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Abstract: Among the other cancer types, the brain tumor is one the leading cause of cancer across 

globe. If the tumor is properly identified at an earlier stage, then the chances of the survival can be 

increased. To categorize the brain tumor there are several factors including texture, type and location 

of brain tumor. We proposed a novel reconstruction independent component analysis (RICA) feature 

extraction method to detect multi-class brain tumor types (pituitary, meningioma, and glioma). We then 

employed the robust machine learning techniques as support vector machine (SVM) with quadratic 

and linear kernels and linear discriminant analysis (LDA). For training and testing of the data 

validation, a 10-fold cross validation was employed. For the multi-class classification, the sensitivity, 

specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and AUC were, 

respectively, 97.78%, 100%, 100%, 99.07, 99.34% and 0.9892 to detect pituitary using SVM Cubic 

followed by meningioma with accuracy (96.96%0, AUC (0.9348) and glioma with accuracy (95.88%), 

AUC (0.9635). The findings indicates that RICA feature based proposed methodology has more 

potential to detect the multiclass brain tumor types for improving diagnostic efficiency and can further 

improve the prediction accuracy to achieve the clinical outcomes. 

Keywords: machine learning; feature extraction; image analysis; meningioma; glioma; pituitary  
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1. Introduction  

A brain tumor is comprised of abnormal cells in central spinal canal or brain or intracranial hard 

neoplasms, which are either benign or malignant [1]. In 2019 in the United States [2], about 86, 010 

new cases of non-malignant and malignant brain tumor are estimated to be analyzed. There were 79, 

718 deaths recognized to malignant brain between 2012 and 2016 with annual average mortality rate 

of 4.42. The mortality rate in adults and childern due to brain tumor has increased.  

The brain tumor subtypes classification is challenging based on several factors. The experts still 

facing challenging to improve the detection accuracy by developing the latest technology. Several 

approaches are required to identify the brain tumor. The brain tumor is one of the fatal forms of cancer 

among other cancer types having aggressive nature, heterogenous characteristics, and low survival 

rate. Due to several factors such as type, location and texture properties, the brain tumor is categorized 

into different types (e.g. Meningioma, CNS Lymphoma, Glioma, Acoustic Neuroma, Pituitary etc.) [3]. 

The clinically rate of incident of meningioma, pituitary, and glioma among other brain tumor types is 

15%, 15% and 45% respectively [4]. The patient survival can be predicted and diagnosed based on the 

tumor type through which they can decide the relevant treatment choice ranging from chemotherapy 

to radiotherapy. Thus in order to properly planning and monitoring the brain tumor, tumor grading is 

highly desired [5]. 

The glioma is the major tumor type which has further three types such as 1) Ependymomas, 2) 

Astrocytomas, and 3) Oligodendrogliomas. From the glial cells, it originates and surround nerve cells. 

According to the genetic features, it can be further identified which help the prediction of future 

treatment and behavior. The meningioma is another type of tumor, which originates in brain. It occur 

in women and grow slowly without any symptom [6]. The pituitary tumor type grows in the pituitary 

gland. The pituitary glands are benign and don’t spread in the whole body [6]. 

The researchers recently employed many artificial intelligences-based machine learning methods 

to predict the tumor. The feature extraction is the most crucial part in the machine learning techniques 

for computing the most relevant features, which is still a challenging task for researchers. In order to 

the select and compute the most relevant feature is a tedious task, which require the prior knowledge 

about the domain of the problem. The morphological features to detect the brain tumor types can led 

easily to misclassification as different tumor types have similar resemblance. The extracted features 

are then fed as input to the different brain tumor type [7]. Recently, the researchers have computed 

different feature extraction methods including Elliptic Fourier descriptors (EFDs), texture, scale 

invariant Fourier transform (SIFT) and morphological features. Rathore et al. [8] used ensemble 

methods to detect the colon biopsy by computing hybrid features. Rathore et al. [9] also computed 

geometric features for prediction of colon cancer. Hussain et al. [10] extracted EFDs, SIFT, texture, 

entropy and morphological features to detect the prostate cancer. Moreover, Asim et al. [11] computed 

the hybrid features to detect the Alzheimer disease (AD). The graphical method is expensive, and 

computer aided diagnosis (CAD) methods could not properly capture the background knowledge 

regarding the morphological features as these methods are based merely on the texture properties. To 

properly detect the brain tumor with its location, the radiologists analyzed the image features which 

are dependent on their personal skills and expertise. The hand-crafted features are still a tedious and 

challenging task as selecting and computing more relevant features is still challenging.  
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In the past, researchers employed various machine learning (ML) algorithms by computing various 

features extracting approaches in the medical fields. The Gray level co-occurrence matrix (GLCM) 

and Berkeley wavelet transform (BWT) features were extracted by [12] to detect brain tumor. 

Moreover, Reboucas et al. [13] computed GLCM features to analyze the human tissue densities. Dhruv 

et al. [14] studied the GLCM and Haralick texture features for the analysis of 3D medical images.  

Hussain et al. [10] applied support vector machines (SVM) with its kernels to detect prostate cancer 

by extracting combination of feature extracting strategies.  Zheng et al. [15] integrated the SVM and 

graph cuts for medical image segmentation. Taie and Ghonaim [16] applied Chicken Swarm 

Optimization (CSO) based algorithms alongwith SVM for brain tumor's disease diagnosis. Abd-Ellah 

et al. [17] used kernel SVM to classify the brain tumor MRIs. Alquran et al. [18] applied SVM to 

detect the melanoma skin cancer. Wang et al. [19] proposed stationary wavelet entropy (SWE) to 

extract brain image features. They obtained improved classification performance results by replacing 

wavelet entropy (WE), discrete wavelet transform (DWT) and wavelet energy (WN) with the proposed 

SWE. The SWE averaged the variants of DWT. Zhang et al. [20] computed the Hu moment invariant 

(HMI) features from a specific MR brain image and then fed these HMI features to generalized 

eigenvalue proximal SVM (GEPSVM) and twin support vector machine (TSVM). The proposed 

methods outperformed in detection of brain tumor.  

 

Figure 1. Schematic Diagram to detect Multi-class Brain tumor types by computing RICA 

features and employing Machine learning techniques. 
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In this study, we extracted traditional features such as entropy, morphological, texture, EFDs, 

SIFT and proposed new feature extraction approach based on the RICA features to classify a multi-

class brain tumor types and applied ML techniques. 

The Figure 1 shows the schematic diagram to detect the Multi-class brain tumor types (i.e. 

Meningioma, Glioma and Pituitary) by extracting RICA based features from Brain MRIs and applied 

ML techniques such as SVM with its kernels and LDA with 10-fold cross validation. After extracting 

the features, the MRI data was split into 70% for training and 30% for testing. 

2. Material and methods 

2.1. Dataset 

The brain tumor CE-MRI dataset used in this study were taken from the publicly available 

database provided by the School of Biomedical Engineering, Southern Medical University, 

Guangzhou, China (https://figshare.com/articles/dataset/brain_tumor_dataset/1512427). The data 

details are used in the previous studies of detailed in [21] brain tumor adaptive sparse pooling, [22] 

brain tumor via region augmentation proposed by Cheng et al. [21,22] which contains 3064 T1-

weighted contrast-enhanced MRI images acquired from Nanfang Hospital and General Hospital, 

Tianjin Medical University, China from 2005. There are three types of brain tumor from 233 patients 

including glioma (1426 slices), meningioma (708 slices) and pituitary (930 slices). All images were 

acquired from 233 patients in three planes: axial (994 images), sagittal (1025 images) and coronal 

(1045) image plane. The data is labelled as meningioma with 1, glioma with 2 and pituitary tumor with 

3. In MR images, the experienced radiologists have designated the suspicious regions of interest 

(ROIs). The dataset was originally provided in matlab. mat format where each file stores a struct with 

a label which specify the type of tumor for a particular patient ID, brain image, image data in 512 × 

512 unit 16 formats, vector storing the coordinates of the discrete points on tumor border, and a binary 

mask image with 1 indicating the tumor region. The images have an in-plane resolution of 512 × 512 

with pixel size 0.49 × 0.49 mm2. The thickness of slice is 6mm and gap of the slice is 1mm. Each 

patient contains approximately 1–6 images where most of patients have 1-3 images and very few 

patients have 4–6 images. The detail of CE-MRI data partitioning is detailed in section 2.4 and Table 

1 below:  

Table 1. Details of the CE-MRI dataset. 

