 , with g0 = ±1, g1 ∈ R − {0,−4/3}.
2. g = g0u−4/3, with g0 = ±1.
3. g = g0eug1 , with g0 = ±1, g1 ∈ R − {0}.

Special functions f and α were considered for each function g presented, yielding extra Lie point
symmetries. These results are shown in Tables 4, 5 and 6 for each form of function g, respectively.

Notes:
(1) In this case α, f0 and g1 satisfy

H1(x)2H(x) = constant, (3.8)

where

H1(x) = e−A

(
c4(3g1 + 4) + 2(g1c1 + c2)

∫
eA dx

)
, (3.9)

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3291–3312.



3299

Table 4. Lie symmetry generators for Eq. (1.6) for g = g0ug1 , with g0 = ±1, g1 ∈ R −

{0,−4/3}.

i α f vk

1.1 ∀ f0ug1+1 v3 = t∂t −
u
g1
∂u

1.2 ∀ f0ug1+1 + f1u, f1 , 0 v4 =
e− f1g1t

f1
∂t + e− f1g1tu∂u

1.3 (1) f0ug1+1, g1 , −4/3 v = c2v3 + c4v51 +
c2+c1g1

g1(4+3g1)v52, (2)
v51 = e−A

(
∂x −

2αu
3g1+4∂u

)
,

with A =
g1

3g1+4

∫
α dx,

v52 =
(
2g1e−A

∫
eA dx

)
∂x+

+4u
(
1 − g1αe−A

3g1+4

∫
eA dx

)
∂u

1.4 (3) f0ug1+1 + f1u, f1 , 0, g1 , −4/3 v4, v = c4v51 + c1
4+3g1

v52, (4)

1.5
α1

x
f0u f1 , f1 , g1 + 1 v6 =

2(1 − f1)t
1 + g1 − f1

∂t + x∂x +
2u

1 + g1 − f1
∂u

Table 5. Lie symmetry generators for Eq. (1.6) for g = g0u−4/3, with g0 = ±1.

i α f vk

2.1 (5) f0u−1/3 v3, v50 =
1
α
∂x +

3αx

2α2 u∂u

2.2 (5) f0u−1/3 + f1u, f1 , 0 v4, v50

Table 6. Lie symmetry generators for Eq. (1.6) for g = g0eug1 , with g0 = ±1, g1 ∈ R − {0}.

i α f vk

3.1 ∀ f0eg1u + f1, f1 , 0 v1, v7 =
e− f1g1t

f1
∂t + e− f1g1t∂u

3.2 ∀ f0eg1u v1, v8 = t∂t −
1
g1
∂u

3.3 (6) f1 + f0eg1u, f1 , 0 v1, v7 , v9 = c5v91 + c1v92, (7)
v91 = e−B

(
∂x −

2α
3g1
∂u

)
,with B = 1

3

∫
α dx

v92 =
(

2
3e−B

∫
eB dx

)
∂x −

4
9g1

(
αe−B

∫
eB dx − 3

)
∂u

3.4 (8) f0eg1u v1, v9 = c2v8 + c5v91 + c1v92, (9)

3.5
α1

x
f0e f1u v1, v10 =

2t
f1 − g1

∂t +
x
f1
∂x −

2
f1( f1 − g1)

∂u

H(x) = 2g0((2 + g1)α2 + (3g1 + 4)αx) − f0(3g1 + 4)2. (3.10)

(2) Constants c1, c2, c4 ∈ R must verify Eq. (3.8) in relationship to α, f0 and g1.
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(3) In this case, α, f0, and g1 satisfy

H2(x)2H(x) = constant, (3.11)

where H(x) is given by (3.10), and

H2(x) = e−A

(
c4(3g1 + 4) + 2g1c1

∫
eA dx

)
. (3.12)

(4) Analogously to (2) constants c1, c4 ∈ R verify Eq. (3.11) with α, f0, and g1 .
(5) In this case α and f0 must verify the following

