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Abstract: In this paper, we study the initial boundary value problem for a class of fractional p-
Laplacian Kirchhoff type diffusion equations with logarithmic nonlinearity. Under suitable assump-
tions, we obtain the extinction property and accurate decay estimates of solutions by virtue of the
logarithmic Sobolev inequality. Moreover, we discuss the blow-up property and global boundedness
of solutions.
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1. Introduction

In this paper, we study the extinction and the blow-up for the following fractional p-Laplacian
Kirchhoft type equations with logarithmic nonlinearity.

uy + M(|[ullP)(=A)5u = Auuln|u| — Blul*u, inQx(0,T),
u(0) = uy, in Q, (1.1)
u=20, on 0Q x (0, T),

|u(x)—u(y)|1’ s
il = ([[ B2 vy’

Q = RPN\ (CQ x CQ), CQ = RM\Q, Q c RY (N > 2s) is a bounded domain with Lipschitz boundary,
seO,1),l<p<2,1<g<2,r>1,4,8>0, (—A); is the fractional p-Laplacian operator and
satisfies

where

(=A),u(x) =2 lim Ju(x) — w2 (u(x) - u(y))

Y=0" JRMB,(x) |x — y|V*+sp

b
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where u(x) € C* and u(x) has compact support in Q, B,(x) C RY is the ball with center x and radius y.
up(x) € L¥(Q) N W,”(Q) is a nonzero non-negative function, where L*(Q) and W,”(Q) are Lebesgue
space and fractional Sobolev space respectively, which will be given in section 2. M(-) is a Kirchhoff
function with the following assumptions

M)O0<s<1,MT):=a+bot" " forte Ry := [0, +00) (a > 0,b > 0 are two constants), 6 > 1;

(M) M : R; — R{\{0} is continuous and there exits my > 0 such M(7) > m, for all 7 > 0.

It is worth pointing out that the interest in studying problems like (1.1) relies not only on mathe-
matical purposes, but also on their significance in real models. For example, in the study of biological
populations, we can use u(x, ) to represent the density of the population at x at time ¢, the term (=A)u
represents the diffusion of density, u|u|?"%u represents the internal source and Aju|"~2u In |u| denotes ex-
ternal influencing factors. For more practical applications of problems like (1.1), please refer to the
studies [1-3].

Compared with integer-order equations, it is very difficult to study the problem (1.1), which con-
tains both non-local terms (including fractional p-Laplacian operators and Kirchhoff functions) and
logarithmic nonlinearity. For the fractional order theory, we refer the readers to the studies [4-6].
In [7, 8], the authors use Sobolev space and Nehari manifold to study the existence of solutions for
fractional equations. In [9, 10], the solutions for fractional equations are discussed by virtue of Ne-
hari manifold and fibrillation diagram. By using different methods from above, the properties of the
solutions for such partial differential equations are considered by the method of variational principle
and topological theory in the the literature [11-13]. Moreover, the authors prefer to use potential well
theory, Galerkin approximation and Nehari manifold method to prove the existence of solutions, decay
estimation and blow-up, we refer the reader to the literature [14—16].

Existence, extinction and blow-up of solutions are three important topics which regard parabolic
problems; in particular, the study of extinction properties has made great progress in recent years.
In [17], Liu considered the following initial boundary value problem for the fractional p-Laplacian
equation

u, — div((VulP>Vu) + Bu? = ', xe€Q, t>0, (1.2)

where 1 < p < 2, g < 1and r,4,8 > 0. By employing the differential inequality and comparison
principle, they obtained the extinction and the non-extinction of weak solutions. In [18], Sarra Toual-
bia et al. considered the following initial boundary value problem of a nonlocal heat equations with
logarithmic nonlinearity

u, — div(|Vu|P>Vu) = |u|”_2ulog |ue| — 9€ lu|P2u log |uldx, x € Q, t > 0, (1.3)
Q
where p € (2,40). By using the logarithmic Sobolev inequality and potential well method, they
obtained decay, blow-up and non-extinction of solutions. In [19], Xiang and Yang studied the first
initial boundary value problem of the following fractional p-Kirchhoff type

up+ M([]? )(=A)ou = Aulu — plul’u, (x,1) € Qx (0, 00), (1.4)

where M : [0, 00) — (0, 00) is a continuous function,0 < s <1 <p <2, 1 <g<2,r>1,4u>0.
Under suitable assumptions, they proved the extinction and non-extinction of solutions and perfected
the Gagliardo-Nirenberg inequality. For more information on the extinction properties of the solution,
please refer to the studies [20-23].
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Inspired by the above works, we overcome the research difficulties of logarithmic nonlinearity, p-
Laplace operator and Kirchhoff coefficients in problem (1.1) based on the potential well theory, Nehari
manifold and differential inequality methods, we give the extinction and the blow-up properties of
solutions. In addition, we give the global boundedness of the solution by appropriate assumptions. To
the best of our knowledge, it is the first result in the literature to investigate the extinction and blow-up
of solutions for fractional p-Laplacian Kirchhoff type with logarithmic nonlinearity.

