
MBE, 18 (4): 3215–3226.

DOI: 10.3934/mbe.2021160

Received: 29 January 2021

Accepted: 04 April 2021

Published: 07 April 2021

http://www.aimspress.com/journal/MBE

Research article

Binocular stereo matching algorithm based on MST cost aggregation

Jian Zhang1, Yan Zhang2，Cong Wang1, Huilong Yu1 and Cui Qin1,*

1 School of information and Communication Engineering, Nanjing Institute of Technology, Nanjing

211167, China
2 Swissgrid Ltd, short-term Network Modelling Bleichemattstrasse 31, Aarau, 5001, Switzerland

* Correspondence: Email: qincui@njit.edu.cn.

Abstract: For common binocular stereo matching algorithms in computer vision, it is not easy to

obtain high precision and high matching speed at the same time. In this paper, an improved binocular

stereo matching algorithm based on Minimum Spanning Tree (MST) cost aggregation is proposed.

Firstly, the performance of the parallel algorithm can be improved by reducing the height of the tree.

Then, an improved Root to Leaf (L2R) cost aggregation algorithm is proposed. By combining stereo

matching technology with parallel computing technology, the above method can realize synchronous

parallel computing at the algorithm level. Experimental results show that the improved algorithm has

high accuracy and high matching speed for binocular stereo vision.

Keywords: binocular vision, stereo matching, cost aggregation, minimum spanning tree

1. Introduction

Image sensors are widely used in automatic and sensing devices to realize object detection and

recognition, thanks to the fast development of imaging and computer technologies. Stereo matching is

of great importance for computer vision appositions, such as autonomous driving [1,2], target detection

and recognition [3,4]. It also plays important role in the fields of robot navigation [5], and space

detection [6,7]. Various stereo matching algorithms have been developed so far. While most algorithms

are cable of meeting the matching quality, it tends to have the problem of high cost of computer time.

Real time applications demand enhanced matching quality and reduced processing time. Therefore,

applicable methods are needed to meet and balance these two seemly contradictory requirements for

real time processing.

 Stereo matching algorithms can be classified into global and local algorithms, normally. The

3216

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

local algorithms tend to have lower computational complexity and lower accuracy comparing with

global algorithms. Recently developed algorithms target to find balance between quality and

computation time. Among those, the non-global stereo matching method based on Minimum Spanning

Tree (MST) is proved to be efficient and advantageous [8]. The method however still suffers the

problem of high computation time when deals with real time applications. Parallel processors and

graphics processor (GPU) are great help to increase the computational speed. Especially parallel

processor, having the advantage of low power requirements, are of many research concerns. There are

some promising results have been obtained in the development of parallel-sequential matching algorithms.

In this paper, an advanced method is proposed to build the MST based stereo matching algorithm

by Yang on parallel processors, which leads to reduced computation time at the same maintain the

original algorithm’s advantage of high accuracy.

2. MST algorithm and cost aggregation

The weighted connected graph (,)G V E= is supposed to have n vertices, V n= . Then, the

spanning tree of G is a minimal connected subgraph 𝐺′ = (𝑉′, 𝐸′) of G. where, 𝑉′ satisfies 𝑉′ =

𝑉 and 𝐸′ satisfies 𝐸′ ⊆ 𝐸⋀|𝐸′| = 𝑛 − 1.

If 𝐺′ is the MST of 𝐺, the 𝐸′ satisfies 𝐸0 ⊆ 𝐸 for any 𝐸0. When |𝐸0| = 𝑛 − 1, the equation

(1) will always hold.

0 0

0(e) (e)
e E e E

W W
  

   (1)

where， ()W e represents the weight of an edge e .

The MST of a connected graph can be calculated by Prim algorithm or Kruskal algorithm [9].

The difference between these two algorithms is that the Prim algorithm starts from an origin, and

continuously expands its range to select the edge with the smallest weight; The Kruskal algorithm

looks at the whole, and constantly selects the smallest weight edge from the whole.

In most local stereo matching algorithms, the matching cost of a pixel 𝑝 is calculated within a

certain domain window of 𝑝. In other words, the matching cost is determined by the pixels which are

located inside the domain widow. The pixels which are outside of the domain widow have no influxes

on the matching cost.