3g0(α3αxx − 2α2α2
x + 6α3

x − 6ααxαxx + α2αxxx) − 4 f0α
2αx = 0. (3.13)

(6) Parameters α, f0, and g1 must satisfy the condition

H3(x)2H5(x) = constant, (3.14)

where

H3(x) = e−B

(
c5 +

2
3

c1

∫
eB dx

)
, (3.15)

H5(x) = 9g1 f0 − 2g0(3αx + α2). (3.16)

(7) The constants c1, c5 ∈ R are linked to α, f0, and g1 by condition (3.14).
(8) In this case α, f0, and g1 must satisfy the condition

H4(x)2H5(x) = constant, (3.17)

where H5(x) is given by (3.16), and

H4(x) = e−B

(
c5 +

2
3

(c1 + c2)
∫

eB dx
)
. (3.18)

(9) The constants c1, c2, and c5 are linked to α, f0 and g1 by condition (3.17).

3.3. Lie symmetry generators for Eq. (1.8)

In our work [39] we presented the corresponding generators for Eq. (1.8), this is,

ut = uxx + F(t) u (1 − u), (3.19)

which are shown in Table 7.
For Cases 2 and 3 from Table 7 we define the following notation.

Case 2. Functions Fi and B are defined as follows:

F0(t) = F2
(
−F4 + 2 F F′′ − 3(F′)2

)
, (3.20b)

F1(t) = 3 F3 (
F′′′

)2 , (3.20c)
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Table 7. Functions and generators for Eq. (1.8).Constants are denoted by f1, f2 ∈ R.

Case F = F(t) vk

1 ∀ v1 = ∂x

2 Fsuch that F′′′′ =
∑6

i=0 Fi(t)
F0(t) P = (A1x + A2)ux + B(t, x, u, ut)

3 4 f1
(t+ f2)2 f12−4

v1, v31 = ∂t +
G1(t,u)
G0(t) ∂u,

v32 = t∂t + x
2∂x +

G2(t,u)
G0(t) ∂u,

4 4 e−
√

f1( f3+t) f1(
e−
√

f1( f3+t)
)2

+4 f2 e−
√

f1( f3+t)+4 f22−4 f1
v1, v4 = ∂t −

(
−F′ u

F + F′
2 F + F′′

2 F2 −
(F′′)2

2 F3

)
∂u

5 Fsuch that F′′′ =
2(F′′)2F

F(F2+F′)+ v1, v5 = x ∂x +
−2F(F2+F′)∂t+2u((F′′)F−2(F′)2)∂u

F2(F′)+(F′′)F−(F′)2

+
(−F4+6F2(F′)−(F′)2)F′′+2(F′)2F3−6(F′)3F

F(F2+F′)

6.1 1
f1+ f2 t , with f2 , 1,−1 v61 = 2

(
t +

f1
f2

)
∂t + x ∂x

6.2 1
f1+t v621 = ∂t + u

f1+t∂u, v622 = t ∂t + x
2∂x −

f1 u
f1+t∂u

6.3 1
f1−t v631 = ∂t + 1−u

f1−t∂u, v632 = t ∂t + x
2∂x +

f1(1−u)
f1−t ∂u

F2(t) = −F′ F
(
11 F4 + 14 F F′′ − 3(F′)2

)
, (3.20d)

F3(t) = 8 F2 (F′′)3, (3.20e)

F4(t) = 2F
(
(F′)2 − F4

)
, (3.20f)

F5(t) = −F8 + 40 F4 (F′)2 − 3 (F′)4, (3.20g)
F6(t) = −2 (F′)2 F3 (15(F′)2 − F4), (3.20h)

with F0(t) , 0. As specified in 2, the characteristic form can be written as P = (A1x + A2)ux +

B(t, x, u, ut). Here, A1, A2 ∈ R and the function B = B(t, x, u, ut) is written in terms of the derivatives of
F:

B(t, x, u, ut) = A1
B1(t)ut + B2(t)u + B3(t)

B0(t)
(3.21a)

and

B0(t) =F(F′
(
F4 + 4 F F′′ − 3 (F′)2

)
− F2F′′′), (3.21b)