In order to introduce our main results, we first give some related definitions and sets.

Definition 1.1(Weak solution). A function u(x,?) is said to be a weak solution of problem (1.1), if
(x,1) € Qx[0,T), u € LP(0,T; Wy"(Q)) N C(0,T; L*(Q)), u, € L*(0,T; L*(Q)), u(x,0) = ug(x) €
W, "(Q), for all v e W,"(Q), t € (0, T), the following equation holds

f uvdx + M(||ullP)u, vy = A f viu"uln |uldx — B f Vul"udx,
Q Q

Q

where

_ -2 _ _
v = f f () = uWI""(ux) = uy)vx) = ve) dy.
Q

|X _ y|N+sp

Definition 1.2(Extinction of solutions). Let u(¢) be a weak solution of problem (1.1). We call u(¢) an
extinction if there exists 7 > 0 such that u(x,7) > O for all € (¢, T) and u(x, 1) = O for all ¢ € [T, +00).
Define the following two functionals on W, ()

1 1 1 1 1
E@) = —allull” + —blu||®” — 21— f lul" In |uldx + 1— f lul"dx + B— f lu|?dx, (1.5)
p p rJo r~Ja q Ja
I(w) = allul|” + 6b||ul|’? — /lf lul" In [uld x + Bllull?. (1.6)
Q

Let
Z = {u e L7(0.T; Wy"(Q)) N C(0, T: L*(Q)). u, € L*(0, T; LA(Q))}.

Remark 1 Sinceu € Z,1 < p <2, M(-) is a continuous function and
|u|” In Juldx < l||u||:1;: < lC:L‘Illull’“’,
o) g g

where 0 < o < p; — r, then we can claim that E(u) and /() are well-defined in WS”’ (Q). Further, by
arguing essentially as in [24], one can prove the that

u|—>f|u|’1n|u|dx
Q

is continuous from Wg’p () to R. It follows that E(u) and I(u) are continuous.
Define some sets as follows

W= {ue W,"(Q) | I(u) > 0, E(u) < h} U {0}, (1.7)

Vi={ue WP (Q) | I(u) <0, E(u) < h}, (1.8)
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the mountain pass level

h:= ;g{/ E(uw), (1.9

the Nehari manifold
N :={uce WS”’(Q)\{O} | I(u) = 0}. (1.10)

Moreover, we define
N, ={ue Wg’p(Q)ll(u)>0}, (1.11)
N_:={ue Wg”’(Q) | I(u) < 0}. (1.12)

Let 4, be the first eigenvalue of the problem
(=A)u = Aulfu in Q, ulgmg =0, (1.13)

and ¢(x) > 0 a.e. in Q be the eigenfunction corresponding to the eigenvalue 4; > 0, ¢(x) € L*(Q2) and
Pl < 1.

First, we give some results satisfying /(up) > 0 and g = 2.
Theorem 1.1 Assume that I(uy) > 0, r = p and g = 2. Let m, be as in assumption (M), and let

2N - (s+ N)p p my AymolpP™!
= I1:

X sp = AL+ n® T ML) + nR)(p + = DT

where L(p, Q) and R are given in Lemma 2.1 and Lemma 2.5. Then, there exist positive constants Cy,
C,, T and T, such that

(1) If A < A, Py, then the weak solution of (1.1) vanishes in the sense of || - ||, as t — +oo.