In order to make the calculation of matching cost global, that is, all pixels in the image can affect

the matching cost of the pixel, image 𝐼 can be regarded as an undirected weighted connected graph

𝐺 = (𝑉, 𝐸). The vertex set 𝑉 is all pixels of 𝐼 and edge set 𝐸 is the relationship between adjacent

pixels of 𝐼. Therefore, 𝐺 is a 4-connected grid graph. The weight of the edge (𝑢, 𝑣) of 𝐺 is defined

as the gradient of the pixel gray value as shown in equation (2).

 (,) (,) () ()W u W u I u I v = = − (2)

According to the structure of MST, for the two points 𝑝 and 𝑞 in the image, if 𝑞 is far away

from 𝑝 and the color differences between 𝑞 and 𝑝 is large, the number of path hops between 𝑞

and 𝑝 in MST is large and the influence on the calculation of matching cost of 𝑝 is weak.

Therefore, the distance 𝐷(𝑝, 𝑞) between the two points 𝑝 and 𝑞 in the MST can represent not

3217

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

only the spatial difference of pixels, but also the intensity difference of pixel values between them. The

definition of similarity 𝑆(𝑝, 𝑞) between 𝑝 and 𝑞 is shown in equation (3).

(,)

(,) (,) exp(-)
D p q

S p q S q p


= = (3)

where,  is the adjustment parameter of similarity. Therefore, under MST, bilateral filtering

function used in cost aggregation stage can be extended to equation (4).

() ()

(,)
() (,) () exp() ()A

d d d

q c p q c p

D p q
C p S p q C q C q

 

= = −  (4)

where, ()A

dC p represents the aggregation cost of pixels 𝑝 at parallax 𝑑 , ()dC q represents the

matching cost of pixels q at parallax 𝑑, ()c p represents the node connected with p .

The similarity of two pixels in an image depends on the distance between the two nodes in the

MST. Therefore, the MST can be organized into a tree structure. The leaf to root (L2R) cost aggregation

process is used to calculate the cost of each pixel affected by the nodes in its subtree. The root to leaf

(R2L) cost aggregation process is used to calculate the cost of each pixel affected by nodes other than

those in its subtree in MST. After L2R and R2L processes, the cost of each pixel affected by all other

pixels can be obtained. The final matching costs were aggregated over each influencing pixel and then

over each pixel included.

3. An improved BFS algorithm

Breadth first search (BFS) is a search algorithm in graph structure [10]. The algorithm starts from

a source node, traverses the child nodes of the node in turn, and then traverses the child nodes of these

child nodes, and so on, until traversing the complete graph. Therefore, BFS algorithm needs to use an

open closed table to record the traversed nodes. The open records the nodes to be traversed, and the

closed records the traversed nodes. Similar to the BFS algorithm, Level Synchronous Parallel BFS

(LSP-BFS) algorithm maintains three node sets: visited node set 𝑉, current level node set 𝐶, and next

level node set 𝑁. The algorithm takes out the elements in 𝐶 and places the adjacent nodes in 𝑁 in

parallel. This process is iterated until 𝑁 is empty set. Before the next iteration process, let 𝐶 = 𝑁，

𝑁 = ∅.

Since the process of cost aggregation algorithm based on MST is carried out on the MST of the

reference image, it is necessary to reduce algorithm to tree structure BFS algorithm. The BFS algorithm

is mainly used for the general graphs which may have loops. The tree structure is an acyclic graph.

The nodes in the tree structure have clear partial sequence relations. When a node is accessed, the

parent node of the node must have been accessed, and the child node of the node must not have been

accessed. Therefore, it doesn’t need to check whether the adjacent points have already been accessed

in the tree structure BFS algorithm. It can save the closed container.

3.1. LSP-BFS algorithm for tree structure

BFS algorithm on tree structure can omit closed container. Similarly, LSP-BFS algorithm on tree

structure can omit the visited node set 𝑉. In the extended traversal range, it only needs all the child

3218

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

nodes to join the next level node set 𝑁. It is not necessary to determine whether the child node has

been traversed. The pseudo code of the improved LSP-BFS algorithm is shown in algorithm 1.