B1(t) =2 F2
(
−F4 + 2 F F′′ − 3 (F′)2

)
, (3.21c)

B2(t) =2 F
(
6 F′(F F′′ − (F′)2) − F2F′′′

)
, (3.21d)

B3(t) =F F′′′
(
F′ + F2

)
+ F′′

(
F4 − 6F′ F2 + (F′)2

)
− (3.21e)

− 2F
(
(F′′)2 + (F′)2(F2 − 3 F′)

)
,

for B0(t) , 0.
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Case 3. Functions Gi are defined as follows for f1, f2 ∈ R:

G0(t) = 4
(
(t + f2)2 f 2

1 − 4
)
,

G1(t, u) = f1

(
4 + (t + f2)2 f1

2 + 4 (t + f2) (2 u − 1) f1

)
,

G2(t, u) = 2
(
(t2 − f 2

2 )(2u − 1) f1
2 + 2 f1(2 t + f2) + 8u − 4

)
− f2 (t + f2)2 f1

3.

4. Tumour-related solutions of the studied equations

In this Section we review some biologically meaningful cases for the equations in study, specially
those which better represent some cancer features. Equations of this kind have been employed in real
data research. For instance, variants of Eqs. (1.4) and (1.6) have been used in problems of interfaces
and differential cell motility in the brain [11,40,41] with longitudinal data coming from serial CT scans.
Eq. (1.8) was employed in [38] for understanding superexponential growth by means of imaging data
from different types of cancer. We focused here on obtaining analytical solutions of Eqs. (1.4), (1.6)
and (1.8) by choosing special forms of the general functions included.

4.1. Solutions of a Fisher’s Equation whose proliferation term is dependent on density and space

Considering Eq. (1.4) from [29], functions f (u) = f1 (u − g2)+ f2 (g2 − u)g1+1 and g(u) = g3(g2−u)g1

from Table 2 and an arbitrary function c(x), we have

ut =
(

g3(g2 − u)g1c(x)︸             ︷︷             ︸
diffusion

ux
)

x + f1 (u − g2) + f2 (g2 − u)g1+1︸                              ︷︷                              ︸
Verhulst’s law of growth

. (4.1)

This equation has a biological interest in terms of modelling. Specifically, Verhulst’s law of growth
can be included into the equation to describe cancer cell proliferation dynamics [3, 11, 40]. The dif-
fusion term is considered as in invasion dynamics for brain cancer [3, 13, 40]. Focusing on generator
from v4a from Table 7, the similarity variable and similarity solution obtained are

z = x, u = e f1 t h(z) + g2, (4.2)

as well as the ODE

hzz +
g1 h2

z

h
+

cz hz

c
−

f2 h
c g3

= 0. (4.3)

The changes of variables h(z) = −
√

v(z), v(z) = eα(z) is made and α′(z) is denoted as α′(z) = w(z). In
this work g1 is set as g1 = 1 as well as

c(x) =
2 f2 K1

2

g3
+

K3

√
1 −

(
tanh

(
x+K2

K1

))2

tanh
(

x+K2
K1

) − K4, K1 ∈ R − {0}, x ≥ 0. (4.4)

where K4 = arctanh
(

K3 g3√
4 f22K1

4+K3
2g32

)
K1 − K2, K2,K3 ∈ R.
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This resulted in a family of exact solutions of Eq. (1.4)

u(x, t) = g2 −
e f1 t

4
√

1 − tanh
(

x+K2
K1

)2
, (4.5)

depending on paramaters K2, K1 , 0, as well as on function c = c(x) from Eq. (4.4).
u

x = 0 x = 5 x = 10 x = 15

(D
en

si
ty
)

(Time)t

Figure 1. Graphs of population density solutions given by Eq. (4.5). The results are shown
for g2 = 1, K1 = 1, K2 = −1 where x ∈ {0, 5, 10, 15} and t ∈ [0, 15]. The limited dynamics of
cell density u over time is observed.