() f2N/(N+2s) < p<2and A < 41 Pyorl < p <2N/(N +2s) and A < P,, then the nonnegative
solutions of (1.1) vanish in finite time, and

1
lull < [(lluoll3™” + S)eP=28 — CLIZ7 e (0,Ty),
2 B B
llull, = 0, t € [T}, ),

for 2N/(N + 2s) < p < 2, and

1

2— C _ C, |2-p
{||M||l+1 < [(l? + G2~ G|77, req0,T),
||M||l+1 = 0’ t € [TZa OO),

for 1 < p <2N/(N + 2s).
Theorem 1.2 Assume that I(up) > 0,0 < o < p; —r,r > p and g = 2. Let m, be as in assumption
(M»), and let

rp(1=t7)
mOlpp p-rp(1-1y) }
s

e(p+I1-1p"1

my B

_ ’ H(91-1)
L(r, QR + gd s A

P = max{ }, P, = max{
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where

2(r—p) pll+r+o—-1)
, I =

r2-p) "’ I+p—1

siro N
@ = In(RIQIT C1™" = s sy = 200+ pl(1 = 90). 9, =

N —
C,: 1s the best constant of embedding from WS”’ (Q) to LP(Q), L(p, Q) and R are given in Lemma 2.1
and Lemma 2.5, and ¢, £; > 0 are two constants. Then, there exist positive constants Cy, Cs, Cg, C7, T3
and T, such that the non-negative weak solution of problem (1.1) vanishes in finite time and

1

2— C _ Cs |2-»
lully < [(lloli7,? + & )e®2C — &7, 1€ [0,Ty),
||u||2 = Oa re [TS,OO),

for 2N/(N +2s) < p < 2,4 < P3,and

7

1

2— C — Ce |12-p
laller < (ol + S2)er2C — |7 1[0, Ty),
||M||[+] = 07 re [T47 00)7

for1 < p <2N/(N + 2s), A < P4.
Secondly, we give some results satisfying /(uy) > 0 and g < 2.
Theorem 1.3 Assume that I(ug) >0, p=r,l; >1>1and 1 < g < 2. Let mg be as in assumption (M,),

and let
Aimgly pP!

[ L(p, Q) + In(R)](p + I, = 1)P~1"

where L(p, ) and R are given in Lemma 2.1 and Lemma 2.5. If 2N/(N + 2s) < p < 2 with 4 < 4, P,
or 1 < p <2N/(N + 2s) with A < Ps, then the non-negative weak solution of problem (1.1) vanishes
in finite time for any non-negative initial data.

Theorem 1.4 Assume that I(uy) > 0,/; >1>1,r<2and 1 < g < 2. Let m( be as in assumption (M,),
and let

P5Z

(=04)ry

P70 C;124— Dry R 1 (13- W3-Dpr3
s

my 3 T=03)-(p+l -1 P+ -1
P¢ := max , " P; = =B, 2 C I,
’ {L(r, Q)R™P In(R)|Q)T" } T ot P}
+L-Dpt—(U;+1 +1; -1 =2 1 s
.- [(g+1L = Dps = (L + Dpllp + 1y ), = (P; )p’ - Lo me,
[((g+1Li—Dp;—(p+L—Dpl +1) Py —q)2 eo !
g+L-Dp+L-1) qp

rs=L+r+o0-1,

r3 = , T4 = ,
YT 0L - D+ gL -DA -85 T g1 =94 +up

and &;, &5 > 0 are two constants. If 2N/(N + 2s) < p < 2 with A < Pgor 1 < p < 2N/(N + 2s)
with 4 < P, then the non-negative weak solution of problem (1.1) vanishes in finite time for any
non-negative initial data.

Finally, we discuss the global boundedness and blow up of weak solutions.
Theorem 1.5 Let u(x, ¢) be the weak solution of problem (1.1).

(1) If E(up) <0,r=p>gqgand@ = 1, then the weak solution u(x, ) blows up at +oo;

(1) If 0 < E(up) < h and I(up) > 0, then the weak solution u(x, ¢) is globally bounded.

The rest of the paper is organized as follows. In Section 2, we give some related spaces and lemmas.
In Section 3, we give the proof process for the main results of problem (1.1).
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2. Preliminaries

In order to facilitate the proof of the main results, we start this section by introducing some symbols
and Lemmas that will be used throughout the paper.

In this section, we assume that 0 < s < 1 < p < 2 and Q € RY (N > 2s) is a bounded domain
with Lipschitz boundary. We denote by ||u||; (i > 1) the norm of Lebesgue space L(€2). Let W*?(Q) be
the linear space of Lebesgue measurable functions u from R" to R such that the restriction to Q of any
function u in W*?(Q) belongs to L”(€2) and

f @) = 4O 14y < oo,
Q

Jox =y

where Q = R*™\(CQ x CQ), CQ = R¥\Q. The space W*?(Q) is equipped with the norm

[u(x) — u(y)l? H
ooy = (il + [ | M2  dxay)’
Q

x — y|V+sp
We further give a closed linear subspace
WP (Q) = {u e WP(Q)u(x) =0 ae. in RY\QJ.