Algorithm 1. TREE-LSP-BFS (T, s).

1 C := emptySet

2 level := 0

3 s.lev := level

4 N := [1]

5 while N != emptySet do

6 C := N

7 N := emptySet

8 foreach c in C do /* parallel execution */

9 access c

10 foreach n in CHILD(c) do /* parallel execution */

11 N := N union [1]

12 n.lev := level + 1

13 end

14 end

15 level++

16 end

Figure 1. Test examples.

It can be seen that LSP-BFS algorithm has two characteristics:

(1) Each layer requires additional synchronization. Synchronization is a time-consuming

operation. If the MST height is too high, more synchronization operations are required.

(2) The number of parallel operations in a BFS layer depends on the number of nodes in that layer.

The BFS layer with more nodes is more parallel, which can take better advantage to the performance

of parallel devices. There are four images in Figure 1. The four images in are converted into MST. The

vertex corresponding to the upper left pixel as the root node. A tree is constructed with the root node.

The results of the number of nodes in the tree hierarchy are shown in Table 1. The node hierarchy

distribution is shown in Figure 2. The statistical method is to sum the number of nodes per 50 layers.

In the distribution map, the abscissa is the serial number of the hierarchy (numbering every 50 levels),

and the ordinate is the number of nodes in the hierarchy (summing the nodes of every 50 layers). It

can be seen from Figure 2 that the number of nodes in higher level and lower level is less, and the

number of nodes in middle level is more. Therefore, in general, the node distribution of tree structure

is sparse in the higher level and lower level, and the middle level is more denser.

(a) (b) (c) (d)

3219

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

Table 1. Tree level statistics of the test examples.

Test examples No (a) (b) (c) (d)

Nodes number 110592 168750 168750 166222

Number of MST layers 2619 2915 3457 2370

Figure 2. Node distributions of each layer in the test examples.

According to these two characteristics, in order to give full play to the performance of parallel

devices, the parallel BFS algorithm needs to reduce the height of the tree, and increases the number of

nodes in each layer of the tree. As shown in Figure 3, tree (a) and tree (b) originate from the same

acyclic graph, but the root node of tree (a) is 𝑣1, the root node of tree (b) is 𝑣2. The height of tree (a)

and (b) are 5 and 4, respectively. The node density in the second layer of tree (a) is significantly lower

than that in the tree (b). Therefore, for the same spanning tree, when the root nodes are different, the

lower the height of the tree, the higher the nodes density in the middle level.

When the number of nodes in the same layer is large enough, LSP-BFS can play the largest role.

Therefore, in order to make LSP-BFS algorithm can be applied to solve the aggregation cost of MST,

it is necessary to reduce the height of tree. If the middle node 𝑣𝑟 of the longest path of acyclic graph

is taken as the root node of MST, the MST with the lowest height can be obtained. Therefore, it is

necessary to find the longest path of acyclic graph. A simple method is to use BFS twice to find the

longest path. The basic process of the algorithm is as follows: first, let any point 𝑣1 of the graph be

starting point, use BFS to find the point 𝑣2 which is farthest from 𝑣1. Then from the point 𝑣2 start,

use BFS to find the point 𝑣3 which is farthest from 𝑣2. The path of 𝑣2 to 𝑣3 is the longest path of

the graph.

This algorithm can find the longest path, but it is need to traverse all of the longest paths to find

𝑣𝑟. This process takes extra time. In order to solve this problem, this paper proposes a pruning method.

The node 𝑣𝑟 can be found out in twice level traversal time by using the pruning method.

3220

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

Figure 3. The height of the tree.

In an acyclic graph, nodes with only one adjacent node are called branch nodes. The node 𝑣𝑟 can

be found by deleting these branch nodes. For a given acyclic graph 𝐺 = (𝑉, 𝐸) and a source node 𝑠,

the process of the algorithm is as follows:

(1) Starting from the source node 𝑠, all the branch nodes are searched by BFS, then all the branch

nodes are put into the branch node set 𝑁 of the next layer;

(2) Let the branch node set 𝑉 = 𝑁，𝑁 = ∅. For each node 𝑣 in 𝑉, if the adjacent node of node 𝑣

is not in the next level branch node set 𝑁, then 𝑣 is added to 𝑁 and deleted from 𝐺.