Parameter g2 can be considered as the carrying capacity, as for the solution (4.5), whenever f1 < 0,
it yields that

lim
t→∞

u = g2, (4.6)

this is, eventually in time, the density of cells is limited by g2. This can be observed in Figure 1. Over
time, growth function f and diffusion f disappear, as

lim
t→∞

f = 0, lim
t→∞

g = 0. (4.7)

4.2. Solutions of a Fisher’s Equation describing a tumour interface problem

For Eq. (1.6) we consider a special case of applicability to brain cancer, specifically glioma. In a
series of papers by Swanson et al. [42–44] the Fisher-Kolmogorov equation was adapted to represent
the proliferation and diffusion of glioma cells in the brain. In order to investigate its impact on cel-
lularity, hypoxia-induced neoangiogenesis and necrosis, and to account for spacial heterogeneity, the
diffusion coefficient was made dependent on space. This represents the distinction between regions of
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grey and white matter [11, 43], which is fundamental to explain macro- and microscopic patterns of
growth. Glioma cells tend to migrate along white matter tracts in the brain, and in vitro experiments
have shown that white gray matter enhances cell motility [45]. The spatial limitation on cellular prolif-
eration was also included by means of a carrying capacity. In this line, Konukoglu et al. [41] proposed
a parameter estimation method for reaction-diffusion models of brain tumours.

Taking into account these biological hypotheses, and following the previously cited works, we can
consider a particular case of Eq. (1.6) with proliferation and diffusion terms f and g specified as

f (u) = ku
(
1 −

u
u∗

)
, (4.8)

g(u) = ρ

(
1 −

u
u∗

)
, (4.9)

where k ∈ R+ is the proliferation rate, ρ ∈ R is the diffusion rate, and u∗ ∈ R is the maximum amount
of cells that a given volume of tissue can hold (i.e. the carrying capacity of the tissue). Function f (u)
is the Verhulst’s law of growth, commonly used to model cancer cell proliferation [3, 11] and function
g(u) also follows usual representations [3, 44, 46]. With these considerations, Eq. (1.6) would read as
follows:

ut =
1

c(x)

c(x)ρ
(
1 −

u
u∗

)
︸           ︷︷           ︸

diffusion

ux


x

+ ku
(
1 −

u
u∗

)
︸       ︷︷       ︸

proliferation

; (4.10)

where u(x, t) denotes the density of cells. As explained above, the space-dependent part of the diffusion
coefficient is to represent a single interfacial transition region [30]. We thus choose a hyperbolic tangent
function to allow for two different levels of migration potential.

This equation can be simplified by setting ρ = 1 and making the following change of variables

t = t, x = x, u
u∗ = (1 − v) ,

Eq. (4.10) can then be written as

vt = k
(
v2 − v

)
+

1
c(x)

[c(x)vvx]x . (4.11)

This equation falls under the second case in Table 4 from Section 3.2, with g0 = 1, g1 = 1, f0 = k,
and f1 = −k. In this case, when α(x) =

c′(x)
c(x) does not satisfy condition (3.11), Eq. (4.11) only admits

the additional generator
v4 = ekt∂t − kektv∂v. (4.12)

We then look for a solution of the form

v(x, t) = U(x)e−kt, (4.13)

where U(x) is a solution of equation

kU2 +
c′

c
UU′ + UU′′ + U′2 = 0. (4.14)
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Setting U =
√

V and c′(x)/c(x) = c0 tanh(x), with c0 ∈ R, then Eq. (4.14) becomes

V ′′ + c0 tanh(x)V ′ + 2kV = 0, (4.15)

whose solution is given by associate Legendre functions

V(x) =c1

LegendreP
(

c0−2
2 ,

√
c2

0−8k
2 , tanh(x)

)
(cosh(x))c0/2

+

c2

LegendreQ
(

c0−2
2 ,

√
c2

0−8k
2 , tanh(x)

)
(cosh(x))c0/2

. (4.16)

Thus, solutions of Eq. (4.10) will have the following form:

u = 1 − e−kt
√

V(x). (4.17)

