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Abstract: Multiple organizations would benefit from collaborative learning models trained over
aggregated datasets from various human activity recognition applications without privacy leakages.
Two of the prevailing privacy-preserving protocols, secure multi-party computation and differential
privacy, however, are still confronted with serious privacy leakages: lack of provision for privacy
guarantee about individual data and insufficient protection against inference attacks on the resultant
models. To mitigate the aforementioned shortfalls, we propose privacy-preserving architecture to
explore the potential of secure multi-party computation and differential privacy. We utilize the inherent
prospects of output perturbation and gradient perturbation in our differential privacy method, and
progress with an innovation for both techniques in the distributed learning domain. Data owners
collaboratively aggregate the locally trained models inside a secure multi-party computation domain
in the output perturbation algorithm, and later inject appreciable statistical noise before exposing the
classifier. We inject noise during every iterative update to collaboratively train a global model in
our gradient perturbation algorithm. The utility guarantee of our gradient perturbation method is
determined by an expected curvature relative to the minimum curvature. With the application of
expected curvature, we theoretically justify the advantage of gradient perturbation in our proposed
algorithm, therefore closing existing gap between practice and theory. Validation of our algorithm
on real-world human recognition activity datasets establishes that our protocol incurs minimal
computational overhead, provides substantial utility gains for typical security and privacy guarantees.
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1. Introduction

Lately, Distributed Machine Learning (DML) [1] architectures have gradually produce remarkable
performance across a wide variety of domains in Industrial Internet of Things (IoT), including facial
recognition, machine translation, object detection, and object classification. As the size of datasets
grow, learning from private industrial internet of things datasets has frequently been confronted with
challenging privacy risks in numerous data analytic applications. The learning algorithms are expected
to effectively learn from the data whiles providing a certain level of privacy-preserving guarantee for the
users’ confidential data. Meanwhile adversaries might infer information from the training dataset used
in the classifier whiles the parameters in the classifier are also capable of revealing certain sensitive
information in the dataset. In situations involving the training of DNN classifiers, parameters of the
model can also store the private information on the training dataset. These kinds of attacks have
demonstrated to be practical both in the federated and centralized domain, therefore posing a serious
threat to diverse privacy-preserving settings.

Consequently, Differential Privacy (DP) [2] is a robust privacy concept for statistical data privacy
with the potential to provide meaningful guarantees irrespective of what an adversary learns
beforehand about the individuals’ dataset in the centralized domain where an individual company
owns all the data. DP delivers unarguable privacy guarantee to ensure the impact of any single data
record becomes extremely insignificant. In many real-world architectures, differential privacy has
been deployed and embraced by commercial enterprises and the U.S. Census Bureau. Numerous
machine learning algorithms have been combined with the modification of differential privacy to
satisfy its privacy-preserving requirements, prominent among the widely used supervised learning
models is Empirical Risk Minimization (ERM). It’s Differentially Private version is Differential
Private Empirical Risk Minimization [3, 4] (DP-ERM) which can be defined as follows:

Definition 1. (DP-ERM). Given a dataset D = {z1, z2 · · · , zn} from a data universe X and a closed
convex set C ⊆ Rp, DP-ERM is to find xpriv ∈ C so as to minimize the empirical risk, i.e.,

x∗ ∈ arg min
x∈C

Fr(x,D) = F(x,D) + r(x) =
1
n

n∑
i=1

f (x, zi) + r(x)

with the guarantee of being differentially private, where f is the loss function and r is some simple
(non)smooth convex function called regularizer. When the inputs are drawn i.i.d from an specified
underlying distribution P on X, we as well consider population risk Ez∼P[ f (x, z)]. If the loss function
is convex, the utility of the algorithm is measured by the expected excess empirical risk, i.e.,

EA
[
Fr

(
xpriv ,D

)]
−min

x∈C
Fr(x,D),

or the expected excess population risk (generalization error), i.e.,

Ez∼P,A

[
f
(
xpriv, z

)]
−min

x∈C
Ez∼P[ f (x, z)],

where the expectation ofA is taking over all the randomness of the algorithm.
Empirical risk minimization (ERM) plays a crucial role amid all machine learning models and it

covers a diversity of machine learning tasks. As one demonstrate the ability to perform ERM privately,
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with the application of differentially private algorithms for a wide range of machine learning problems,
e.g., regression and classification becomes a straightforward deal. It is appropriate to incorporate
randomness into the method to ensure privacy within this machine learning model. Basically, based on
the time of introducing noise, there are three methods to introduce randomness: output perturbation [5]
(OP), gradient perturbation [6] (GP) and objective perturbation (ObjP).

Output perturbation as a variant of Laplace mechanism initially executes the learning algorithm
that is similar to the non-private setting, afterward injects noise to the output parameter. Objective
perturbation perturbs the objective function of the ERM i.e., empirical loss and later activates our
perturbed objective minimizer whiles providing precise solutions to the current problem where the
stability of the accurate solutions plays a very critical role in the analytical process. Gradient
perturbation interferes with every interim change. The composition theorem of differential privacy
guarantees the entire learning process to become distinctly differentially private as the individual
update becomes differentially private. Knifer et al. [7] dominated the extension of objective
perturbation to enable them prove similar output for more general cases, predominantly for
high-dimensional learning.

Aside ERM-DP, secure multi-party has also been one of the preferred privacy-preserving machine
learning methods. Protocols for secure learning in multi-party setting enable individual data owners to
collaboratively execute a statistical function together over their confidential inputs with the
application of cryptographic primitives such as Fully homomorphic encryption, oblivious transfer,
and secrete sharing. During this procedure, each of the individual parties can acquire the correct
results and none of the data owners can get any knowledge than the data inferred from the public
results. In the last few years, secure multi-party computation has been widely used to achieve
privacy-preserving distributed data mining since it is more efficient and effective than other
approaches. Existing secure multi-party approaches has explored different threat models and it’s
applications. In real-life scenarios, secure multi-party computation is capable of supporting
floating-point and fix-point operations, whiles controlling the implementation of linear complexities
of arithmetic computations. Due to its potential, the study of secure multi-party computation to
preserve the privacy of distributed data mining has attracted a great deal of interest in recent years.
Currently the focus has been directed towards practical achievement of an efficient distributed
machine learning with the application of secure multi-party computation primitives, in some domains,
these approaches have demonstrated to scale to learning tasks with numerous records.

Despite the individual success of previous works in ERM-DP and Secure MPC in terms of utility,
there are still much work to do from a practical perspective when the fundamental problem of secure
multi-party computation meets differential privacy in the distributed domain in the following scenarios:

a) The challenge becomes more critical in circumstances where data is owned by diverse
organizations with the aim of collaboratively learning from their sensitive data. Consider in
epidemiology research where researchers and doctors in collaboration with the hospitals use the
epidemiological information generated from a large number of patient cases to make an accurate
diagnosis, treatment, plan and evaluate strategies for disease prevention and also serving as a
guide for the management of patients with infected diseases. It is imperative to demonstrate
independent scientific training of models on these private data to aid in the identification, risk
assessment, evaluate interventions to reduce risk disease infection whiles preserving the privacy
of patient data.
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b) Unlike approaches using the individual algorithms from secure multi-party computations or
differential privacy, these algorithms basically protect the training dataset throughout the
learning procedure without providing any protection against membership inference attacks on
the resultant classifier (i.e., models).

c) In the distributed setting, since privacy noise affects the optimization procedure, it is important
to establish the latest and more tighter utility guarantee for our gradient perturbation schemes to
overcome the mismatch existing between empirical observation of gradient perturbation and its
theoretical guarantee as compared with the other existing objective and OP approach which plays
a critical role in ERM-DP meeting MPC.