Tumor type Number of 

Patients 

Number of 

MR images 

MRI view Number of 

MR images 

Meningioma 82 708 Axial 

Coronal 

Sagittal 

209 

268 

231 

Glioma 89 1426 Axial 

Coronal 

Sagittal 

494 

437 

495 

Pituitary 62 930 Axial 

Coronal 

Sagittal 

291 

319 

320 

Total 233 3064  3064 
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In this study, we divided data into train and test based on patient-ID, where 70% of patients data 

was used for training and 30% for testing purpose for tumor type based on single slice assigned to each 

tumor type as performed in the previous studies Cheng et al. Abiwinanda et. al.[23], Cheng et al. [22], 

Sajjad et al. [24], Zia et al. [25], Badža and Barjaktarović [26], Gumaei et al. [27], Swati et al. [4], 

and Huang et al. [28]. In order to overcome the problem of overfitting, 10-fold cross-validation 

was also performed. 

2.2. Feature extraction 

For improving the detection performance, the extraction of most relevant features is one of the most 

important steps. We extracting hybrid features as employed in our recent studies such as to detect prostate 

cancer by extracting combination of features [10], congestive heart failure with multimodal features [29], 

arrhythmia detection with hybrid features [30] proposed by Hussain et al. [10,29,30]. In this study, we 

computed traditional features based on morphological features and texture features, alongwith robust 

RICA features from multi-class brain tumor (pituitary, glioma and meningioma) and applied ML 

methods including SVM with its kernels and LDA. The RICA features based on their sparsity and robust 

to noise is more robust, and sigmoid nonlinearity imaging data. The brain tumor types are categorized 

into several factors such as type, location, texture of tumor. Thus, the traditional features may not 

provide detection performance better. On contrast, the RICA features seemed to be more appropriate 

to compute the multivariate information hidden in the brain tumor types. The traditional features 

extracted were of following categories: 

2.2.1. Texture features 

Texture feature have effectively utilized in solving classification related issue [31] especially to 

classify colon biopsies by employing microscopic image analysis for feature identification [32], Fractal 

analysis [33] proposed by Esgiar et al. [32,33]. Texture features are obtained from Gray-level co-

occurrence matrix (GLCM). GLCM covers the spatial relationship of the Gray-level in an image. Any 

entry (i, j) th in co- occurrence matrix explain the occurrence of Gray-level i and j, their relative 

orientation ʘ and their distance d. Commonly ʘ correspond in four direction (00, 450, 900, 1350). There 

are around 15 feature which obtained using GLCM which we studied as Angular second moment, 

Entropy, Correlation, Local Homogeneity, Shade, Variance, Average, Sum, Prominence, Difference 

Entropy, Sum Entropy, Difference variance Contrast, Sum variance and Information measure of 

correlation. The texture features extracted from brain tumor types are reflected in Table 2 below. 

These features can be computed from GLCM matrix G, where x and y represent indices of rows 

and columns of matrix G. 𝑝𝑥𝑦 is the 𝑥𝑦𝑡ℎ term of matrix G divided by the sum of elements. The term 

µ
𝑥
 and µ

𝑦
 are the mean, 𝜎𝑥 and 𝜎𝑦 are the standard deviation of xth row and yth column of matrix G.  
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Table 2. Texture Features. 

Features Formulas Description 

Contrast (t) 
∑ ∑(𝑥 − 𝑦)2

𝐾

𝑦=1

𝐾

𝑥=1

𝑝𝑥𝑦 
It is used to measure the contract 

between current pixel and its 

neighbor. 

Correlation (ρ) 
∑ ∑

(𝑥 − µ
𝑥

)(𝑦 − µ
𝑦

)𝑝𝑥𝑦

𝜎𝑥𝜎𝑦

𝐾

𝑦=1

𝐾

𝑥=1

 
It is used to measure the degree of 

correlation between current pixel 

and its neighbor. 

Dissimilarity 

(Dis) ∑ ∑|𝑥 − 𝑦|𝑝𝑥𝑦

𝐾

𝑦=1

𝐾

𝑥=1

 
It is used to measure the difference 

in images. 

Entropy 
∑ ∑ 𝑝𝑥𝑦

𝐾

𝑦=1

𝐾

𝑥=1

(−𝑙𝑛𝑝𝑥𝑦) 
It is used to get the encoded 

information from an image. 

Energy (n) 
∑ ∑ 𝑝𝑥𝑦2

𝐾

𝑦=1

𝐾

𝑥=1

 
It is used to measure the 

uniformity of an image. 

Homogeneity (h) 
∑ ∑

𝑝𝑥𝑦

1 + |𝑥 − 𝑦|

𝐾

𝑦=1

𝐾

𝑥=1

 
It is used to calculate the spatial 

closeness of elements in G to the 

diagonal of the matrix. 

Randomness (r)  
− ∑ ∑ 𝑝𝑥𝑦

𝐾

𝑦=1

𝐾

𝑥=1

𝑙𝑜𝑔2𝑝𝑥𝑦 
It is used to measure the 

randomness of the elements of the 

GLCM. 

Mean (µ) 
µ

𝑥
= ∑ ∑ 𝑥(𝑝𝑥𝑦

𝐾

𝑦=1

𝐾

𝑥=1

) 

µ
𝑦

= ∑ ∑ 𝑦(𝑝𝑥𝑦

𝐾

𝑦=1

𝐾

𝑥=1

) 

This formula is used to calculate 

the sum of all values and P is the 

probability mass function. 

Variance (σ2) 
𝜎𝑥

2 = ∑ ∑(𝑝𝑥𝑦

𝐾

𝑦=1

𝐾

𝑥=1

)(𝑥 − µ
𝑥

)2 

𝜎𝑦
2 = ∑ ∑(𝑝𝑥𝑦

𝐾

𝑦=1

𝐾

𝑥=1

)(𝑦 − µ
𝑦

)2 

This equation is used to measure 

how far a set of numbers is spread 

out from their mean. 

Standard 

Deviation (σ) 
𝜎𝑥= √𝜎𝑥

2&𝜎𝑦 = √𝜎𝑦
2 It is used to quantify the amount of 

dispersion of different values of a 

data set. 

2.2.2. Morphological features 

Morphology of skins plays vital part in deciding either the tissues are malignant or oppositely 

normal. Morphological features give an approach to change over the image morphology values. These 

features are obtained from images through changing the morphology of image within set of quantitative 

values utilizes in classification and they have extensively been utilized as a part of classification [34] 

segmentation [35]. Morphological feature module (FEM) taking input in form of the binary batch also 

finds associated factors in the clusters. Researchers in the past extracted few morphological features 
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such as Perimeter (p), Eccentricity (y), Area (a), Convex Area (x), Euler Number (l), Orientation (e), 

Compactness (0), Length of major (m1), and Minor Axes (m2) etc. In this study, we computed the 

following morphological features as reflected in Table 3: 

Table 3. Morphological Features. 

Features Formulas Description 

Area (A) Total number of pixels in a 

region 

Total count of pixels that a specific region of 

image contains 

Perimeter (P) Pixels at the boundary of an 

image 

Total count of pixels at the boundary of the 

image 

Solidity Area

ConvexArea
 

To calculate the density of an object, ratio 

between area and full convex object. 

Roundness 4 × Π × Area

(ConvexPerimeter)2
 

This equation is used to illustrate the difference 

between line and circle from other region of 

image. 

Convex Area Total no of pixels in a 

convex image 

It is used to count total no of pixels in convex 

image. 

Convexity ConvexPerimeter

Perimeter
 

This equation is used to calculate the perimeter 

ratio between object itself and convex full of 

object. 