(3) Step (2) is performed continuously until the number of nodes in 𝐺 is 1 or 2. If the number of

remaining nodes is 1, the node is r . If the number of nodes is 2, any one of them can be regarded as r .

Algorithm 2. CUT-BRANCH (G, s).

1 V := emptySet

2 N := emptySet

3 foreach v in BFS(G, s) do

4 if number of v.Nbr() == 1 then

5 add v in N

6 end

7 end

8 while G.size() > 2 do

9 V := N

10 N := emptySet

11 foreach v in V do

12 if v.Nbr() is not in N then

13 add v.Nbr() in N

14 end

15 remove v from V

16 end

17 end

root root

(a) (b)

3221

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

The pseudo code of pruning method is shown in algorithm 2. In this method, the time complexity

of finding 𝑣𝑟 is 𝑂(2𝑙) = 𝑂(3𝑙) = 𝑂(𝑙) . where 𝑙 is the longest path length of 𝐺 . Because 𝐺 is

traversed twice, the time complexity of pruning method is 𝑂(2𝑙) = 𝑂(𝑙). The time complexity of the

algorithm for finding the longest path through BFS twice is also 𝑂(2𝑙) = 𝑂(𝑙) . Therefore, the

performance of the pruning algorithm is equivalent to that of BFS twice method. It does not need to

find 𝑣𝑟 on the longest path, so the pruning method can reduce one traversal time, and the algorithm

design is more simpler.

For the test samples in Figure 1, after reducing the height of the tree by using pruning method,

the statistics of nodes for each layer are shown in Figure 4 and table 2. In the Figure 4, the black dotted

line represents the node distribution of each layer when the tree height is not reduced; the red solid line

represents the node distribution of each layer when the tree height is reduced. It can be seen from

Figure 4 that as the tree height decreases, the density of nodes for the middle layer also increases.

It can be seen from table 2, the tree height of test examples (a) and (b) is reduced by about 45%,

and the tree height of test examples (c) and (d) is reduced by about 25%.

Table 2. Tree level statistics of test examples after reducing tree height.

Test examples No (a) (b) (c) (d)

Nodes number 110592 168750 168750 166222

Number of layers for the tree height is not reduced 2619 2915 3457 2370

Number of layers for the tree height is reduced 1562 1503 2596 1756

Level reduction percentage 40.389% 48.439% 24.906% 25.907%

Root node coordinates (61, 165) (142, 270) (1, 218) (69, 181)

Figure 4. Node distribution of each layer in the test examples.

3.2. Improved L2R cost aggregation algorithm

The acyclic graph 𝐺 and a source node 𝑠 are obtained for a certain image. The improved L2R

cost aggregation algorithm can maintain a queue 𝑄 and a linked list 𝐿, where 𝐿 is the storing linked

list. The process of the algorithm is as follows:

3222

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

(1) Put 𝑠 in the team;

(2) Use the variable 𝑙 to save the length of 𝑄 and insert a new node 𝑁 at the end of 𝐿;

(3) Set an element from 𝑄 as 𝑒, insert the 𝑒 into the tail of 𝑁, and queue all the child nodes of 𝑒;

(4) Perform step (3) 𝑙 times;

(5) Continue to perform steps (2) to (4) until 𝑄 is empty;

(6) Traverse 𝐿 from the tail to the head. When each node of 𝐿 is traversed, the aggregate cost

of all nodes in the node is calculated. This step can be calculated in parallel.

Obviously, the nodes in the linked list L store the nodes of each layer of 𝐺. After traversing 𝐺,

the length of 𝐿 is the height of the tree with 𝑠 as the root node. Variable 𝑙 stores the number of

nodes in each layer. The pseudo code of the algorithm is shown in algorithm 3.

Algorithm 3. REFINE-L2R (G, s).