DNN has proven to be remarkably effective to numerous machine learning tasks; with a defined
parameterized function from inputs to outputs which is a composition of multiple layers of
fundamental building blocks. These blocks include simple nonlinear function and affine
transformations. With the variation of the parameters of these building blocks, DNN models can be
trained from such a parameterized function with aim the of fitting any given finite set of input to
predict an output from the samples. More specifically, definition of a loss function ` denotes the
penalty for mismatching the training dataset is required. The `(ϑ) on parameters ϑ is the average of
the loss over the training dataset. Training of the model consist of finding ϑ to produce an appreciable
loss, optimistically the minimum loss which is extremely hard to anticipate to attain accurate global
minimum in practice. In a complex network, the loss function ` is usually non-convex and difficult to
minimize. Practically the minimization is basically done by the mini-batch stochastic gradient descent
algorithm. In this algorithm we explore the potential of gradient descent in our proposed algorithm. In
our secure multi-party domain with the integration of zero-concentrated differential privacy to achieve
a privacy-preserving of our datasets and model, we investigate the effectiveness of the application of
output perturbation and gradient perturbation in our proposed scheme.

In our threat model, we consider honest-but-curious (semi-honest) data providers who wish to
collaboratively train a model without exposing their individual inputs to other data owners. Data
providers in this threat model do not collude to temper with the combined functionality or inject
garbage input data, they are capable of passively inferring about inputs of other data providers
depending on the implementation of the algorithm. We apply [8] and [9] to securely aggregate local
classifiers and their gradients in the cloud service provider. Secure multi-party computation
algorithms involve two or multiple data owners to collaboratively execute a function of their
confidential inputs, without exposing any details about the data inputs other than their data size and
whatever can be inferred from the exposed intermediate results. Existing secure multi-party
approaches are capable of securely computing functions on aggregated data has greatly been
influenced all these years by Yao’s garbled circuits protocol. Advancement in secure multi-party
computation has efficiently improved its implementation making it more practical to implement
two-party protocols possessing millions of higher dimensional data inputs [10]; and also applicable
in the global scale involving multi-party protocols with malicious level security for smaller data
inputs [11]. Ma et al. [8] demonstrated that secure aggregation of DNN local classifiers using secured
multi-party computation protocols is practical. In their paper they used a two-party computation
involving non-colluding servers with a semi-honest threat model. Existing approaches has
successfully used similar methods to scale multi-party regression [4]. In this work we can use this
method [8] to achieve our secured multi-party model aggregation in the cloud. For circumstances
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where there is high risk of collusion, numerous secure multi-party protocols can be used to an
individual honest data provider even if all other data owners are malicious. The focus of this paper is
not to improve or evaluate the execution of the secure multi-party computation but rather combine
MPC primitives and machine learning in our proposed algorithm for secure learning in the multi-party
domain.

In this paper, we present a combination of secure multi-party computation and
differentially-private distributed machine learning primitives with the application of both gradient
perturbation and output perturbation where the injection of statistical noise is inside the secure
multi-party computation. In our proposed algorithm, our output perturbation method aggregates the
locally trained classifiers whiles achieving DP with the injection of Laplace statistical noise to the
aggregated model parameters. The focus of our proposed algorithm is dominated by gradient
perturbation since it comes with numerous potentials over objective perturbation and output
perturbation. Furthermore, GP does not demand strong assumptions on the objective function because
it simply needs to bound the sensitivity of gradient update rather than the entire learning process.
Additionally, gradient perturbation can discharge the noisy gradient during every iteration devoid of
destructing the privacy guarantee as DP [12] is invulnerable to post-processing. Therefore, making
gradient perturbation the preferred option for applications such as optimization of privacy-preserving
machine learning in the distributed domain [4]. Eventually, gradient perturbation frequently attains an
improved empirical utility than objective perturbation or output perturbations for DP-ERM.

In our proposed gradient perturbation algorithm, data owners collaborate to execute an iterative,
gradient-based learning method with the aim of securely aggregating the local gradients from the
trained model during each iteration. Moreover, our gradient perturbation method may not experience
severe accuracy degradation instead desired an individual implementation of secure multi-party
primitive per iteration. Therefore, making our proposed protocol an accuracy closer to their
non-privately trained existing approaches where no statistical noise is injected and the confidentiality
of the dataset is not provided.
Contributions : We therefore summarized our contributions in three folds:

• We propose distributed privacy-preserving gradient descent algorithm, which is a combination of
two stages output perturbation and Gradient Perturbation algorithm to solve differentially private
ERM with massive privately-owned datasets. In our framework, we privately train accurate
machine learning classifiers in the distributed domain where the noise is injected inside a secure
multi-party computation.
• For our gradient perturbation in our architecture, we introduce an expected curvature which has

the potential of characterizing the optimization property with precision as the noise is injected
into the model at each gradient update in the iterative process. We establish the utility guarantee
for this framework which is grounded on the expected curvature instead of the normal minimum
curvature.
• The performance of our algorithm is evaluated with the application of real-world human activity

recognition datasets. With the implementation of regularized linear regression and logistic
regression models for our regression and classification. The results establishes that MS-DPGD
produces models that are very close to non-private models with reference to the accuracy of the
model and its generalization error in the distributed machine learning protocols.

The rest of this paper is organized as follows. Section 2 introduces the Related works. In Section
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3, we give details of the Preliminaries about differential privacy, Zero-Concentrated Differential
Privacy and secure multi-party computation that are exploited in our proposed algorithm. Then
Section 4 proposes a novel distributed privacy-preserving protocol of a statistical model. Moreover,
we give the performance evaluation results for the application of our proposed algorithm to linear
regression computational overhead, accuracy, security trade-offs and scalability in Section 5. We
therefore conclude this paper in Section 6.

2. Related works

Distributed Machine Learning (DML) [1] as a decentralized machine learning theory enables
distributed training on a large scale of a dataset in edge devices including electronic meters, internet
of things environment and sensors smartphones where no individual node is capable of getting the
intelligent decision from a massive dataset within an appreciable period of time. DML technique has
earned a remarkable reputation in numerous pragmatic areas such as visual object detection, health
records, big data analysis, control policies, and medical text extraction. Regrettably, as the number of
distributed data owners increases, the guarantee for the security of the datasets from the individual
data owners becomes extremely difficult. This lack of security will increase the threat that adversaries
attack the dataset preceded by the manipulation of the intermediate training result. Therefore,
affecting data integrity which is a key component in training machine learning models. Adversarial
data attacks [13] is one of the distinctive ways with the aim of corrupting the machine learning
models by contaminating data during the training phase. Consider in a scenario where newly
generated datasets are expected to be updated periodically by the data owners for improving the
models, the adversary is likely to gain more chances of poisoning the dataset, posing a severe threat in
the distributed machine learning models. This kind of threat is considered one of the most imperative
emerging security threats against machine learning models. Since the adversarial attack has the
potential of misleading the diverse machine learning methods, a widely applicable DML protection
mechanism is urgently required to be investigated.

There has been numerous works conducted on privacy-preserving DML, most of the research
approaches were greatly stimulated by privacy-preserving machine learning and data mining. The
existing literature on privacy-preserving DML basically falls into two major categories:
cryptography-based technique and perturbation-based methods.