As shown in [19], it can be concluded that

Iu(x)—u(y)lp 7
il = ([ [ B )

is an equivalent norm of W,”(Q).
Next we give the necessary Lemmas.
Lemma 2.1 ([25]) Let u € W;"(Q)\{0}. Then

flul” Infuldx < L(p, Q)llull® +1n(||u||)f|u|”dx,
Q Q

where L(p, Q) := 'Ql + (p Cp 1, Cp» 1s the best constant of embedding from W” (Q) to L7 (Q).
Lemma 2.2 ( [26]) Let y(¢) be a non-negative absolutely continuous function on [T, +00) satisfying

d
d_i’+ayk+,3yso, 120, y(0)20,

where «, 8 > 0 are constants and k € (0, 1). Then

1
(1) < [ (To) + §)et P00 — & |TE e [T, T,
y(®) =0, t € [T, +00),
where T = 5755 k) In (1 + Ey17K(Ty)).
Lemma 2.3 ( [27]) Suppose thatg* >0, N > sp>1,and 1 <r < g < (8" + 1)p;, then for u such that
luff u € WyP(Q), we have

1-9
= 9 8 1*;7‘)
lully < €7l w5,
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. _ (B +Dpi—qlr . . 5.p :
with ¥ = Ty g where C); is the embedding constant for W;"(2) < L7s(Q).

Lemma 2.4 ([19]) Let 1 < p < o0 and g : R — R be an increasing function. Define

!
G(z):fg'(r)édr, teR
0

then
la — bIP*(a — b)(g(a) — g(b)) = |G(a) — G(b)|P forall a,b € R.
Lemma 2.5 Assume that (M;) holds. Let u € W,”(Q)\{0}, 0 < o < p% — r. We have
(1) if O < ||u|| £ R, then I(u) > 0;
(i1) if I(u) < 0, then ||u|| > R,
where 1
aor \mo5
R=(3em)

r+o

C,.c is the embedding constant for W, " (Q) — L™ (Q).
Proof. Since u € W;”(Q)\{0}, and

olnju(x)| < lu(x)|” fora.e.x € Q.

Then by the definition of I(u), we obtain

1(u) =a||u||”+9b||u||9”+,3||u||3—/1fIulrlnluldx
Q

1
0,
> allull” + 6bllull™ + Bllully - ﬂ;llull”‘f

r+o

1
> allull” — ﬂ;llullfig

1 -
> (a - /IECZL‘ZIIMII’” P el

where C.., is the embedding constant for W,”(Q) < L™ (Q).
We can get

r+o

1
I(w) > (a - ﬂgcwllull”"_”)llull”- 2.1)

If O < ||u|| < R, then it follows from the definition of R that

1
a = A—Cl7lull 7 20,

thus (i) holds.
If I(u) < 0, by (2.1), we have

1
a=A—CLgull™" <0,

thus (i1) holds. O
Lemmas 2.6 is similar to [28, Lemmas 9], so we ignore its proof.

Lemma 2.6 ( [28]) Assume that E(ug) < h, then the sets N, and N_ are both invariant for u(¢), i.e, if

uy € N_ (resp. up € N,), then u(r) € N_ (resp. u(t) € N,) forall r € [0, 7).

Lemma 2.7 ([29]) Let « be positive. Then

1
' In(t) < —™, forall p,t > 0.
ea
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3. Proof of main results

In this section, we prove that the main results of problem (1.1).
Proof of Theorem 1.1
(1) Taking v = u in Definition 1.1, we obtain

1d

—— | wPdx+ M(ulP)lull” = A f u|” In |uldx — B f wdx.
2 dt 0 Q Q

By Lemma 2.1, Lemma 2.5 and Lemma 2.6, we obtain

1d

2dt Q

Since A < A, Py, we get
1d
——fuzdx+,8fu2dx30.
2dt Jq Q

2 2 -2
lluC-, DIl < lluollze™".

which implies that ||u(:, 7)|[; = 0 as t — +oo.

thus

A
u 2dx + (mg — AL(p, Q) — — ln(R))llullf’ +/3f u*dx < 0.