Setting c0 = 2, the transformation

V(x) =
w(x)

cosh(x)
(4.18)

maps Eq. (4.15) into

w′′ + (2k − 1)w = 0, (4.19)

whose general solution depends on the value of k. For k > 0, we have the following solutions:

w(x) = c1 + c2x, if k = 1
2 , (4.20)

(4.21)
w(x) = c1 sin(x

√
2k − 1) + c2 cos(x

√
2k − 1), if k > 1

2 , (4.22)

w(x) = c1 sinh(x
√

1 − 2k) + c2 cosh(x
√

1 − 2k), if k < 1
2 . (4.23)

In order to obtain biologically meaningful solutions, we select Eq. (4.23) with c0 = 2 and c1 = c2 =
1
2 and obtain the following family of solutions of Eq. (1.6):

u = 1 − e−kt

√
sinh(x

√
1 − 2k) + cosh(x

√
1 − 2k)

2 cosh(x)
, k <

1
2
, (4.24)

with k being the free parameter.
We now try to provide a biological interpretation of the previous solution. Figures (2) and (3) show

the effect of the transition region placed at x0 = 0, for x ∈ (−20, 20) and t ∈ (0, 100). The family of
solutions for different values of k represents a higher cellular density for x < 0 and a decreased density
for x > 0. Both zones represent white and grey matter respectively, as in [11, 13]. For a fixed t = t0,
the situation on both sides of the interface becomes symmetrical as k → 1

2 . When proliferation rate k
decreases, the situation changes and the positive region becomes less populated. This effect is more
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pronounced as k → 0. This is more clearly seen when exploring asymptotic behaviour for a fixed x:
Density grows faster for higher values of k. Note that, according to expressions (4.8) and (4.9), when
u → 0 diffusion and proliferation increase. This would be consistent with the fact that, when passing
through the interface, diffusion grows [13].
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Figure 2. Asymptotic behaviour of the solution given by Eq. (4.24) for fixed values of x and
t. The asymptotic behaviour of u(x, 0) is shown on the left hand side. On the right hand side,
the asymptotic behaviour of u(0, t). The interface is placed at x = 0. The variation in k allows
the visualization of different cell density behaviours. For large values of x and t, the solution
u approaches the limit u∗ = 1. Spatial units are mm and time units are days.

Overall, different values of k yield different behaviours for a tumour crossing an interface. From
Figure (3) we get that when k decreases the density recovery rate after the interface is lower, as well
as the density minimum value. For higher values, proliferation dominates diffusion, simulating a non-
diffusive, proliferative tumour. Also, over time tumour density grows faster. For lower k, the reverse
happens, yielding infiltrative but non-proliferative tumours.

4.3. Solutions of Fisher’s Equation with a proliferation term involving tumour development

We now focus on Eq. (1.8) in [39], which we recall as

ut = uxx + F(t) u (1 − u). (4.25)

Tumour mass F = F(t) can be considered to behave as a tanh, modelling transition regions [30].
Considering the Case 4 from Table 7, F = F(t) with a tanh form belongs to this case for

F̂(t) = ±b tanh(b t) ± b, b ∈ R+. (4.26)

This function may represent a tumour mass growing quickly as a tanh, and eventually reaching an
upper bound. For Eq. (1.8) and Eq. (4.26) omitting negative signs, v1 and v4∗ are the symmetries
obtained, where

v4∗ = ∂t + b u(tanh(b t) − 1)∂u. (4.27a)
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(A)

(C)

(B)

(D)

Figure 3. Asymptotic behaviour of the solution given by Eq. (4.24) for different values
of x and t. Variation of cell density u(x, t) with space x and time t, for different values of
parameter k: (A) k = 1

2 , (B) k = 1
7 , (C) k = 1

20 and (D) k = 1
100 . Spatial units are mm and time

units are days.