The cryptography-base methods typically incorporate cryptographic tools to preserve the privacy
of the datasets. Secure multi-party computation [14] may potentially address these security threat in
the DML system. Though acquiring information with the aggregation of the dataset from
multi-parties is a critical task for machine learning, in a real-world business setting, the prevention of
privacy leakages while carrying out this privacy-preserving task is a very crucial requirement for
secure learning in multi-party setting. Private learning in multi-party domain [15] problem refers to
collaborative execution of a statistical function together by multiple data owners. After the
computation, individual data owners acquire accurate results and no one can get more knowledge than
the dataset inferred from the public intermediate results. Secure multi-party algorithms are basically
cryptographic-based methods that apply a typical cryptographic technique to perform these
distributed machine learning tasks. The data owners try not to expose any knowledge on original data
except that can be inferred from the output [16] of the distributed machine learning task. Over the past
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few years, secure multi-party computation has widely been applied to achieve privacy-preserving in
distributed machine since it is more effective and efficient than other privacy-preserving algorithms.
Secure MPC is capable of supporting floating-point and fix-point arithmetic operations [17], this
arithmetic functions can be executed with controlled linear complexity [18]. Owing to these benefits,
exploring the potential of secure multi-party computation required for privacy-preserving in
distributed machine learning has gained considerable attention over the past few years. Initial
proposals to secure two-party (2PC) computation was first introduced by Yao [19] in 1982.
Subsequently, Goldreich et al. [20] generalized and stretched 2PC method to the secure multi-party
computer (MPC) problem. Secure MPC later gain so much research attention finding practical ways
of exploring the potential in this domain. Gentry [21] with the aid of homomorphic encryption with
ideal lattices primitive was the first to introduce secure MPC. This was later preceded by numerous
researchers proposing various secure MPC implementations, including Lost-cost multi-party
Computation for Dishonest Majority [22] Semi-homomorphic Encryption [23] and Active-Secure
Two-Party Computation [24]. To the highest degree, these algorithms can be categorized into two
major methods such as secret sharing and homomorphic encryption. Gentry et al. [21] achieve the
initial scheme with multiplicative and additive homomorphism respectively, this will require long
period of time to execute the complex circuits during the performance of the inevitable elimination of
the noise. To the contrary, secrete sharing primitive [23] is capable of calculating infinite times of any
multiplication and addition with additional exchange of datasets. In a typical example of a two-party
domain, Bansal et al. [25] applied secure scalar and secret sharing to protect privacy leakages during
the training process which is not trivial to be extended to the secure multi-party models. Yuan et
al. [26] propose a privacy-preserving back-propagation algorithm for secure multi-party deep learning
over arbitrarily partitioned datasets grounded on BGN homomorphic encryption [27]. Nevertheless,
the primitive requires all the data owners to be online and interactively collaborate to decrypt the
ciphertext of the intervening parameters during each iteration. In [28], Hesamifard et al. propose
privacy-preserving machine learning algorithm using encrypted data to make encrypted predictions in
the cloud. Since fully homomorphic encryption(FHE) [21] generate high computational complexities,
they proposed a confidentially binary classification-based method to find a trade-off between the
degree of the polynomial approximation and the secure performance of the training model. Li et
al. [29] with the aid of multi-key fully homomorphic encryption (MK-FHE) [30] also propose a
privacy-preserving multi-party deep learning primitive, in this setting, the individual data owners
encrypts their datasets with different public keys and outsource them to the cloud server, the cloud
server therefore train the deep learning classifiers with the application of the MK-FHE. Based on the
relevant literature above, it is obvious that most of the cryptography-based algorithms use fully
homomorphic or multi-key fully homomorphic encryption primitives to encrypt the entire dataset
before outsourcing it to the cloud server.

With the addition of noise to the raw dataset, perturbation-based method is able to protect the
privacy of the dataset. Agrawal et al. [31] proposes an algorithm that injects elaborately designed
noise to the training data while preserving the statistical properties to enable the training of Naive
Bayes classifier. With the gradual explosion of digitized dataset, Fong et al. [32] offered a
privacy-preserving learning algorithm by transforming the original dataset into groups of unreal
datasets whiles preserving the accuracy for the learning model. Furthermore, this algorithm ensures
that the original data samples cannot be reconstructed without the whole group of constructed
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datasets. DP is a strong golden standard to guarantee privacy-preserving for algorithms on aggregated
datasets, which is widely applied in privacy-preserving DML to ensure that the dominance of any
single data owners record is insignificant. DP has been utilized in many existing applications by
large-scale businesses such as US Census Bureau. A typical distributed machine learning strategy
applied in this domain is Empirical Risk Minimization (ERM), where the average error of the trained
model over the aggregated datasets is minimized. There have been numerous proposals [33] to
advance the works on privacy-preserving algorithms for ERM problems with the application of
variations of differential privacy. This paradigm is known as Differentially Private Empirical Risk
Minimization (DP-ERM) [3]. DP-ERM reduces the empirical risk whiles providing the assurance the
intermediate results of the learning model is differentially private based on the aggregated training
dataset. This privacy-preserving guarantee ensures strong protection against potential adversaries
such as inference attacks. To guarantee privacy-preserving in this domain, it is always essential to
launch randomness to the training protocol. Based on the time for noise injection, there are mainly
three ways to initiate randomness: objective perturbation, output perturbation, and gradient
perturbation. This work introduces differentially-private DML algorithm with the application of both
gradient perturbation and output perturbation whiles injecting the noise within the secure multi-party
computation.

3. Preliminaries and background

The sensitive representative datasets from different data owners required for the collaborating
training of the deep learning models are the fundamental component of the privacy-preserving
machine learning classifiers in our secure multi-party domain. It is very important to prevent this
sensitive individual information in the datasets from privacy leakages during the training process of
the machine learning classifier. Interestingly, the adversary is capable of creating model inversion
attacks by inferring features of the training datasets which may lead to privacy disclosure.
Consequently, the integration of privacy-preserving strategies into machine learning models in the
secure multi-party settings is a feasible strategy for alleviating the vulnerability to privacy. This
section introduces necessary background for our analyses, which include empirical risk minimization
(ERM), differential privacy (which involves the zero-concentrated differential with their notations)
and basic assumptions in secure multi-scheme computation as applied in our proposed architecture.
The main objective of our proposed architecture presents an iterative differential privacy-preserving
DML algorithm from the D to enable us prevent leakage of sensitive information in the training
dataset, which accept D = {d1, d2, ..., dn} as input to accurately outputs yi as the predicted target. Table
1 provide summary of the notations applied throughout this work.

3.1. Differential privacy

Differential privacy is also integrated into machine learning and deep learning algorithms as a
promising technique for privacy preservation to maintain the privacy of training data and models. It
delivers a solid privacy assurance to ensure that adversaries cannot infer from the inclusion or
exclusion of a record in the database irrespective of their possession of the information about all
records except the target one. Details of differential privacy is shown as follows:
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Table 1. Notations in our proposed architecture.

Notations Description
D Database of n records
(xi, yi) The i-th record in database D
ϑ The parameter vector of neural networks
ϑ∗ The optimal model parameter ϑ
L(ϑ) The loss function on database D
ε The privacy budget of neural networks
R j Average relevance
∆ Sensitivity
Lap(·) Laplace distribution
g (xi) Gradients
g̃ (xi) The noisy gradients
α Relevance ratio

Definition 2. (ε, δ)-Differential Privacy [2]. A randomized mechanismM satisfy (ε, δ)-DP if for every
event S ⊆ range (M) and for all D,D′ ∈ Dn,

(Pr[M(D) ∈ S ] ≤ exp(e)Pr[M(D′) ∈ S ] + δ). (3.1)

When δ = 0, M accomplishes pure differential privacy by providing stronger privacy protection
than approximate DP with ∆ > 0. We can add noise sampled form Gaussian and Laplace distributions
respectively to achieve ε-DP and (ε, δ)-DP where the statistical noise is proportional to `2 norm
sensitivity ofM; given as ∆M = ‖M(D) −M(D′)‖.