Compactness 4 × Π × Area

(Perimeter)2
 

It is used to find the degree of deviation from a 

circle. This shows the ratio between the object 

areas with circle area. 

Maximum 

Radius (MaxR) 

MAX(DISTANCE(C(x,y), 

BOUNDARY(x,y))) 

This formula is used to calculate the maximum 

distance from boundary of the image to the 

center of the image, x and y are two points on 

the image. 

Minimum 

Radius (MINR) 

MIN(DISTANCE(C(x,y), 

BOUNDARY(x,y))) 

This formula is used to calculate the minimum 

distance from boundary of the image to the 

center of the image. 

Euler Number 

(EUL_NO) 

No of objects in region – No 

of holes in these objects 

This formula provides the difference between 

effected and unaffected area of an image. 

Standard 

Deviation 
√

1

n
∑(xi − x̅)2

n

i=1

 

It is used to calculate the contrast of an image. 

Entropy ∑(p ∗ log2(p))
2
 This equation shows the statistical measure 

which can be used to get the texture of the 

image. 

Eccentricity 

(ECT) 
√(

MAXR−MINR

MAXR
)2 

This formula represents the ratio of distance 

between major axis and ellipse focal. Value can 

be 0-1. 

Rectangularity Area

MAXR − MINR
 

This formula is used to identify the similarity of 

image shape with rectangular shape. 

Elongation 1−
MINR

MAXR
 This formula is used to measure the length of the 

object. 
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2.2.3. Reconstruction Independent Component Analysis (RICA) 

The RICA does not require any class label information because of its un-supervised nature.  The 

ICA algorithm deficiencies were removed using RICA algorithm. The results yielded using RICA are 

more robust than ICA. This algorithm learns based on the sparse feature learning mechanism. The 

algorithm based on the sparse filter is capable to distinguish the various made natural signals, and these 

features can play a vital role in many of the ML techniques.  

Consider an unlabeled data with input {𝑦(𝑖)}𝑖=1
𝑛 , 𝑦(𝑖) ∈  ℝ𝑚, the optimization problem of standard 

ICA using optimization algorithms [36], kernel sparse representation [37] for estimating ICA [36,37] 

mathematically defied as: 

1

𝑛
∑ ℎ(𝑋𝑦𝑖)𝑛

𝑖=1
𝑋

𝑚𝑖𝑛
   (2.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 … 𝑋𝑋𝑈 = 𝐼 

Where h(.) indicate nonlinear penalty function, 𝑋 ∈ 𝑆𝐿𝑥𝑚  is a matrix, L represent number of 

vectors and I is the identity matrix. Additionally, 𝑋𝑋𝑈 = 𝐼 is used for avoiding the vectors in X to 

become degenerate. A smooth penalty function is used to handle this situation as indicated below:  

h(.)= log(cosh (.)  [38].              (2.2) 

To completely learn the standard ICA, there are several orthonormality constraint which obstruct 

it. Subsequently, this drawback stops ICA from scaling to high dimensional data. To resolve this 

matter, the soft reconstruction cost is used in RICA. Thus, RICA after this replacement, can be 

characterized by following equation (2.3) 

𝜆

𝑛
∑ (||𝑋𝑈𝑋𝑦𝑖 − 𝑦𝑖||2

2  + ∑ ∑ ℎ𝑙
𝑘=1

𝑛
𝑖=1 (𝑋𝑘𝑦𝑖) )𝑛

𝑖=1
𝑋

𝑚𝑖𝑛
    (2.3) 

Here parameter λ >0 shows the tradeoff between reconstruction error and sparsity.  

The penalty h can produce sparse representations only, but not invariant [38]. Thus, RICA using 

efficient overcomplete feature learning algorithms [39], building low level features using feature 

learning [40] studied by V Le et al.  [39,40] swapped it by an extra L2 pooling penalty, by promoting 

pooling features to cluster correlated features together. Furthermore, feature learning can be done using 

L2 pooling. L2 pooling using feature pooling [41], learning invariant features [42] studied by [41,42] is 

a two-layered network having square nonlinearity in the 1st layer (. )2 and square root nonlinearity in 

the 2nd layer √(. ) as reflected in equation (2.4) 

ℎ(𝑋𝑦𝑖) = ∑ √𝜀 + 𝐻𝑘 . ((𝑋𝑦𝑖)⨀(𝑋𝑦𝑖))𝐿
𝑘=1   (2.4) 

Here 𝐻𝑘 represents a row of spatial pooling matrix H ∈ 𝑃𝐿×𝐿 set to constant weights i.e.,1 for each 

element in matrix H, ⨀ represents the element wise multiplication and ε > 0 is a small constant. 

The sparse representation of the actual data can be represented using RICA. The following steps 

are used to compute the RICA features. 
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Figure 2. Steps in computing features based on RICA Algorithm. 

 

The step-by-step procedure to compute the features using RICA algorithm is reflected in the 

Figure 2. The RICA feature model is obtained by applying RICA to the matrix of predictor data X 

containing p variables q number of features to extract from X. The RICA thus learns p by q matrix of 

transformation weights. The value of q can be less than or greater than the number of predictor 

variables to avoid from undercomplete or overcomplete feature representation. In this study, we choose 

q to 100 features and default values of alpha and gamma are set. 

2.3. Classification methods 

2.3.1. Support Vector Machine (SVM) 

Vladimir Vapnik proposed SVM in 1979, which is a state of art algorithm used in different fields 

including medical diagnosis area [43], visual pattern recognition [44] and machine learning [45]. SVM 

is successfully used in many applications including text recognition, face expression recognition, 

emotion recognition, biometrics, and content-based image retrial etc. It constructs a hyperplane in the 

infinite dimensional space. The hyperplane helps to achieve the largest distance to any nearest training 

data point of any class. The lower generalization error can be obtained with the larger functional 

margin. To achieve this, SVM use the kernel trick. The linear and nonlinear separation with margin 

and slack variables in case of error examples are reflected in the Figure 3 (a, b) and Figure 4 (a, b). 
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Figure 3. SVM (a) linear separation and (b) Margin. 

Consider a hyperplane defined by x.w + b =0, where w is its normal. The data is linearly separated 

and is labelled as: 

{𝑥𝑖, 𝑦𝑖}, 𝑥𝑖𝜖𝑅𝑁𝑑, 𝑦𝑖 𝜖 {−1, 1}, 𝑖 = 1, 2, … … , 𝑁                   (2.5) 

Here 𝑦𝑖 is the class label of two class SVM. To obtain the optimal boundary, the objective function 

is minimized with maximal margin i.e.𝐸 = ‖𝑤‖2 subject to 

𝑥𝑖 . 𝑤 + 𝑏 ≥ 1 𝑓𝑜𝑟 𝑦𝑖 = +1 

𝑥𝑖. 𝑤 + 𝑏 ≤ 1 𝑓𝑜𝑟 𝑦𝑖 = −1       (2.6) 

Combining these into set of inequalities as 

(𝑥𝑖 . 𝑏 + 𝑏)𝑦𝑖 ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 
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Figure 4. (a) Error on margin using slack variable, (b, c) SVM non-linear separation. 

Generally, the data is not linearly separable, in such cases a slack variable Ξ𝑖 is used to indicate 

the amount of misclassification rate. Thus, new subjective function is then reformulated as: 

𝐸 =
1

2
‖𝑤‖2 + 𝐶 ∑ 𝐿(Ξ𝑖)

𝑖

                                                    (2.7) 

Subject to  

(𝑥𝑖. 𝑏 + 𝑏)𝑦𝑖 ≥ 1 − 𝜉𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

The first term on the right-hand side is the regularization term which gives the SVM an ability to 

generalize the sparse data well. The points which lie outside the margin are represented by the second 

term denoted by the empirical risk. The cost function is denoted by L, and hyper parameter is denoted 

by C, which shows a trade-off effect by minimizing the empirical risk against maximizing the 

margin. Linear-error cost function is most used because of its ability to detect the outliers. The 

dual formulation with 

𝐿(Ξ𝑖) = Ξ𝑖  𝑖𝑠 

𝛼∗ = 𝑚𝑎𝑥𝛼 (∑ 𝛼𝑖

𝑖

+ ∑ 𝛼𝑖𝛼𝑗  𝑦𝑖𝑦𝑗

𝑖,𝑗

 𝑥𝑖𝑥𝑗)                               (2.8) 
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Subject to 

0 ≤ 𝛼𝑖 ≤ 𝐶 𝑎𝑛𝑑 ∑ 𝛼𝑖𝑦𝑗 = 0

𝑖

 

In which 𝛼 = {𝛼1, 𝛼2, 𝛼3, . . . . . . 𝛼𝑖 , }is a set of Lagrange multipliers of the constraints in the primal 

optimization problem. The optimal decision boundary is now given by. 