1 Q := [1]

2 L := emptySet

3 while Q.size() > 0 do

4 l := Q.size()

5 L.add_new_node()

6 for i in [1 : l] do

7 e := Q.pop()

8 L.newNode.add(e)

9 foreach n in set of children of e do

10 Q.push(n)

11 end

12 end

13 end

14 for p in [end node of L : start node of L] do

15 foreach n in p do /*parallel execution*/

16 compute aggregation cost of n

17 end

18 end

4. Experimental results and analysis

All the algorithms are implemented and tested on Windows 10 operating system computer by

using Visual C + + and NVIDIA CUDA. The hardware conditions of the computer are Intel (R) core

(TM) i5-6300HQ CPU @ 2.30 GHz, NVIDIA GeForce GTX 960m graphics card and 8.00 GB memory.

Middlebury stereo vision test set is widely used test set in academia. it includes test sets for binocular

vision, multi vision and other technologies. Cones, Teddy, Tsukuba and Venus binocular vision test

sets are used in this paper, as shown in Figure 5. The first row images are the reference images of the

test set (the image of the left imaging system); the second row images are the target images of the test

set (the image of the right imaging system); the third row images are the real disparity images. The

parameters of the test set are shown in Table 3.

The process of parallel cost aggregation based on MST is as follows: (1) median filtering; (2)

3223

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

calculating the weight of edges; (3) reordering by the weight; (4) generating MST by the Kruskal

algorithm; (5) pruning and constructing tree; (6) L2R process; (7) R2L process.

Figure 5. Middlebury test set.

Table 3. Test set parameters.

Test set Cones Teddy Tsukuba Venus

Size 450 × 375 450 × 375 384 × 288 434 × 383

Disparity Maximum disparity 60 60 16 32

 𝑘 = 1

𝑘 = 3

𝑘 = 5

𝑘 = 7

Figure 6. Image median filtering test.

3224

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

Table 4. Image median filtering test results.

Test set

Cones 25.053% 16.704% 19.771% 21.316%

Teddy 26.453% 15.477% 21.427% 23.015%

Tsukuba 10.220% 3.220% 6.446% 7.951%

Venus 15.769% 6.112% 7.951% 12.356%

Figure 7. Edge weight test.

Table 5. Test results for calculating edge weight.

Test set Cones Teddy Tsukuba Venus

1 1 2(,)W p p 16.704% 23.015% 7.951% 12.356%

2 1 2(,)W p p 26.219% 18.129% 11.523% 18.713%

Image median filtering is a nonlinear filtering method. The calculation formula for each pixel of

image median filtering is shown in equation (5).

 𝐼(𝑝(𝑖0, 𝑗0)) =
1

𝑘2
∑ ∑ 𝐼(𝑝(𝑖0 + 𝑖, 𝑗0 + 𝑗))𝑗∈(−(𝑘−1)/2,(𝑘−1)/2)𝑖∈(−(𝑘−1)/2,(𝑘−1)/2) (5)

where, 𝑘 is the size of filtering window, the value of 𝑘 is odd. When the window is too large, the

image will become blurred. The parameter selection in this paper starts from the minimum window

(k = 1) and gradually grows.

The test results using image median filter are shown in Figure 6 and table 4. In the Figure 6, the

images in the first row are real disparity images, and the images in the rows 2,3,4 and 5 are the result

of setting 𝑘 = 1, 𝑘 = 3, 𝑘 = 5, and 𝑘 = 7, respectively. It can be seen from Figure 6 and table 4 that

(a) Cones (b) Teddy (c) Tsukuba (d) Venus

3225

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

the image median filtering has a great influence on the results. When 𝑘 = 3 , the effect of image

median filtering is better. Equation (6) and equation (7) are selected to test the edge weight. The test

results are shown in Figure 7 and table 5. In the Figure 7, the images in the rows 1,2 and 3 are the real

disparity images, the result images of a function 𝑊1(𝑝1, 𝑝2) is selected and the result images of a

function 𝑊2(𝑝1, 𝑝2) is selected, respectively. It can be seen from Figure 6 and Figure 7 that the effect

is the better when the function 𝑊2(𝑝1, 𝑝2) is selected.

  1 1 2(,) max , ,R G BW p p =    (6)

 2 1 2 1 2(,) () ()W p p Gray p Gray p= − (7)

When calculating MST by using Kruskal algorithm, it is need to sort all the edges in descending

order of weight. The time complexity of common sorting algorithms is 𝑂(𝑛𝑙𝑜𝑔(𝑛)). However, the

weight of the edge will not be greater than 255 in this paper, so histogram sorting can be used. The

time complexity of this method is 𝑂(1).