Definition 3. (`1 and `2 norm sensitivity). Let q : Dn ← Rd be a query function. The `1(resp. `2)
sensitivity of q, denoted by ∆1(q) (resp., ∆2(q)) is defined as follows:

∆1(q) = max
D∼D
‖q(D) − q(D′)‖1, ∆2(q) = max

D∼D
‖q(D) − q(D′‖2 (3.2)

The `1 and `2 sensitivities constitutes the maximum change in the output value of q (over all possible
neighbouring databases in Dn) when an individual’s dataset is altered.

Theorem 1. Let ε ∈ (0, 1) be arbitrary and q be a query function with `2 sensitivity of ∆2(q). The
Gaussian Mechanism, which returns q(D) + N(0, o2) with

σ ≥
∆2(q)
ε

√
2 ln(1.25/δ) (3.3)

is (ε, δ)-DP. A critical property of DP is its privacy guarantee reduces gracefully under the composition.
The most basic composition result shows that the privacy loss grows linearly under k-fold composition
[12]. This implies, if we sequentially apply an (ε, δ)-differential privacy algorithm n times on the same
data, the resulting process is (nε, nδ). Dwork et al. [2] provided a booting method to construct an
improved privacy-preserving synopsis on the queries with an advance composition; the loss function
grows sub-linearly at the rate of

√
n.
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Theorem 2. For all ε, δ, δ′ ≥ 0 the class of (ε, δ)-differential private mechanisms satisfy(ε′, nδ + δ′)-
differential privacy under k-fold adaptive composition for

ε′ =
√

2nIn(
1
δ′

)ε + nε(eε−1) (3.4)

as stated in the advance composition [2]

3.2. Zero-concentrated differential privacy

Whiles differential privacy is suitable for algorithms such as output perturbation, it is not the
preferred option for gradient perturbation that require repeated sampling of statistical noise during the
iterative training approach. Bun and Stainke [34] provided zero-concentrated DP (zCDP) which has a
tight composition bound and superior to gradient perturbation. We define ρ -zCDP by the introduction
of the privacy loss random variable as applied in the definition of zCDP.

Definition 4. For an output 0 ∈ range(M), the privacy loss random variable Z of the mechanismM
is defined as follows:

Z = log
P[M(D) = ◦]
P [M (D′) = ◦]

(3.5)

ρ-zCDP therefore imposes a bound on the moment generating function of the privacy loss Z and
requires it to be tightly concentrated around zero mean, hence it is unlikely to distinguish D from
D′.Formally, it important to satisfy the following:

eDα(M(D)‖M(D′)) = E
[
e(α−1)Z

]
≤ e(α−1)αρ,∀α ∈ (1,∞) (3.6)

where Dα (M(D)‖M (D′)) is the α-Rényi divergence. In this work, we apply the resulting zCDP
composition.

Lemma 1. [34] If two mechanisms satisfy ρ1 -zCDP and ρ2 -zCDP, then their composition satisfy
(ρ1 + ρ1)-zCDP.

If two mechanisms satisfy ρ1 -zCDP and ρ2 -zCDP, then their composition satisfy (ρ1 + ρ2)-zCDP

Lemma 2. [34] The Gaussian mechanism returns q(D) +N(0, σ2) satisfies ∆2(q)2/(2σ2)-zCDP

Lemma 3. [34] IfM satisfies ε-DP, thenM satisfy (1
2ε

2)-zCDP, thenM is (ρ + 2
√
ρ log(1/δ), δ)-DP

for any δ > 0.

4. MS-DPGD architecture

4.1. Model aggregation with output perturbation

In our proposed algorithm, we extend the differential privacy bound of [35] to the secure multi-
party domain, where adequate noise is injected into the model to preserve the privacy of individual
data owners and final output throughout the multi-party training process. Our model aggregation with
the output the perturbation model is represented in Figure 1.
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Figure 1. Workflow of our output perturbation method.

Theorem 3. Given a set of n j of size for training data instances each having a dataset D j from k
parties, with the data instances lying in a ball of radius, the sensitivity of regularized classifier is at
most 2

λn , If ϑ1 and ϑ2 are classifiers trained on adjacent datasets D,D
′

of size n j with regularization
parameter λ.

‖ϑ1 − ϑ2‖1 ≤
2
λn

We therefore obtain their corresponding local model estimator ϑ̂ j with a given k data owners each
possessing a dataset D j of size n j:

JD(ϑ) =
1
n

n∑
i=1

` (ϑ, (xi, yi)) + λN(ϑ),

we obtain ϑ̂( j) as its corresponding model estimator.

ϑ̂(privacy) =
1
k

k∑
j=1

ϑ̂( j) + η

is the perturbed aggregate model estimator; where η is the Laplace noise injected into the aggregated
model estimator to achieve differential privacy. We therefore adopt Ma et al.’s [8] secure model
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aggregation for our secure MPC model in the cloud server. The theory below provides a bound on the
magnitude of noise required to achieve DP.

Theorem 4. If

ϑ̂(privacy) =
1
k

k∑
j=1

ϑ̂( j) + η

is the perturbed aggregate model estimator whiles

ϑ̂( j) = arg min
ϑ

1
n j

n j∑
i=1

`
(
ϑ, x( j)

i , y
( j)
i

)
+ λN(ϑ)

with the data lying in a unit ball and `(·) is G-Lipschitz , then ϑ̂(privacy) is ε-differentially private if :

η = Lap
(

2G
kn(1)λε

)
n(1)represent the size of the smallest data set among the k parties, λ is the regularization parameter

and ε is the differential privacy budget.

Proof. Let there be k parties such that one record of party j changes in the neighboring data sets then:

Pr(ϑ̂|D)

Pr(ϑ̂|D′)
=

Pr
(

1
k

∑
i, j ϑ̂

(i) + 1
k ϑ̂

( j) + η|D
)

Pr
(

1
k

∑
i, j ϑ̂

(i) + 1
k ϑ̂
′( j) + η|D′

) =

exp
[

k·n(1)ελ

2G

∥∥∥∥ϑ̂( j)
∥∥∥∥

k

]
exp

[
k·n(1)ελ

2G

∥∥∥∥ϑ̂( j)
∥∥∥∥

k

] ≤ exp
[
n(1)ελ

2G

∥∥∥∥ϑ̂( j) − ϑ̂′( j)
∥∥∥∥]

≤ exp
[
n(1)ελ

2G
2G
n jλ

]
≤ exp(ε)

Provision of a bound on the excess empirical risk and true risk is similar to [36] and [4] with our
bounds tighter than both of them as we require very fewer differential privacy noise.