𝑤0 = ∑ 𝛼𝑖𝑥𝑖𝑦𝑖

𝑖

                                                    (2.9) 

SVM for non-linearly separable data 

The kernel function trick is recommended by the Muller et al. (2001) to deal the data with 

nonlinear separability. In this case the non-linear mapping from input space is made to higher 

dimensional feature space. The dot product between two vectors in the input space is expressed by dot 

product with some kernel functions in the feature space.  

 

Figure 5. Parameter optimizations for SVM kernels. 

The Figure 5 reflects the SVM kernels parameter optimization settings. The kernel parameters, 

box constraints, polynomial order (1,2,3) were used according to the default settings. As shown in the 

above figure, in this research work three SVM kernels (Linear, Quadratic, cubic) are used for the 

classification of Brain Tumor. All three SVM classifiers are trained with 10-Fold Cross-validation and 

Kernel Scale auto. Box Constant parameter is used to control the overfitting problem. SVM is a binary 
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classifier and to train on multi-class, Coding parameter oneVSone is used. In the oneVSone option, 

one class is treated as a positive, the other as a negative class, and all other classes are not used in 

training, this process repeated for all the class combinations. 

The most used kernel functions are polynomial and radial base function (RBF). Mathematically, 

these are expressed as: 

Types of Different Machine Learning Kernels with formulae 

SVM Linear Kernel 

𝐾(𝑥𝑖, 𝑦𝑖) = 𝑥𝑖 . 𝑦𝑖 + 1                                         (2.10) 

SVM Quadratic Kernel 

𝐾(𝑥𝑖, 𝑦𝑖) = (𝑥𝑖. 𝑦𝑖 + 1)2                                         (2.11) 

SVM Cubic Kernel 

𝐾(𝑥𝑖, 𝑦𝑖) = (𝑥𝑖. 𝑦𝑖 + 1)3                                         (2.12) 

2.3.2. Linear Discriminant Analysis (LDA) 

Belhumeur in 1997 [46] proposed LDA as one of the classical algorithms in the field of pattern 

recognition and artificial intelligence (AI). The main functionality of this algorithm is to project the 

high dimensional samples into low dimensional space to achieve the effect of extracting classification 

information and to compress the feature space dimension. LDA is successfully been employed in many 

of the applications such as Pathak et al. [47] applied this algorithm for removing the redundancy and 

inconsistency in the data. Moreover, LDA can be used for classification and dimensionality reduction, 

we used LDA for multi-class classification. 

LDA is a simple method of classification using the generative methodology. It assumes that a 

Gaussian distribution is possible for each class and that every class has the same matrix of covariance. 

The LDA is a linear classification method with these assumptions. If they are by chance supportive of 

the actual data distribution, LDA is optimal in that it converges to the classifier of Bayes, when the 

number of data tends to infinitely (the parameter estimates, therefore, correspond to the real 

distribution parameters). In fact, LDA needs few computations to approximate the parameters of the 

classifier that amount to the estimation of the percentages and means plus the inversion of the matrix.). 

The LDA takes the generative method when presuming that a Gaussian distribution with probability 

density function generates the data of each class. The probability density function of 𝑥 in population 

𝜋𝑖is multivariate natural with mean variable 𝜇𝑖 and variance-covariance matrix. The formula for this 

usual function of probability density is: 

𝑝𝑋|𝑌=𝑦(𝒙|𝑌 = 𝑦) =
1

(2𝜋)
𝑑

2|𝚺𝑦|
1

2

exp(−
1

2
(𝒙 − 𝝁𝑦)𝑇𝚺𝑦

−1(𝒙 − 𝝁𝑦))    (2.13) 

And that the covariance matrix 𝚺𝑦  for all labels is the same:  

∀𝑦 ∈ 𝒴, 𝚺𝑦 = 𝚺                                      (2.14) 

They approximate the parameters as follows. The previous probabilities are essentially the data 

point fractions of each group: 
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∀𝑦 ∈ 𝒴, 𝑃(𝑌 = 𝑦) =
𝑁𝑦

𝑁
, with 𝑁𝑦 = ∑ 𝟏𝑦𝑖=𝑦                          (2.15)

𝑁

𝑖=1

 

The Gaussians' means are estimated by the means of the sample. 

∀𝑦 ∈ 𝒴, 𝝁𝑘 =
1

𝑁𝑦
∑ 𝒙𝑖

𝑦𝑖=𝑦

              (2.16) 

And the matrix for covariance by 

𝚺 =
1

𝑁 − |𝒴|
∑  .

𝑦∈𝒴

∑ (𝒙𝑖 − 𝝁𝑦)(𝒙𝑖 − 𝝁𝑦)𝑇       (2.17)

𝑦𝑖=𝑦

 

2.4. Training/Testing Data Formulation 

For training/testing data formulation, the Jack-knife 10-fold cross validation (CV) was used. The 

performance was evaluated using the similar metrics to detect brain tumor by applying adaptive spatial 

pooling methods [21], margin information and learning distance metric [48], bag-of-visual word 

representation methods [49], spatial layout information based methods [50] as employed and tested 

by [21,48–50], and CE-MRI data of 233 patients was randomly divided into 10 subsets of equal 

size. We also ensured that there is no overlap and equal ratios of the different type of tumors in the 

10 subsets for the CE-MRI datasets. The division according to the patients ensure that images from 

same patient did not exist simultaneously in the training and testing set. Using 10-fold cross validation, 

the data is partitioned into 10 folds and 9 folds participate in training and remaining folds in testing. 

The samples in the test fold are purely unseen. The entire process is repeated 10 times.  

K-fold Cross-validation is an effective preventative measure against overfitting.  Thus, to tune the 

model, the dataset is split into multiple train-test bins. Using k-fold CV, the dataset is divided into k-

folds. For model training, k-1 folds are involved, and rest of the folds are used for model testing. 

Moreover, k-fold method is helpful for fine-tuning the hyperparameters with the given original training 

dataset in order to determine that how the outcome of ML model could be generalized. The k-fold 

cross validation procedure is reflected in Figure 6 below. 

 

Figure 6. K-fold Cross-validation. 
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3. Results and discussions 

The researchers are devising automated tools to improve the prediction of brain tumor types 

because of the multivariate characteristics of the tumor types. Extracting the most relevant and 

appropriate feature is still a challenging task. In this study, we first extracted the traditional texture and 

morphological features from brain tumor types and computed the performance using the machine 

learning classification techniques such as LDA, SVM with linear, quadratic, cubic and cosine kernels. 

We then extracted the RICA based features based on the multivariate characteristics. These features 

are then used as input to these classifiers for multi-class approach. The results reveal that proposed feature 

extraction approach using SVM cubic yielded more appropriate results to predict the tumor types. 

Table 4 shows the results of AI multiclass brain tumor types (Glioma, meningioma, pituitary) 

classification of texture and morphological features. The classifiers LDA and SVM with its kernel 

yielded moderate performance. Specifically, SVM quadratic classifiers yielded best performance with 

accuracy (93.11%), AUC (0.8928) followed by SVM cubic with accuracy (93.04%) and AUC (0.8895) 

to predict the pituitary from multiclass. The other performance metrics are reflected in the Table 3. 

Table 4. Multiclass classification of Brain tumor types (Glioma, meningioma, 

pituitary) by extracting texture + morphological based features and employing machine 

learning techniques. 