The similarity variable and solution obtained are

ω = x, u =
h(ω)e−b t√
sech(b t)2

. (4.28)

This yields the following reduction

b h(ω)2 − 2 b h(ω) − hωω = 0. (4.29)

A particular solution of Eq. (4.29) is

h(ω) = 3 tanh


√

b
2

(x + k1)

2

− 1, k1 ∈ R. (4.30)
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Figure 4. Function F̂(t) given by Eq. (4.26). The results are shown for b ∈

{1, 1.2, 1.4, 1.6, 1.8, 2}, where b is seen as the mass influence into proliferation.

This implies that for F = b tanh(bt) + b) (see Eq. (4.26)), a family of exact solutions off Eq. (1.8), is
the following

û(t, x) =

(
3 tanh

(√
b
2 (x + k1)

)2

− 1
)

e−b t√
sech(b t)2

, k1 ∈ R. (4.31)

These solutions are in accordance to the ones already found in the previous Sections. The be-
haviour of solution (4.31) is shown in Figure 5, depending on parameter b, simulated for b ∈
{1, 1.2, 1.4, 1.6, 1.8, 2}. This parameter represented the mass influence on the proliferation. In Figure
5 (A), tumour density increases with space x. In general, in Figure 5 (B), stabilisation of the tumour
density is observed over time.

5. Conclusions

In this review, we have examined generalised Fisher’s equations that can model biological phenom-
ena. Mathematical biology has faced since its inception the issue of the non-linearity of the systems
that it aims to describe. This has been a motivation for the development of new methods in areas like
mathematical analysis and partial differential equations, thereby becoming one of the most active areas
of mathematical research over the last decades. One particular issue that has attracted the attention
of the mathematical community is the derivation of exact solutions, which is challenging in the case
of non-linear systems and PDEs. The Lie symmetry method has gained recognition as a tool for the
simplification of these systems and has been widely employed for the finding of exact solutions.
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Figure 5. Behaviour of solution given by Eq. (4.31) and influence of parameter b. The
results are shown (A) for a given t = t0 (B) for a given x = x0.

We therefore focus on the achievement of biologically meaningful solutions from generalised
Fisher’s equations applied to cancer modelling. While some of these equations have been related to
real data [11,14,38,41,43] we intended here to review specifically a theoretical approach to the math-
ematical models. We first provided Lie symmetries for a number of equations. Eq. (1.3) described a
population with general density-dependent proliferation and diffusion, analysed in [26]. Generalised
Fisher’s Equation (1.4) included an explicit space dependence in the diffusion term, which was con-
sidered as a tool for cancer modelling and cell dynamics in [29]. Moving to cylindrical coordinates,
generators of Eq. (1.5) were obtained in [31]. Its generalization (Eq. (1.6)) was recently studied [34].
Finally, we described the effect of temporal, size-dependent variation of the proliferation rate (Eq.
(1.8)) [39].

We then applied the classical Lie group method in Section 4 and provided one-parametric families
of solutions with biological meaning, especially for Eqs. (1.4), (1.6) and (1.8). This involved the choice
of specific forms for functions f (u) and g(u), which was made following known biological processes
in tumour dynamics such as uncontrolled proliferation and potential for invasion and metastasis. In
these equations we considered a tanh dependence of the diffusion term, which allowed us to study
single transition regions and tumour progression at the interface. This is particularly useful for the
discussion of the effect of white and grey matter on brain tumour. Finally, we explored the behaviour
of tumours when proliferation rate grows in time according to a tanh. These results are an example
of the application of Lie symmetries in the field of mathematical oncology, and supports the use of
mathematical models as a predictive tool or as a means to understanding tumour growth dynamics.
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12. V. M. Pérez-Garcı́a, G. F. Calvo, J. Belmonte-Beitia, D. Diego, L. Pérez-Romasanta, Bright
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13. J. Belmonte-Beitia, G. F. Calvo, V. M. Pérez-Garcı́a, Effective particle methods for fisher-
kolmogorov equations: Theory and applications to brain tumor dynamics, Commu. Nonlinear
Sci., 19 (2014), 3267–3283.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3291–3312.