Theorem 5. If a perturbed aggregated model estimator

ϑ̂privacy =
1
k

k∑
j=1

ϑ̂( j) + η, where ϑ̂( j) = arg min
ϑ

1
n j

n j∑
i=1

`
(
ϑ, x( j)

i , y
( j)
i

)
+ λN(ϑ)

and an optimal model estimator ϑ∗ trained on the centralized data such that the data lie in a unit ball
and `(·) is G-Lipschitz and L-smooth, then the bound on excess empirical risk is given as:

J
(
ϑ̂privacy

)
≤ J (ϑ∗) + A1

G2(λ + L)
n2

(1)λ
2

(m2 +
d2 log2(d/δ)

m2
1ε

2
+

d log(d/δ)
ε

)

where A1 is an absolute constant. We proof Theorem 5 by following Pathak et al. [36]. We therefore
make a provision bound on the Laplace random vector given in Lemma 5 as proven in [37]. To achieve
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a tighter bound our choice of sensitivity bound is given as 2G/(kn(1)λ).The full proof is given in the
second Proof of Theorem 6. To enable us prove Theorem 5, a provision of a bound on the Laplace
random vector as stated in the Lemma below and as proven in [37].

Lemma 4. Given a d-dimensional random variable η ∼ Lap(β) with P(η) = 1
2βe−

‖η‖1
β with probability

1 − δ the `2-norm of the random variable is bounded as ‖η‖ ≤ dβ log
(

d
δ

)
For any differentiable and

convex objective function, [37] propose the following Lemma to bound the sensitivity of our model
estimator:

Lemma 5. Let G(ϑ) and g(ϑ) be two differentiable convex functions of ϑ. If ϑ1 = arg minϑ G(ϑ) and
ϑ2 = arg minϑ G(ϑ) + g(ϑ), then ‖ϑ1 − ϑ2‖ ≤

g1
G2

where g1 = maxϑ ‖∇g(ϑ)‖ and
G2 = minv minϑ vT∇2G(ϑ)v for any unit vector v ∈ Rd.

Theorem 6 is expressed to bound the excess risk involving the optimal model estimator and non-
private model estimator in the centralized domain. We therefore use this Theorem to prove Theorem
5.

Theorem 6. With an aggregate model estimator,

ϑ̂ =
1
k

m∑
j=1

ϑ̂( j) where ϑ̂( j) = arg min
θ

1
n j

n j∑
i=1

`(θ, x( j)
i , y

( j)
i ) + λN(ϑ)

and an optimal model estimator ϑ∗ trained on the centralized data such that the data lie in a unit ball
and `(·) is G-Lipschitz, we obtain:

‖ϑ̂ − ϑ∗‖ ≤
G(k − 1)

n(1)λ
.

Proof. For data provider P j, the local model estimator is stated as:

ϑ̂( j) = arg min
ϑ

1
n j

n j∑
i=1

`(ϑ, x( j)
i , y

( j)
i ) + λN(ϑ) = arg min

ϑ
G(ϑ)

Therefore the centralized model estimator is however stated as:

ϑ∗ = arg min
ϑ

1
n j

n j∑
i=1

`(ϑ, x( j)
i , y

( j)
i ) +

∑
l, j

1
nl

nl∑
i=1

`(ϑ, x(l)
i , y

(l)
i ) + λN(ϑ) = arg min

ϑ
G(ϑ) + g(ϑ)

Thus we obtain the following values of G2 and g1:

G2 = min
v

min
ϑ
‖v>∇2G(ϑ)v‖ = min

v
min
ϑ
‖v>(

1
n j
‖∇2`(ϑ, x( j)

i , y
( j)
i )‖ + λ.1)v‖ ≥ λ

g1 = max
ϑ
‖∇g(ϑ)‖ = max

ϑ

∑
l, j

1
nl
‖∇`(ϑ, x(l)

i , y
(l)
i )‖ ≤ G

∑
l, j

1
nl

With the application of Lemma 5. We obtain ‖ϑ̂( j) −ϑ∗‖ = G
λ

∑
l, j

1
nl

. By using the triangular inequality,
we however obtain:∥∥∥∥ϑ̂ − ϑ∗∥∥∥∥ ≤ 1

k

∑
j

‖ϑ̂( j) − ϑ∗‖ =
G
kλ

∑
j

∑
l, j

1
nl

=
G(k − 1)

kλ

∑
j

1
n j
≤

G(m − 1)
n(1)λ
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Proof. We also continue by using Taylor’s Expansion to prove Theorem 5 with the application of
Lemma 4 and Theorem 6. We therefore obtain:

J(ϑ̂privacy) = J(ϑ∗) + (ϑ̂privacy − ϑ
∗)∇J(ϑ∗) +

1
2

(ϑ̂privacy − ϑ
∗)∇2J(ϑ)(ϑ̂privacy − ϑ

∗)

with θ = αϑ̂privacy + (1 − α)ϑ∗for someα ∈ [0, 1]. By definition ∇J(ϑ∗) = 0, we therefore obtain:

J(ϑ̂privacy) − J(ϑ∗) ≤
1
2
‖ϑ̂privacy − ϑ

∗‖2 · ‖∇2J(ϑ)‖

since `(·) is L -smooth, thus we get ‖∇2J(ϑ)‖ ≤ λ + L, therefore

J(ϑ̂privacy) ≤ J(ϑ∗) +
λ + L

2
‖ϑ̂ − ϑ∗ + η‖2 ≤ J(ϑ∗) +

λ + L
2

[‖ϑ̂ − ϑ∗‖2 + ‖η‖2 + 2(ϑ̂ − ϑ∗)>η]

≤ J (ϑ∗) +
λ + L

2

[∥∥∥∥ϑ̂ − ϑ∗∥∥∥∥2
+ ‖η‖2 + 2

∥∥∥∥ϑ̂ − ϑ∗∥∥∥∥ · ‖η‖]

By Theorem 6 and Lemma 4, We therefore get

J(ϑ̂privacy) ≤ J(ϑ∗) +
G2(k − 1)2(λ + L)

2n2
(1)λ

2
+

2G2d2(λ + L)
k2n2

(1)λ
2ε2

log2(
d
δ

) +
2G2d(k − 1)(λ + L)

kn2
(1)ελ

2
log(

d
δ

)

≤ J(ϑ∗) + A1
G2(λ + L)

n2
(1)λ

2
(k2 +

d2 log2(d/δ)
k2ε2 +

d log(d/δ)
ε

)

with A1 is an absolute constant

4.2. Iterative gradient perturbation with expected curvature

With the gradient perturbation in our proposed Multi-scheme Distributed Privacy-preserving
Gradient Descent algorithm, we give a considerable attention to a centralized private empirical risk
minimization to adopt per-iteration privacy budget for k entities, individually with a dataset D j of
volume n j of independent observations.

JD(ϑ) = min
ϑ

1
m

m∑
j=1

1
n j

n j∑
i=1

`(ϑ, x( j)
i , y

( j)
i ) + λN(ϑ) (4.1)

Data owners can collaboratively train a differentially private classifier by adopting the per-iteration
privacy budget by the injection of noise into the aggregated gradient inside the secure MPC settings to
make individual iteration progress towards an optimal solution. It is important to note that the
regularization term in Eq (4.1) possesses no privacy guarantee and does not have any privacy
implications since it is independent of the datasets. Our iterative gradient perturbation method is
represented in Figure 2.

Theorem 7. Given ϑT as the centralized classifier estimator which is derived from minimizing JD(ϑ)
later T iterations of gradient descent method executed collaboratively by k data owners with datasets
D j of size n j with each data instance (x j

i , y
j
i ) ∈ D j reside in a unit ball and `(ϑ) is G-Lipschitz and
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Figure 2. Gradient perturbation workflow.

L-smooth over ϑ ∈ C. In this setting our learning rate is 1
L whiles the gradients are also perturbed with

statistical noise z ∈ N(0, σ2Id), we can therefore conclude that ϑT is (ε, δ)-differentially private if:

σ2 =
8G2T log(1/δ)

ε2k2n2
1

(4.2)

the smallest size of n in our k data owners is represented as n1.