Class Sens. Spec. PPV NPV FPR Acc. AUC 

LDA  

Glioma 100% 16.09% 47.79% 100% 0.839 52.54% 0.5804 

meningioma  100%  100% 0 100%  

Pituitary 39.78% 100% 100% 94.31% 0 94.52% 0.6989 

SVM Linear 

Glioma 100% 54.42% 60.67% 100% 0.455 73.24% 0.7720 

meningioma  100%  100% 0 100%  

Pituitary 75.48% 100% 100% 89.67% 0 92.16% 0.8774 

SVM Quadratic 

Glioma 100% 62.30% 63.95% 100% 0.376 77.42% 0.8115 

meningioma 52.28% 99.79% 93.02% 97.54% 0.0020 97.42% 0.7604 

Pituitary 78.57% 100% 100% 90.78% 0 93.11% 0.8928 

SVM Cubic 

Glioma 100% 71.25% 64.91% 100% 0.2875 81.23% 0.8562 

meningioma 46.80% 98.56% 83.89% 92.04% 0.014 91.41% 0.7268 

Pituitary 77.90% 100% 100% 90.79% 0 93.04% 0.8895 

SVM Cosine 

Glioma 100% 75.50% 67.42% 100% 0.2449 83.74% 0.8775 

meningioma 47.61% 99.29% 90.45% 93.08% 0.007 92.92% 0.7345 

Pituitary 71.79% 100% 100% 85.71% 0 89.95% 0.8589 

 

Table 5 reflect the multi-class classification results of brain tumor types (meningioma, Glioma, 

pituitary) based on the RICA features. The classifiers LDA and SVM with its kernel yielded highest 

performance. Specifically, SVM cubic classifiers yielded best performance with accuracy (99.34%), 

AUC (0.9892) followed by SVM quadratic with accuracy (98.10%) and AUC (0.9699) to predict the 
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pituitary from multiclass. To predict the meningioma from multiclass, SVM cubic yielded an accuracy 

(96.96%), AUC (0.9348) and to predict glioma from multiclass and accuracy (95.88%), AUC (0.9635) 

was obtained. The highest multi-class prediction with other classifiers was obtained by LDA followed 

by SVM linear, and SVM cosine. 

Table 5. Multiclass classification of Brain tumor types by extracting RICA based features 

and utilizing ML techniques. 

Class Sensitivity Specificity PPV NPV FPR Accuracy AUC 

LDA 

Glioma 100% 82.38% 78.95% 100% 0.1761 89.39% 0.9119 

meningioma 69.18% 99.32% 95.66% 93.75% 0.0067 93.99% 0.8425 

Pituitary 89.07 100% 100% 95.24% 0 96.57% 0.9453 

SVM Linear 

Glioma 100% 84.64% 81.45% 100% 0.153 90.83% 0.9232 

meningioma 71.50% 99.60% 97.46% 94.26% 0.004 94.68% 0.8555 

Pituitary 88.32% 100% 100% 94.63% 0 96.18% 0.9416 

SVM Quadratic 

Glioma 100% 91.18% 89.53% 100% 0.088 94.97% 0.9559 

meningioma 84.51% 99.63% 98.31% 96.20% 0.0036 96.57% 0.9207 

Pituitary 93.89% 100% 100% 97.31% 0 98.10% 0.9699 

SVM Cubic 

Glioma 100% 92.27% 91.38% 100% 0.072 95.88% 0.9635 

meningioma 87.34% 99.62% 98.47% 96.60% 0.0038 96.96% 0.9348 

Pituitary 97.78% 100% 100% 99.07% 0 99.34% 0.9892 

SVM Cosine 

Glioma 100% 87.51% 84.01% 100% 0.1248 92.46% 0.9375 

meningioma 72.98% 99.76% 98.66% 93.72% 0.0024 94.45% 0.8636 

Pituitary 87.27% 100% 100% 94.14% 0 95.58% 0.9336 

 

The Figure 7 (a–e) reflects the Multi-class distribution of glioma (1426 slices), meningioma (708 

slices) and pituitary (930 slices). From figure 7 (d) using SVM cubic, out of 1426 glioma, there were 

1337 were predicted a glioma, 113 as meningioma and 13 as pituitary. From 708 meningioma, after 

prediction, there were 84 predicted as glioma, 580 as meningioma and 9 as pituitary. From 930 

pituitary, there were 5 predicted as glioma, 15 as meningioma and 908 as pituitary. The distribution 

using other classifiers is reflected in the Figure 7 (a–e). 

The researchers extracted various features extraction approaches using ML and DL methods to 

detect the binary class classification of brain tumor types. The highest performance based on the overall 

accuracy was obtained by [22] 91.28%,  [51] 90.89%,  [52] 86.56%, and  [53] 84.19%.  With the multi-

class classification, the LDA yielded accuracy for pituitary (96.48%), meningioma (93.89%) and 

glioma (89.39%). Using SVM linear, the accuracy to detect pituitary was yielded (96.28%), an 

accuracy (94.45%) was obtained to detect meningioma, while to detect the glioma, and accuracy 

(90.76%) was yielded. By employing the quadratic kernel, the highest detection was obtained to detect 

pituitary with accuracy (98.07%), followed by accuracy (96.18%) to predict meningioma and accuracy 

(94.35%) to detect glioma.  
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(a) 

 
(b) 

 
(c)  

(d) 

 
(e) 

 

 

 

 

 

 

 

 

Figure 7. Confusion matrix to detect Multi-class brain tumor types (Glioma, Pituitary, 

Meningioma) by Computing RICA features and using machine learning techniques a) 

LDA, b) SVM linear, c) SVM quadratic, d) SVM cubic, e) SVM cosine. 
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(a) 

 

(b) 

 

(c) 

 

Figure 8. Area under the receiver operating curve (AUC) to detect Multi-class Brain tumor 

types a) Glioma, b) Meningioma, c) Pituitary using Robust Machine learning classifiers 

and extracting texture + morphological features. 
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(a) 

 
(b) 

 
(c) 

 

Figure 9. Area under the receiver operating curve (AUC) to detect Multi-class Brain tumor 

types a) Glioma, b) Meningioma, c) Pituitary using Robust Machine learning classifiers by 

extracting RICA features. 
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The Figure 8 (a–c) shows the multi-class separation in the form of the area under the receiver 

operating curve based on texture + morphological features extracted and employing machine learning 

techniques. The highest separation was obtained with AUC (0.8928) to detect pituitary using SVM 

quadratic followed by AUC (0.8895) to detect pituitary using SVM cubic. 

The Figure 9 (a-c) reflect the Multi-class separation to distinguish a) Glioma, b) Meningioma, and 

c) Pituitary by computing RICA features and utilizing robust machine learning techniques. To detect 

the Glioma, the separation with AUC was obtained using LDA (0.9119), SVM Linear (0.9232), SVM 

quadratic (0.9559), SVM cubic (0.9635), and SVM cosine (0.9375).  To detect the meningioma, the 

separation with AUC was obtained using LDA (0.8425), SVM Linear (0.8555), SVM quadratic 

(0.9207), SVM cubic (0.9348), and SVM cosine (0.8636). To detect the pituitary, the separation with 

AUC was obtained using LDA (0.9453), SVM Linear (0.9416), SVM quadratic (0.9699), SVM cubic 

(0.9892), and SVM cosine (0.9336).  

The Table 6 presents the findings of different hand-crafted features techniques alongwith machine 

learning techniques to classify the brain tumor from normal and between brain tumor types using similar 

dataset and different datasets. Using LDA, the highest detection performance was obtained to detect 

pituitary with accuracy (96.57%), AUC (0.9453) followed by meningioma and glioma. Using SVM 

linear kernel, the highest detection performance was obtained to detect pituitary with accuracy 

(96.18%), AUC (0.9416). Using SVM quadratic kernel, the highest detection performance was obtained 

to detect pituitary with accuracy (98.10%) and AUC (0.9699). Likewise, using SVM cubic, the highest 

detection performance to detect the pituitary was obtained with accuracy (99.34%), AUC (0.9892). 