The time test results of the algorithm are shown in table 6. The numbers in brackets in the table 6

represent the running speed ratio. The running speed ratio of MST algorithm using GPU is compared

with the corresponding algorithm using CPU. The running speed ratio of the algorithm proposed in

this paper is compared with the corresponding MST algorithm using GPU. It can be seen from table 6

that the MST algorithm can be accelerated by about 17 times by using GPU, and the optimization

algorithm proposed in this paper can increase the speed by about 20% on this basis. Therefore, the

optimization algorithm proposed in this paper can speed up about 20 times compared with the

algorithm using CPU, and it can meet the requirements of real-time processing.

Table 6. Algorithm running time.

Test set Cones Teddy Tsukuba Venus

CPU 0.863s 0.797s 0.173s 0.455s

GPU

(using MST)

0.0494s

(17.5)

0.0324s

(24.6)

0.0131s

(13.2)

0.0257s

(17.7)

GPU

(Using the optimization

algorithm in this paper)

0.0358s

(1.380)

0.0271s

(1.196)

0.0123s

(1.065)

0.0220s

(1.168)

5. Conclusion

An advanced method is developed in this paper to improve the computation efficiency for stereo

matching. The proposed method is to reduce the height of the tree used for MST algorithm in parallel

processing, hence dramatically speed up the computation. An aggregation of matching cost is also

developed simultaneously in order to achieve the hierarchical synchronous parallel computing. The

cost is based on Leaf-to-Root aggregation.

The simulation results show that proposed parallel processing stereo matching algorithm using

reduced high of spanning tree and L2R aggregation matching cost enhance the computation speed. It

is a matter of 20 times speed-up as proved. This method therefore provides a promising approach to

real-time stereo processing, which can of great importance of Binocular stereo matching.

3226

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3215–3226.

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20191012);

Scientific Research Foundation of Nanjing Institute of Technology (JCYJ201822, CKJB201803 and

CXY201932).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. G. Yang, X. Song, C. Huang, Driving stereo: A large-scale dataset for stereo matching in

autonomous driving scenarios, IEEE CVF Conference on Computer Vision and Pattern

Recognition, 2020, 899–908.

2. A. Z. Joseph, C. L. Priyankac, P. Sankaran, Stereo vision-based speed estimation for autonomous

driving, 2019 International Conference on Information Technology, Bhubaneswar, India, 6 (2019),

201–205.

3. M. Cheng, Y. Zhang, Y. Su, J. M. Alvarez, H. Kong, Curb detection for road and sidewalk

detection, IEEE Trans. Veh. Technol., 67 (2018), 10330–10342.

4. M. Faria, A. Ferreira, H. Pérez-Leon, I. Maza, A. Viguria, Autonomous 3D exploration of large

structures using an UAV equipped with a 2D LIDAR, Sensors, 22 (2019), 4849–4852.

5. R. Wang, M. Z. Luo, N. K. Wang, L. J. Lu, Accuracy study of a binocular-stereo-vision-based

navigation robot for minimally invasive interventional procedures, World J. Clin. Cases, 8 (2020),

69–78.

6. C. Yan, H. He, Y. Qiao, Measuring the wave height based on binocular cameras, Sensors, 19 (2019),

1338–1342.

7. M. G. Mozerov, V. Joost, One-view occlusion detection for stereo matching with a fully connected

CRF model, IEEE T. Image Process., 6 (2019), 1–2.

8. C. Zhang, C. He, Z. Chen, W. Liu, M. Li, J. Wu, Edge-preserving stereo matching using minimum

spanning tree, IEEE Access, 7 (2019), 177909–177921.

9. S. Dutta, D. Patra, H. Shankar, P. A. Verma, Development of GIS tool for the solution of minimum

spanning tree problem using prim's algorithm, ISPRS Technical Commission 8th Mid-Term

Symposium, 8 (2014), 1105–1114.

10. H. Guo, L. Huang, Y. Lu, J. Ma, C. Qian, Z. Wang, Accelerating BFS via data structure-aware

prefetching on GPU, IEEE Access, 6 (2018), 60234–60248.

©2021 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