Proof. At a gradient of step t;

Gt = ∇J(ϑ,D) +N(0, σ2Ip) =
1
k

k∑
j=1

1
n j

n j∑
i=1

∇`(ϑ, x j
i , y

j
i ) +N(0, σ2Ip)

In our assumption only a data instance of one party is capable of changing in the neighbouring D and
D′ datasets. Our sensitivity bound therefore becomes

‖∇J(ϑ,D) − ∇J(ϑ,D′)‖ ≤
2G

mn(1)
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Hence,with the application of Lemma 1, Vt is ρ-zCDP with ρ = 2G2

k2n2
1σ

2 . Based on Lemma 2, we noticed

that ϑTot is Tρ-zCDP. Using Lemma 3 we therefore obtain ε = Tρ + 2
√

Tρ log(1/δ). To solve roots of
this equation as follows:

ρ ≈
ε2

4T log(1/δ)
=⇒ σ2 =

8G2T log(1/δ)
ε2k2n2

1

Hence, ϑTot is (ε, δ) -differentially private for the above value of σ2. Furthermore, we discovered
that for each intermediate model estimator ϑt differential privacy is also ensured. ϑt as our
intermediate estimator at every iteration t ∈ [1,T ] is (

√
t/T ε, δ) differentially private as proven in

Proof 5.

Proof. With the composition property of Lemma 2, individual ϑt is tρ-zCDP. With the application
of Lemma 3, εt as the privacy budget for iteration t is given as εt = tρ + 2

√
tρ log(1/δ) with ε =

Tρ + 2
√

Tρ log(1/δ) as the Total privacy budget is as follows:

⇒
tε
T

= tρ + 2
√

tρ log(1/δ)(

√
t
T

) = tρ(1 −

√
t
T

) +

√
t
T
εt =⇒ εt =

√
t
T
ε +
√

Tt(

√
t
T
− 1)ρ

During the Proof of Theorem 4, we demonstrated that

ρ ≈
ε2

4T log(1/δ)

substitution of ρ, we obtain the relation between ε and εt:

εt =

√
t
T
ε +

√
t
T

(

√
t
T
− 1)

ε2

4 log(1/δ)
≤

√
t
T
ε

Therefore, ϑt as the individual intermediate model estimator is (
√

t/T ε, δ)-differentially private. In
this situation the adversarial attacker is unable to obtain any additional information from the
intermediate computations. We therefore provide a theoretical bounds on the true excess risk and
excess empirical risk of the proposed algorithm.

Theorem 8. In the centralized model estimator ϑT which is obtained by minimizing JD(ϑ) after
gradient descent method with T iterations collaboratively implemented by k parties with individual
dataset D j of size n j with individual data instance (x j

i , y
j
i ) ∈ D j residing in a unit ball and `(ϑ) is

G-Lipschitz and L-smooth over ϑ ∈ A. We bridge the gap amid strongly convex objectives and utility
guarantee of non-strongly convex in this setting, by applying expected curvature v to demonstrate that
part of the non-strongly convex objectives are capable of achieving the same magnitude of utility
guarantee as the strongly convex objectives which will match our empirical observation. We therefore
define the expected curvature (Definition 5) and further explain it dependence on only the average
curvature.

Definition 5. Given a convex function F : Rp → R, has expected curvature ν relative to noise
N

(
0, σ2Ip

)
if for any ϑ ∈ Rp and ϑ̃ = ϑ − z with z ∼ N

(
0, σ2Ip

)
, it supports that:

E [〈∇J(ϑ), ϑ − ϑ∗〉] ≥ νE
[
‖ϑ − ϑ∗‖

2
]

(4.3)
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with the expectation taken based on z

Proof. If J is µ-strongly convex function, we therefore obtain ν ≥ µ which can be established as ν = µ

since it always dominates due to the strongly convex definition. The average curvature is represented
by ν which is wider than µ. We apply ϑ′ to represent the transpose of ϑ.

Let Hϑ = ∇2J(ϑ) be the Hessian matrix evaluated at ϑ. We therefore apply Taylor’s expansion to
Eq (4.3) to approximate its left hand side as follows:

E
[〈
∇J(ϑ̃), ϑ̃ − ϑ∗

〉]
≈ E

[
〈∇J(ϑ) − Hϑz,ϑ − z − ϑ∗〉

]
= 〈∇J(ϑ),ϑ − ϑ∗〉 + E

[
z′Hϑz

]
= 〈∇J(ϑ),ϑ − ϑ∗〉 + σ2 tr (Hϑ)

(4.4)

In a convex objective, Hessian matrix is positive semi-definite and tr (Hϑ) is the summation of the
eigenvalues of Hϑ. Additionally, the right-hand side of Eq (4.3) can further be express as follows:

E
[∥∥∥ϑ̃ − ϑ∗∥∥∥2

]
= E

[
‖ϑ − z − ϑ∗‖2

]
= ν

(
‖ϑ − ϑ∗‖

2
+ pσ2

)
(4.5)

We therefore estimate the value of ν as stated in Definition 5 based on the above approximation.

ν .
tr (Hϑ)σ2 + µ ‖ϑ − ϑ∗‖

2

pσ2 + ‖ϑ − ϑ∗‖
2

In a relatively large σ2 domain, it implies ν ≈ tr(Hϑ)
p that is the average curvature at ϑ. This large σ2

is a practicable setting since significant DP guarantee demand non-trivial volumes of perturbed noise.
The above assessment advocate that ν capable of been independent and much greater than µ. Making
it undeniably valid for countless convex objectives. Considering l2 regularized logistic regression. The
objective function is strongly convex exclusively based on l2 regularizer. Hence, minimum curvature
i.e., regularization λ is the strongly convex coefficient.
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4.3. Utility guarantee of our proposed iterative gradient perturbation with expected curvature
architecture

We demonstrate the utility bound of our proposed Iterative Gradient Perturbation-based algorithm
can be improved based on the expected curvature.

Algorithm 1: Iterative Gradient Perturbation with Expected Curvature Algorithm

Input: Ji
t(ϑ) := `

(
ϑ, xi

t, y
i
t

)
, i ∈ [1, k] and t ∈ [0,T ]; initial points ϑ1

0, . . . , ϑ
m
0 ; maximum

iterations T ;Privacy parameters ε, δ; learning rate η; regularization parameter λ; Loss
function `(ϑ) with Lipschitz constant L

Output: The optimal model parameter ϑT

1 Randomly initialize the model parameter ϑ0;
2 for i = 0...,T do
3 for each node i = 1, ..., k do
4 Compute;
5 Compute gradient: Vt = ∇J

(
ϑt

)
;

6 Update parameter: ϑt+1 = ϑt − ηt (Vt + zt) , where zt ∼ N
(
0, σ2

t Ip

)
7 end for

8 end for

Algorithm 1 is (ε, δ)-DP if we set σt = Θ

(
L
√

T log(1/δ)
knε

)
. Let{ϑ1, ..., ϑT } be the training path whiles

v = min {v1, ..., vT } is the minimum expected curvature over the path. Furthermore, we demonstrate the
utility guarantee of our proposed algorithm where v > 0.