Moreover, using SVM cosine, to detect pituitary an accuracy (95.58%) and AUC (0.9336) was yielded.  

To extract the diagnostic information from MR images, researchers employed several image 

analysis techniques using tissue characterization methods [57], texture text objects and intracranial 

brain tumor detection [58], and tissue characterization and intracranial brain tumor detection [59] 

detailed in [57–59]. The texture analysis and pattern recognition techniques were employed in these 

studies to characterize the types of brain tumor. Recently, [60] employed SVM to classify the gliomas 

and meningiomas and obtained 95% overall accuracy to distinguish these types. Moreover, [57] 

employed k-nearest neighbor and discriminant analysis to distinguish between oedematous and brain 

tumor tissues by achieving a maximum accuracy of 95%. Recently, several studies applied MR 

spectroscopic features such as long echo proton MRs signals [61], short echo time [62] , tumor 

grading [63], short time multicenter study [64], and short echo metabolic patterns [65] as described 

in [61–65] or combination of spectroscopic and texture features to distinguish between various 

brain tumor types by achieving a maximum accuracy of 99% [64]. Moreover, authors with 

benchmark with similar dataset [37] extracted hand-crafted features by applying machine learning 

techniques and deep convolutional neural network methods obtained performance in terms of 

overall accuracy [7] 98%, [54] 96.4%, [66] 80%, [52] 86.56%, [25] 85.69%, [22] 91.28%,  [55] 

94.2%, [53] 91.43%, and [56] 96.67%. In the present study, we used MRI brain tumor types dataset 

originally provided by Cheng et al. which is used in his studies [21,22]. We compared the results 

with similar dataset used by other researchers such as Abiwinanda et. al. [23], Cheng et al. [22], 

Sajjad et al. [24], Zia et al. [25], Badža and Barjaktarović [26], Gumaei et al. [27], Swati et al. [4], 

and Huang et al. [28] as reflected in Table 6. 
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Table 6. Literature review of existing techniques and methods and with similar dataset. 

Author Feature/Methods Performance 

Machhale et al. [7] SVM-KNN Sensitivity: 100% 

Specificity: 93.75% 

Accuracy: 98% 

Zacharaki et al. [54] Cross-Validation Using different 

Classifiers (LDA,k-NN,SVM) 

Sensitivity: 75% 

Specificity: 100% 

Accuracy: 96.4% 

Badža and 

Barjaktarović [26] 

CNN Accuracy 95.40% 

Gumaei et al. [27]  Regularized extreme learning machine 

(RELM) 

Accuracy 94.23% 

Swati et al. [4] Automatic content-based image 

retrieval (CBIR) system 

Average precision 96.13% 

Huang et al. [28] convolutional neural network based on 

complex networks (CNNBCN) 

Accuracy 95.49% 

Afshar et al. [52] Capsule Network Method Accuracy: 86.56% 

Zia et al. [25] Window Based Image Cropping Sensitivity:86.26% 

Specificity:90.90% 

Accuracy: 85.69% 

Sajjad et al. [24] CNN with data augmentation  Sensitivity:88.41% 

Secificity:96.12% 

Accuracy: 94.58% 

Cheng et al. [22] Feature extraction 

methods: 

Intensity Histogram 

GLCM 

BOW 

Classification 

Methods: 

SVM 

SRC 

KNN 

Accuracy:91.28% 

Abiwinanda et. al. [23] CNN Accuracy: 84.19% 

Anaraki et al. [55] Genetic Algorithms Accuracy: 94.2% 

Paul et al. [53] NN Accuracy: 91.43% 

Sachdeva et al. [56] Segmentation and Feature extraction Highest accuracy 96.67% 

This work RICA Based Features 

SVM Cubic with Multiclass 

classification 

1) Pituitary  

2) Meningioma 

3) Glioma 

1) Accuracy: 99.34%, 

AUC: 0.9892 

2) Accuracy: 96.96%, 

AUC: 0.9348 

3) Accuracy: 95.88%, 

AUC: 0.9635 
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The authors who used the similar database includes Abiwinanda et. al., Sajjad et al., Anaraki et 

al., Cheng et al., Swati et al., and Gumaei et al. to predict the brain tumor types such as Glioma, 

Meningioma and Pituitary. Abiwinanda et. al. [23] trained the CNN to predict the three most common 

types of brain tumor i.e. Glioma, Meningioma and Pituitary. They implemented the simple CNN 

architecture i.e., max-pooling, convolution, and flattening layers followed by a full connection from 

one hidden layer. The CNN was trained on similar dataset consisting of 3064 T-1 weighted CE-MRI 

images publicly available Cheng et al. [22] yielded a training accuracy of 98.51% and validation 

accuracy of 84.19% at best. The results are compared with similar dataset by employing the region-

based segmentation algorithms yielded accuracies ranged between 71.39% to 94.68%. Sajjad et al. [24] 

applied CNN with and without data augmentation methods to detect the brain tumor types such as 

Glioma, Meningioma and Pituitary. With the original dataset, the highest performance was obtained 

with sensitivity (88.41%), specificity (96.12%) and accuracy (94.58%). Anaraki et al. [55] applied 

CNN and genetic algorithms to classify the MRI brain tumor grades types. The highest classification 

accuracy of 94.2% was yielded to classify brain tumor types such as Glioma, Meningioma and 

Pituitary tumor with improved results as computed by Paul et al. by employing Vanilla preprocessing 

with shallow CNN to distinguish the Glioma, Meningioma and Pituitary tumor types. Cheng et al. [22] 

classified the three brain tumor types such as Glioma, Meningioma and Pituitary. The classification 

performance was evaluated with three feature extraction methods namely gray level co-occurrence 

matrix (GLCM), intensity histogram and bag-of-words model Enhanced Performance of Brain Tumor 

Classification via Tumor Region Augmentation and Partition. The improved performacne are reflected 

in Table 6. 

In many imaging pathologies, the texture properties along with morphological imaging features 

played a vital role in prediction. This may be since most of these pathologies may contain the hidden 

information can be best extracted from these texture and shape properties. Due to the heterogenous 

characteristics, aggressive nature and involvement of several factors, the brain tumor is categorized 

into different types (i.e. glioma, meningioma and pituitary etc.). Researchers are developing various 

automated tools to improve the prediction. The results yielded by extracting texture and morphological 

features reveal that some machine learning algorithms provided higher sensitivity while some other 

provided higher specificity. It can be inferred that these features still cannot be better fit to better 

predict the brain tumor types based on these heterogenous characteristics. While extracting RICA 

features improved both specificity and sensitivity substantially using SVM quadratic and cubic kernels. 

Thus, RICA feature characteristics may better tailor to distinguish these multiclass brain tumor types 

and hence improved the prediction performance.  

4. Conclusion 

In this study, we used the RICA based advanced feature extraction methods from MRI scans of 

multi-class brain tumor types of patients. The brain tumor types properly classification is of much 

significance to correctly treat the brain tumor. The proposed multiclass approach yielded the highest 

detection rate to detect pituitary followed by meningioma and glioma type. The results revealed that 

proposed approach based on RICA features from brain tumor types of MRIs will be very helpful for 

early detection of tumor type and to treat the patients to improve the survival rate.  
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Limitation and future recommendations 

In this study, we used multi-class classification between few brain tumors types. The data is 

lacking the description of distribution of each type of patient, which we will address in future. In future, 

we will also extend the work with other types of brain tumor and larger datasets along with more 

feature extraction methods. We will also employ this model for other type of medical images such as 

ultrasonography (ultrasound), radiography (X-ray), dermoscopic, endoscopic and histology images 

along with demographic information and tumor staging. Machine learning based on the feature 

extraction approach is hot topic of research due to less computational time as compared to the deep 

learning which require more computational resources. The researchers are developing different feature 

extraction approaches in order to improve the detection performance. We will extract more relevant 

features for further improving the machine learning (i.e. non-deep learning) classification results. We 

will also compute and compare the results of Machine learning methods using feature extraction 

approach with the deep convolutional neural network methods with optimization of parameters.   