3311

14. J. F. Douglas, K. Efimenko, D. A. Fischer, F. R. Phelan, J. Genzer, Propagating waves of
self-assembly in organosilane monolayers, Proc. Natl. Acad. Sci., 104 (2007), 10324–10329.

15. I. R. Epstein, J. A. Pojman, G. Nicolis, An introduction to nonlinear chemical dynamics:
Oscillations, waves, patterns, and chaos, Phys. Today, 52 (1999), 68–68.

16. P. Grindrod, Patterns and waves: The theory and applications of reaction-diffusion equations,
Clarendon Press Oxford University Press, Oxford New York, 1991.

17. P. Olver, Applications of Lie Groups to Differential Equations, Springer US, New York, NY,
1986.

18. P. A. Clarksonz, E. L. Mansfield, Symmetry reductions and exact solutions of a class of
nonlinear heat equations, Physica D, 70 (1994), 250–288.

19. M. J. Ablowitz, A. Zeppetella, Explicit solutions of fisher’s equation for a special wave speed,
Bull. Math. Biol., 41 (1979), 835–840.

20. T. E. Mogorosi, I. L. Freire, B. Muatjetjeja, C. M. Khalique, Group analysis of a hyperbolic
lane–emden system, Appl. Math. Comput., 292 (2017), 156–164.

21. K. Louw, R. J. Moitsheki, Group-invariant solutions for the generalised fisher type equation,
Nat. Sci., 7 (2015), 613–624.

22. S. Lie, Lie group analysis: Classical heritage, chapter Integration of a class of linearpartial
differential equations by means of definite integrals, 65–100, ALGA Publications, 2004.

23. L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, 1982.

24. V. Dorodnitsyn, On invariant solutions of the equation of non-linear heat conduction with a
source, USSR Comput. Math. Math. Phys., 22 (1982), 115–122.

25. R. Cherniha, M. Serov, Lie and non-lie symmetries of nonlinear diffusion equations with
convection term, Symmetry Nonlinear Math. Phys., 2 (1997), 444–449.

26. M. Rosa, M. L. Gandarias, Multiplier method and exact solutions for a density dependent
reaction-diffusion equation, Appl. Math. Nonlinear Sci., 1 (2016), 311–320.

27. M. Gandarias, M. Bruzón, M. Rosa, Nonlinear self-adjointness and conservation laws for a
generalized fisher equation, Commu. Nonlinear Sci., 18 (2013), 1600–1606.

28. R. Cherniha, J. R. King, Lie symmetries and conservation laws of non-linear multidimensional
reaction–diffusion systems with variable diffusivities, IMA J. App. Math., 71 (2006), 391–408.

29. S. Chulián, M. Rosa, M. Gandarias, Reductions and symmetries for a generalized fisher equa-
tion with a diffusion term dependent on density and space, J. Comput. App. Math., 354 (2019),
689–698.

30. J. Belmonte-Beitia, T. Woolley, J. Scott, P. Maini, E. Gaffney, Modelling biological invasions:
Individual to population scales at interfaces, J. Theor. Biol., 334 (2013), 1–12.

31. M. Rosa, M. Bruzón, M. Gandarias, Symmetry analysis and exact solutions for a generalized
fisher equation in cylindrical coordinates, Commu. Nonlinear Sci., 25 (2015), 74–83.

32. A. H. Bokhari, R. A. A. Al-Rubaee, F. Zaman, On a generalized fisher equation, Commu.
Nonlinear Sci., 16 (2011), 2689–2695.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3291–3312.



3312

33. R. J. Moitsheki, O. D. Makinde, Classical lie point symmetry analysis of nonlinear diffusion
equations describing thermal energy storage, Appl. Math. Comput., 216 (2010), 251–260.

34. M. Rosa, S. Chulián, M. Gandarias, R. Traciná, Application of lie point symmetries to the
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38. V. M. Pérez-Garcı́a, G. F. Calvo, J. J. Bosque, O. León-Triana, J. Jiménez, J. Pérez-Beteta,
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