Theorem 9. Utility guarantee of our proposed Iterative Gradient Perturbation-based algorithm is
achieved where v > 0. Let assume G is L-Lipschitz and β-smooth alongside v expected curvature. We
therefore set σt = Θ(L

√
T log(1/δ)/knε), learning rate η ≤ 1

β
and T =

2 log(n)
ην

we have:

E
[
J
(
ϑT+1

)
− J

(
ϑ∗

)]
= O

(
βp log(n)L2 log(1/δ)

ν2kn2ε2

)
Proof. Let assume {ϑ1, . . . , ϑt} is the path produced by the optimization approach. since ϑt holds
Gaussian perturbation statistical noise zt−1, with definition [12] we obtain:

Ezt−1

[〈
ϑt − ϑ∗,∇J

(
ϑt

)〉]
≥ νtEzt−1

[
‖ϑt − ϑ∗‖

2
]

since J is β -smooth, we obtain

〈
ϑt − ϑ∗,∇J

(
ϑt

)〉
≥

1
β

∥∥∥∇J
(
ϑt

)∥∥∥2

we therefore take the linear combination of the above inequalities
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Ezt−1[〈ϑt − ϑ∗,∇J(ϑt)〉] ≥ θνtEzt−1[‖ϑt − ϑ∗‖
2] +

(1 − θ)
β
Ezt−1[‖∇J(ϑt)‖2]

≥ θνEzt−1[‖ϑt − ϑ∗‖
2] +

(1 − θ)
β
Ezt−1[‖∇J(ϑt)‖2]

(4.6)

Let rt = ‖ϑt − ϑ∗‖ at a resultant error for step t. We achieve the preceding inequalities connecting rt

and rt+1

r2
t+1 = ‖ϑt − η∇J(xt) − ηzt − ϑ∗‖

2 = ‖ϑt − ϑ∗‖
2 − 2η〈∇J(ϑt) + zt,ϑt − ϑ∗〉 + η2‖∇J(ϑt) + zt‖

2 (4.7)

Taking the expectation based on zt, we obtain:

Ezt[r
2
t+1] ≤ ‖ϑt − ϑ∗‖

2 − 2η〈∇J(ϑt),ϑt − ϑ∗〉 + η2‖∇J(ϑt)‖2 + pη2σ2
t (4.8)

Additionally, take expectation relative to zt−1 and use Eq (4.8), we now obtain

Ezt ,zt−1[r
2
t+1] ≤ Ezt−1[‖ϑt − ϑ∗‖

2] − 2ηEzt−1[〈∇J(ϑt),ϑt − ϑ∗〉] + η2Ezt−1[‖∇J(xt)‖2] + pη2σ2
t

≤ (1 − 2(1 − θ)ην)Ezt−1[r
2
t ] + (η2 −

2ηθ
β

)Ezt−1[‖∇J(ϑt)‖2] + pη2σ2
t

(4.9)

We now let η ≤ 1
β
, θ = 1

2

Ezt ,zt−1[r
2
t+1] ≤ (1 − ην)Ezt−1[r

2
t ] + pη2σ2

t (4.10)

With the application of Eq (4.10) and taking expectation with respect to zt, zt−1, · · · , z1 iteratively
yields:

E[r2
t+1] ≤ (1 − ην)tr2

1 + pη2
t∑

i=1

(1 − ην)t−iσ2
i (4.11)

The uniform privacy budget allocation scheme is set to:

σ2
t = Θ

(
TG2 log(1/δ)

kn2ε2

)
Therefore

E
[
r2

T+1

]
≤ (1 − ην)T r2

1 + Θ

(
pηTG2 log(1/δ)

νkn2ε2

)
(4.12)

Let T ≥ 2 log(n)
ην

, we have

(1 − ην)T r2
1 = exp

 log(1 − ην) log
(
n2

)
ην

 r2
1 = exp

(
log

(
1/n2

) 1
ην

log
(
1 +

ην

1 − ην

))
r2

1

≤

(
1

kn2

) 1
ην log

(
1+

ην
1−ην

)
r2

1 <
r2

1

kn2

(4.13)
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The final inequality holds because 1
ην

log
(
1 +

ην

1−ην

)
> 1 for 1

ην
≥

β

ν
≥ 1 Therefore, for T ≥ 2 log(n)

ην
,

we obtain the excepted solution error E
[
r2

T+1

]
satisfies

E
[
r2

T+1

]
= O

(
pηT L2 log(1/δ)

νkn2ε2

)
(4.14)

since J(x) is β-smooth, we obtain

J(ϑ) − J
(
ϑ∗

)
≤
β

2
‖ϑ − ϑ∗‖

2 (4.15)

Using Eqs (4.14) and (4.15) we have the excepted excess risk satisfies

E
[
J
(
ϑT+1

)
− J

(
ϑ∗

)]
= O

(
βpηTG2 log(1/δ)

νkn2ε2

)
when T ≥ 2 log(n)

ην
. In this setting we minimized the utility bound where T =

2 log(n)
ην

.

5. Performance analysis

This section validates the productivity of our algorithm based on both classification and logistic
regression on four (4) real-world data sets: (a) CICMalDroid2020 [38] dataset is a composition of
current samples of five (5) different apps category: Benign, Banking, Riskware, Adware and SMS
containing 17,341 instances. (b) CICIDS2018 [39] dataset, a composition of 16,000,000 intrusion
detection dataset covering a wide range of attack types. (c) Adult [40] as a US 1994 Census data set
contains 48,842 records of citizens(d) IPUMS-US data contains Census data obtained from
IPUMS-International [41]. We compare our proposed algorithm with the differential privacy output
perturbation and gradient perturbation in [36] for logistic regression with L2-norm regularization.

Table 2. Summary of the datasets.

Dataset Size (n) Dimension
CICMalDroid2020 [38] 17,341 470
CICIDS2018 [39] 16,000,000 125
Adult [40] 48,842 124
IPUMS-US [41] 40,000 58

5.1. Benchmark for comparison

In this domain, it is important to predict if the interconnection is a denial-of-service (DoS) attack
or otherwise. We indiscriminately sample 70,000 individual data along with dividing amongst training
dataset of 50,000 records whiles the 20,000 records are used as a test set. With xi ∈ R

p+1, yi ∈ {−1,+1},
and λ > 0 as the regularization coefficient. Throughout our simulations; we set coefficient λ = 0.001,
learning rate η = 1, failure probability θ = 0.001, ε = 0.05 privacy budget, G-Lipschitz constant = 1
and entire iterations T = 1000 for GD. We validate our proposed output perturbation and gradient
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perturbation-based algorithms with other benchmarks relative to optimality and relative accuracy loss.
In the case of regression, relative accuracy loss is termed as mean square error (MSE) θ and θ∗ which
is the difference in accuracy over the test data.

We also explore the performance of our proposed algorithm’s output perturbation and iterative
gradient perturbation-based algorithm with benchmarks based on accuracy loss and relative
optimality gap. Optimality gap measures empirical risk bound J(θ) − J(θ∗) of the training dataset, θ
is the optimum non-private classifier in the centralized domain. Nonetheless, relative accuracy loss
becomes the variance in the accuracy (i.e., MSE in regression) of θ and θ∗ over text data set. Relative
accuracy loss and optimality gap of the entire model is measured up to 1500 training iterations for the
gradient descent whiles reporting the outcome for diverse partitioned datasets. Dataset owners k are
varied from 100 participants with each one of them possessing 500 instances of data up to 1000
participants with each one of them also containing 50 dataset instances and up to 50,000 participants
each containing only one dataset instance. with xi ∈ R

p+1, yi ∈ {−1,+1}, and λ > 0 as the
regularization coefficient.