Conflicts of interest 

The authors declare that they have no conflict of interest. 

Ethical approval 

Not Applicable Data were obtained from a publicly available, deidentified dataset. For this type 

of study formal consent is not required https://github.com/chengjun583/brainTumorRetrieval 

References 

1. S. B. Gaikwad, M. S. Joshi, Brain tumor classification using principal component analysis and 

probabilistic neural network, Int. J. Comput. Appl., 120 (2015), 5–9. 

2. Q. T. Ostrom, G. Cioffi, H. Gittleman, N. Patil, K. Waite, C. Kruchko, et al., CBTRUS statistical 

report: primary brain and other central nervous system tumors diagnosed in the United States in 

2012–2016, Neuro. Oncol., 21 (2019), v1–v100. 

3. D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, et 

al., The 2016 World Health Organization Classification of tumors of the central nervous system: 

A summary, Acta Neuropathol., 131 (2016), 803–820. 

4. Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, S. Ahmed, et al., Content-Based brain tumor 

retrieval for MR images using transfer learning, IEEE Access, 7 (2019), 17809–17822. 

5. S. Pereira, R. Meier, V. Alves, M. Reyes, C. A. Silva, Automatic brain tumor grading from mri 

data using convolutional neural networks and quality assessment, in: Understanding and 

interpreting machine learning in medical image computing applications, Springer, Cham., 2018, 

106–114. 

6. S. Deepak, P. M. Ameer, Brain tumor classification using deep CNN features via transfer learning, 

Comput. Biol. Med., 111 (2019), 103345. 

7. K. Machhale, H. B. Nandpuru, V. Kapur, L. Kosta, MRI brain cancer classification using hybrid 

classifier (SVM-KNN), in: 2015 Int. Conf. Ind. Instrum. Control, IEEE, 2015, 60–65. 

8. S. Rathore, M. Hussain, M. Aksam Iftikhar, A. Jalil, Ensemble classification of colon biopsy 

https://github.com/chengjun583/brainTumorRetrieval


2905 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 2882–2908. 

images based on information rich hybrid features, Comput. Biol. Med., 47 (2014), 76–92. 

9. S. Rathore, M. Hussain, A. Khan, Automated colon cancer detection using hybrid of novel 

geometric features and some traditional features, Comput. Biol. Med., 65 (2015) 279–296. 

10. L. Hussain, A. Ahmed, S. Saeed, S. Rathore, I. A. Awan, S. A. Shah, et al., Prostate cancer 

detection using machine learning techniques by employing combination of features extracting 

strategies, Cancer Biomarkers, 21 (2018), 393–413. 

11. Y. Asim, B. Raza, A. Kamran, M. Saima, A.K. Malik, S. Rathore, et al., A multi-modal, multi-

atlas-based approach for Alzheimer detection via machine learning, Int. J. Imag. Sys. Tech., 28 

(2018), 113–123. 

12. A. Islam, M. F. Hossain, C. Saha, A new hybrid approach for brain tumor classification using 

BWT-KSVM, in: 2017 4th Int. Conf. Adv. Electr. Eng., IEEE, 2017, 241–246. 

13. P. P. Rebouças Filho, E. de S. Rebouças, L.  B. Marinho, R. M. Sarmento, J. M. R. S. Tavares, V. 

H. C. de Albuquerque, Analysis of human tissue densities: A new approach to extract features from 

medical images, Pattern Recognit. Lett., 94 (2017), 211–218. 

14. B. Dhruv, N. Mittal, M. Modi, Study of Haralick’s and GLCM texture analysis on 3D medical 

images, Int. J. Neurosci., 129 (2019), 350–362. 

15. Q. Zheng, H. Li, B. Fan, S. Wu, J. Xu, Integrating support vector machine and graph cuts for 

medical image segmentation, J. Vis. Commun. Image Represent, 55 (2018), 157–165. 

16. S. A. Taie, W. Ghonaim, Title CSO-based algorithm with support vector machine for brain tumor’s 

disease diagnosis, in: 2017 IEEE Int. Conf. Pervasive Comput. Commun. Work. (PerCom Work.), 

IEEE, 2017, 183–187. 

17. M. K. Abd-Ellah, A. I. Awad, A. A. M. Khalaf, H. F. A. Hamed, Classification of brain tumor 

MRIs using a kernel support vector machine, in: International Conference on Well-Being in the 

Information Society, Springer, Cham. 2016,151–160. 

18. H. Alquran, I. A. Qasmieh, A. M. Alqudah, S. Alhammouri, E. Alawneh, A. Abughazaleh, et al., 

The melanoma skin cancer detection and classification using support vector machine, in: 2017 

IEEE Jordan Conf. Appl. Electr. Eng. Comput. Technol., IEEE, 2017, 1–5. 

19. S. Wang, S. Du, A. Atangana, A. Liu, Z. Lu, Application of stationary wavelet entropy in 

pathological brain detection, Multimed. Tools Appl., 77 (2018), 3701–3714. 

20. Y. Zhang, J. Yang, S. Wang, Z. Dong, P. Phillips, Pathological brain detection in MRI scanning 

via Hu moment invariants and machine learning, J. Exp. Theor. Artif. Intell., 29 (2017), 299–312. 

21. J. Cheng, W. Yang, M. Huang, W. Huang, J. Jiang, Y. Zhou, et al., Retrieval of brain tumors by 

adaptive spatial pooling and fisher vector representation, PLoS One, 11 (2016), e0157112. 

22. J. Cheng, W. Huang, S. Cao, R. Yang, W. Yang, Z. Yun, et al., Enhanced performance of brain 

tumor classification via tumor region augmentation and partition, PLoS One., 10 (2015), e0140381. 

23. N. Abiwinanda, M. Hanif, S. T. Hesaputra, A. Handayani, T. R. Mengko, Brain tumor 

classification using convolutional neural network, in: World Congr. Med. Phys. Biomed. Eng. 

2018, Springer, Singapore, 2019, 183–189. 

24. M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, S. W. Baik, Multi-grade brain tumor 

classification using deep CNN with extensive data augmentation, J. Comput. Sci., 30 (2019), 

174–182. 

25. R. Zia, P. Akhtar, A. Aziz, A new rectangular window based image cropping method for 

generalization of brain neoplasm classification systems, Int. J. Imag. Syst. Technol., 28 (2018), 

153–162. 



2906 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 2882–2908. 

26. M. M. Badža, M. Č. Barjaktarović, Classification of brain tumors from MRI images using a 

convolutional neural network, Appl. Sci., 10 (2020), 1999. 

27. A. Gumaei, M. M. Hassan, M. R. Hassan, A. Alelaiwi, G. Fortino, A hybrid feature extraction 

method with regularized extreme learning machine for brain tumor classification, IEEE Access, 7 

(2019), 36266–36273. 

28. Z. Huang, X. Du, L. Chen, Y. Li, M. Liu, Y. Chou, et al., Convolutional neural network based on 

complex networks for brain tumor image classification with a modified activation function, IEEE 

Access, 8 (2020), 89281–89290. 

29. L. Hussain, I. A. Awan, W. Aziz, S. Saeed, A. Ali, F. Zeeshan, et al., Detecting congestive heart 

failure by extracting multimodal features and employing machine learning techniques, Biomed. 

Res. Int., 2020 (2020), 1–19. 

30. L. Hussain, W. Aziz, S. Saeed, I. A. Awan, A. A. Abbasi, N. Maroof, Arrhythmia detection by 

extracting hybrid features based on refined Fuzzy entropy (FuzEn) approach and employing 

machine learning techniques, Waves Rand. Complex Media., 30 (2020), 656–686. 

31. D. S. Guru, Y. H. Sharath, S. Manjunath, Texture features and KNN in classification of flower 

images, Int. J. Comput. Appl., (2010), 21–29. 

32. A. N. Esgiar, R. N. Naguib, B. S. Sharif, M. K. Bennett, A. Murray, Microscopic image analysis 

for quantitative measurement and feature identification of normal and cancerous colonic mucosa, 

IEEE Trans. Inf. Technol. Biomed., 2 (1998), 197–203. 

33. A. N. Esgiar, R. N. G. Naguib, B. S. Sharif, M. K. Bennett, A. Murray, Fractal analysis in the 

detection of colonic cancer images, IEEE Trans. Inf. Technol. Biomed., 6 (2002), 54–58. 

34. M. Masseroli, A. Bollea, G. Forloni, Quantitative morphology and shape classification of neurons 

by computerized image analysis, Comput. Methods Programs Biomed., (1993), 89–99.  

35. Y. M. Li, X. P. Zeng, A new strategy for urinary sediment segmentation based on wavelet, 

morphology and combination method, Comput. Methods Programs Biomed., 84 (2006), 162–173.  

36. A. Hyvärinen, E. Oja, Independent component analysis: Algorithms and applications, Neural 

Networks, 13 (2000), 411–430.  

37. Y. Xiao, Z. Zhu, Y. Zhao, Kernel reconstruction ICA for sparse representation, IEEE Trans. Neural 

Networks Learn. Syst., 26 (2015), 1222–1232. 

38. J. Hurri, P. O. Hoyer, Natural Image Statistics, A probabilistic approach to early computational 

vision, Springer Science & Business Media, 39 (2009). 

39. Q. V. Le, A. Karpenko, J. Ngiam, A. Y. Ng, ICA with reconstruction cost for efficient 

overcomplete feature learning, Adv. Neural. Inform. Process Syst., 24 (2011), 1017–1025.  

40. Q. V. Le, M. A. Ranzato, M. Devin, G. S. Corrado, A. Y. Ng, Building high-level features using 

large scale unsupervised learning, In 2013 IEEE international conference on acoustics, speech and 

signal processing, IEEE, (2013), 8595–8598 

41. Y. Boureau, A theoretical analysis of feature pooling in visual recognition, In Proceedings of the 

27th international conference on machine learning (ICML-10), (2010), 111–118. 

42. Y. Lecun, Learning invariant feature hierarchies, In European conference on computer vision, 

Springer, Berlin, Heidelberg, (2012), 496–505 

43. A. P. Dobrowolski, M. Wierzbowski, K. Tomczykiewicz, Multiresolution MUAPs decomposition 

and SVM-based analysis in the classification of neuromuscular disorders, Comput. Methods 

Programs Biomed., 107 (2012), 393–403. 

44. J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 61 (2015), 85–



2907 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 2882–2908. 

117. 

45. H. Papadopoulos, V. Vovk, A. Gammerman, Guest editors’ preface to the special issue on 

conformal prediction and its applications, Ann. Math. Artif. Intell., 74 (2015), 1–7. 

46. N. Kambhatla, T. K. Leen, Dimension reduction by local principal component analysis, Neural 

Comput., 9 (1997), 1493–1516.  

47. A. Pathak, B. Vohra, K. Gupta, Supervised learning approach towards class separability-linear 

discriminant analysis, in: 2019 Int. Conf. Intell. Comput. Control Syst., IEEE, (2019), 1088–1093. 

48. W. Yang, Q. Feng, M. Yu, Z. Lu, Y. Gao, Y. Xu, et al., Content-based retrieval of brain tumor in 

contrast-enhanced MRI images using tumor margin information and learned distance metric, Med. 

Phys., 39 (2012), 6929–6942. 

49. M. Huang, W. Yang, M. Yu, Z. Lu, Q. Feng, W. Chen, Retrieval of brain tumors with region-

specific bag-of-visual-words representations in contrast-enhanced MRI images, Comput. Math. 

Methods Med., 2012 (2012), 1–17. 

50. M. Huang, W. Yang, Y. Wu, J. Jiang, Y. Gao, Y. Chen, et al., Content-based image retrieval using 

spatial layout information in brain tumor T1-weighted contrast-enhanced mr images, PLoS One, 9 

(2014), e102754. 

51. P. Afshar, K. N. Plataniotis, A. Mohammadi, Capsule networks for brain tumor classification based 

on mri images and coarse tumor boundaries, in: ICASSP 2019 - 2019 IEEE Int. Conf. Acoust. 

Speech Signal Process., IEEE, (2019), 1368–1372. 

52. P. Afshar, A. Mohammadi, K. N. Plataniotis, Brain tumor type classification via capsule networks, 

in: 2018 25th IEEE Int. Conf. Image Process., IEEE, (2018), 3129–3133. 

53. J. S. Paul, A. J. Plassard, B. A. Landman, D. Fabbri, Deep learning for brain tumor classification, 

in: Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional 

Imaging., International Society for Optics and Photonics, 10137 (2017), 1013710. 

54. E. I. Zacharaki, S. Wang, S. Chawla, D. Soo, R. Yoo, E. R. Wolf, et al., Classification of brain 

tumor type and grade using MRI texture and shape in a machine learning scheme, Magn. Reson. 

Med., 62 (2009), 1609–1618. 

55. A. Kabir Anaraki, M. Ayati, F. Kazemi, Magnetic resonance imaging-based brain tumor grades 

classification and grading via convolutional neural networks and genetic algorithms, Biocybern. 

Biomed. Eng., 39 (2019), 63–74. 

56. J. Sachdeva, V. Kumar, I. Gupta, N. Khandelwal, C. K. Ahuja, Segmentation, feature extraction, 

and multiclass brain tumor classification, J. Digit. Imag., 26 (2013), 1141–1150. 

57. R. A. Lerski, K. Straughan, L. R. Schad, D. Boyce, S. Blüml, I. Zuna, VIII. MR image texture 

analysis—An approach to tissue characterization, Magn. Reson. Imaging., 11 (1993), 873–887. 

58. S. Herlidou-Même, J. Constans, B. Carsin, D. Olivie, P. Eliat, L. Nadal-Desbarats, et al., MRI 

texture analysis on texture test objects, normal brain and intracranial tumors, Magn. Reson. 

Imaging., 21 (2003), 989–993. 

59. L. R. Schad, S. Blüml, I. Zuna, IX. MR tissue characterization of intracranial tumors by means of 

texture analysis, Magn. Reson. Imaging., 11 (1993), 889–896. 

60. A. Devos, A.W. Simonetti, M. van der Graaf, L. Lukas, J. A. K. Suykens, L. Vanhamme, et al., 

The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic 

imaging for brain tumour classification, J. Magn. Reson., 173 (2005), 218–228. 

61. L. Lukas, A. Devos, J. A. K. Suykens, L. Vanhamme, F. A. Howe, C. Majós, et al., Brain tumor 

classification based on long echo proton MRS signals, Artif. Intell. Med., 31 (2004), 73–89. 



2908 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 2882–2908. 

62. A. Devos, L. Lukas, J. A. K. Suykens, L. Vanhamme, A. R. Tate, F. A. Howe, et al., Classification 

of brain tumours using short echo time 1H MR spectra, J. Magn. Reson., 170 (2004), 164–175. 

63. Y. Huang, P. J. G. Lisboa, W. El-Deredy, Tumour grading from magnetic resonance spectroscopy: 

A comparison of feature extraction with variable selection, Stat. Med., 22 (2003), 147–164. 

64. A. R. Tate, C. Majós, A. Moreno, F. A. Howe, J. R. Griffiths, C. Arús, Automated classification 

of short echo time in in vivo 1 H brain tumor spectra: A multicenter study, Magn. Reson. Med., 49 

(2003), 29–36. 

65. Y. D. Cho, G. H. Choi, S. P. Lee, J. K. Kim, 1H-MRS metabolic patterns for distinguishing between 

meningiomas and other brain tumors, Magn. Reson. Imaging., 21 (2003), 663–672. 

66. Y. Pan, W. Huang, Z. Lin, W. Zhu, J. Zhou, J. Wong, et al., Brain tumor grading based on Neural 

Networks and Convolutional Neural Networks, in: 2015 37th Annu. Int. Conf. IEEE Eng. Med. 

Biol. Soc., IEEE, (2015), 699–702.  

 

©2021 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

 