In our proposed output perturbation-based model aggregation (MPC-OP), we demonstrate the
comparison of this model with Pathak et al. [36] which is represented as (PAT ), other cutting-edge
differential privacy benchmarks are also achieved by the application of objective perturbation and
output perturbation techniques of Wang et al. [33] on each of the locally trained model estimator θ̂ j to
attain a differentially private local model estimator whiles aggregation of the classifier is computed to
attain differentially private aggregated classifier θ̂priv with confidence intervals for the parameters in
the model. For our experiments on our proposed adaptive iterative gradient perturbation-based
learning algorithm, we adopt a benchmark of aggregation for locally perturbed gradients [42] with the
aim of improving the noise bound by applying zCDP and coupling strategy [43] also for the
verification of the privacy budget. Our proposed output perturbation-based model aggregation and
adaptive iterative gradient perturbation-based frameworks in the multi-party setting is represented as
MPC-OP and MPC-AIGP respectively. In all our simulations there is a variation of the number of
data owners p from 100–1000 with up to 50,000 data owners with each of them possessing only one
data instance.

Figure 3. Relative accuracy loss and optimality gap comparison on adult (p = 1000). All
models have privacy budget of ε = 0.05 for each iteration.
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Result on adult dataset: The adult [40] data is a composition of demographic information of
approximately 47,000 individuals, In this domain, our duty is to predict if annual income of data
owners exceed or below $50,000.00 threshold. During the pre-processing stage, we obtained 104
features for each of the records, whiles the missing values were removed therefore yielding 45,222
records with 30,000 of them now forming the training dataset whiles the rest are used for the testing
of our model. In our simulation on the Adult dataset, our proposed MPC-OP and MPC-AIGP
methods outperform the benchmarks both with respect to the accuracy loss and optimality gab as
demonstrated in Figure 4.

Figure 4. Relative accuracy loss and optimality gap comparison on CICMalDroid2020 (p =

1000). Entire models contains privacy budget of ε = 0:05 for each iteration.

Result on CICMalDroid2020 dataset: As the amount of data owners p grows and with the
decrease in the size of the local data, the relative accuracy of all the models begins to decrease with
the exclusion of MPC-AIGP as represented in Figure 4. It is obvious that the performance of the
benchmarks algorithms begins to depreciate basically owing to the huge volumes of statistical noise
injected within the classifier. Furthermore, the performance of MPC-OP also deteriorates with the
reduction in the size of the local dataset owing to the loss in information from partitioning of the
dataset which has been one of the challenges with the aggregation of locally trained classifiers.

Result on CICIDS2018 dataset: With the reduction in the amount of local dataset which is as a result
of the decrease in the number of data owners p, there is a great decrease in the performance of all the
methods with the exception of MPC-AIGP (Figure 5). Although there is a reduction in the performance
of MPC-OP as the size of the local dataset is reduced, it continues to outperform the benchmarks of
existing model aggregation. We observed that as p = 1000, the performance of W-LObjP is weaker
as compared to the W-LOP, this is due to the deviation in the objective function of W-LObjP (n). It is
important to note that the utility of PAT is greatly affected as a result of the huge amount of statistical
noise injected into the model, resulting in the plot been out of range for p = 1000 (Figure 5).

5.2. Analysis of expected curvature on our iterative gradient perturbation method

The analysis in Eq (4.4) suggests that ν is capable of being independent and much larger than µ. In
considering an instance in regularized logistic regression. The objective function becomes strongly
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Figure 5. Relative accuracy loss and optimality gap comparison on CICIDS2018 (p = 1000).
All models have privacy budget of ε = 0.05 for each iteration.

convex based on the l2 regularizer. Subsequently, making the minimum curvature (i.e., strongly
convex coefficient λ) the regularization coefficient. We compare the average and minimum curvatures
of regularized logistic regression throughout the learning process in Figure 6 and Figure 7. It is
important to note that the average curvature is predominantly not affected by the λ which is the
regularization term. Conversely, in some few first steps, the minimum curvature is able to reach λ.
Consequently, the removal of the independence on the minimum curvature has become a substantial
improvement. As we plot the curvature of CICMalDroid2020 dataset in Figure 6 and IPUMS dataset
in Figure 7, it was obvious that the resulting curvatures is similar.

Figure 6. Curvature of regularized logistic regression on CICMalDroid2020 dataset over
training. With the square dotted symbols and down triangles representing average and
minimum curvature respectively.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3006–3033.



3029

Figure 7. Curvatures for regularized logistic regression trained on IPUMS dataset. The
square dotted symbols in the plot represents average curvature and the down triangles
represents minimum curvature.

Experimental results with variations in parameters: It is worth remembering that all real-world
datasets used in our simulations contains bother numerical and categorical features. We therefore apply
some of the common pre-processing computations in machine learning; by transforming all categorical
features into a set of binary variables by the creation of one binary variable for the individual distinct
class; every numerical feature is re-scaled into the range of [0, 1] to enforce equal scale for the features.
We normalized the individual observation to a unit norm (i.e., ‖ xi ‖2= 1 f ori = 1, 2, ..., n) to meet its
specification. To demonstrate the effectiveness of our method on real-world data set by comparing it
to other state-of-the-art algorithms. We apply it to a regularized logistic regression model with the
following aim:

min
w

1
n

n∑
i=1

log
(
1 + exp

(
−yiw>xi

))
+
λ

2
‖w‖22

To be more precise, we also consider (regularized) logistic regression on the four (4) real world data
sets. We therefore validate the minimization error EF

(
wprivacy, S

)
− F(ŵ, S ) and running time of our

algorithms based on different ε = {0.05, 0.5, 0.1} and δ = 0.001 (see Table 3 for more details)

6. Conclusions

In this work, we establish that the injection of privacy noise actually improves utility guarantee of
gradient descent optimization analysis, which can be reduced when the noise is generated and added
within a secure computation in the distributed machine learning domain. The application of our
output perturbation for the aggregation of our locally trained models attains ε-differential privacy. Our
approach of secure aggregation applying secure multi-party computation practically enforces the
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Table 3. Details of our simulation results.

Dataset ε δ
Error Run-time

Our Algorithm (ε, δ) [4](ε, δ) Our Algorithm (ε, δ) [4](ε, δ)

CICMalDroid2020
0.05

0.001
0.1714 1.3545 10.214 532.12

0.5 0.2231 1.4585 36.796 519.33
0.1 0.3983 2.2552 12.613 518.67

CICIDS2018
0.05

0.001
0.0092 0.3039 11.036 185.32

0.5 0.0101 0.4162 13.893 190.87
0.1 0.0292 0.4202 4.977 190.32

Adult
0.05

0.001
0.0912 0.3692 10.896 202.12

0.5 0.0212 0.6082 68.504 253.72
0.1 0.0429 0.6227 22.814 255.12

IPUMS
0.05

0.001
0.1925 3.2011 0.1811 6.3952

0.5 4.0412 4.0090 0.4375 6.4452
0.1 0.0564 5.45659 0.1431 6.5021

models whose inputs are encrypted with possibly distinct encryption schemes or even distinct keys is
general enough to assist any machine learning method, and requires only a single secure model
aggregation. The pivot of the proposed algorithm is to enhance the comprehension of the
utility-privacy in DML, and offers mechanisms for increasing utility to attain reasonable privacy
guarantee. The gradient perturbation algorithms also present (ε, δ)-differential privacy and also
theoretically justify its empirical superiority in our proposed algorithm over other existing algorithms.
The gradient perturbation method proceeds to gain grounds in cutting-edge utility guarantee of
DP-ERM algorithm. Performance evaluation on real-world human recognition activity datasets
establish that our protocol incurs minimal computational overhead, provide substantial utility gains
for typical security and privacy guarantees. Our experiment on these datasets also accurately verifies
our theoretical findings.
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