3.1

(2)We consider first the case 2N /(N +2s) < p < 2 with 4 < A4;P. By (3.1) and Lemma 2.1, Lemma

2.5 and Lemma 2.6, we have

1d A
5 e + (0 = (U Lp. )+ IRl + Bllulfy < 0
Using Holder’s inequality and the fractional Sobolev embedding theorem, we have
llull> < IQITN%FIIMII% < Cpil Q7 ull,

where C,: > 0 is the embedding constant. By (3.2), (3.3) and A4 < 4, P;, we obtain

1d
37 —llll3 + Cilludll} + Bllull3 < 0,

where
C =

(o——aunm+mmn

Setting y(#) = |lu(-, 1)l3, y(0) = ||uo(')||§, by Lemma 2.2, we obtain

1
{WMSMwﬁH%%WW—%FC re[0.7),
lleell> = O, t € [T, ),
where . 5
T, = In(1 + =luoll2™).
Ul )

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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Next, we consider the case 1 < p < 2N/(N + 2s) and A < A, P,. Taking v = ' in Definition 1.1,
where [ = w > 1,by Lemma 2.1, Lemma 2.4, Lemma 2.5 and Lemma 2.6, we obtain

1 d pH-1
manuuéﬁ +Gllu 7 |IP + Bllullit! <0, (3.7)

where G = ( (p”iol’_pll;p - Ai ﬁ(lp_’?) - ﬁ(ppljgfi)). By the very choice of / and the fractional Sobolev embedding

theorem, we have

el p+i-1 _Np N&;p pri=1
el :(fu 7 widx) < Copllu |- (3.8)
Q
Hence,
1 d -1
g Wl + Callal 57+ Bl < 0, (3.9)
Where IpP ApL(p,Q ApIn(R
CZZC_*p( molp” — ApL(p,Q)  ApIn(R) ) (3.10)
Ps\(p+Il-1) p+1-1 L(p+1-1)

since A < P,, then C, > 0. Setting y(¢) = [|u(-, H)||;+1, Y(0) = ||luo(-)|l;+1, by Lemma 2.2, we obtain

1

2— C _ C, |2-p
lllor < [(luoll7sY + S )e 26 = S]77, te0,Ty),
lleell1 = 0, t € [T, ),

where

_ 1 B
T, = (2_p)ﬁln(1 + c,

The proof is completed. O

lluoll? 7). (3.11)

Proof of Theorem 1.2
We consider first the case p < r < 2 and 2N/(N + 2s) < p < 2. Taking v = u in Definition 1.1, we
have

1d
5 771l + Ml = f lul” 1n [uldx — Bllull3. (3.12)
! Q
By Lemma 2.1, Lemma 2.5 and Lemma 2.6, we obtain
1 d 2 )4 P r r 2
Ed_tllullz + M([[ul”)lull” < AL(r, Q)||ull” + A In(R)|[ull;, — Bllull;. (3.13)

Using Holder’s inequality and the interpolation inequality, the fractional Sobolev embedding theorem
and Young inequality, we can easily obtain (see [19])

- s1=r r@@;-1)

el < 19200 Jlully, < 1620

- W1
' < C;(;l I (ellull” + £ ||ul[3), (3.14)

where 51 > r, % €(0,1), € > 0 and

2(r—p)

=2% +pi(l =), ¢ = ——=.
S1 1 ps( 1) 1 r(2—p)
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By (3.13) and (3.14), we have

1d
37 —lull3 + Clluell” + Cyllull3 < (3.15)
where
Cs = mo — AL(r, R — A In(R)|Q T cri, (3.16)
1-9) o)
Cy =B - An@R)\Q Cr™gr T, (3.17)
Since 2N /(N +2s) < p <2 and A < P3, by the fractlonal embeddmg theorem and (3.3), we obtain
1d »
3 —luall3 + Csllully + Callull3 < (3.18)

and C; > 0, C4 > 0, where
_ N-sp _ P
Cs = C;CNIQI 2. (3.19)

Similar to the Theorem 1.1, one can prove the that

1
lully < [(||Mo||1+p + S)er D _ ST 10, Ty),
[|uell> = O, t € [T, ),

where 1
T3 = —In(1 + i u 2 . 3.20
3 (2 )C4 ( CS ” 0”2 ) ( )

When 1 < p <2N/(N +25), p < r <2and A < Py. Taking v = ' (I = =22 > 1) in Definition
1.1, by Lemma 2.4 and Lemma 2.7, we obtain

—— —lp “p r+o—
l+1E” ulis + o +01 Ty e ”p”—ll o=t = Bllully) (3.21)

further, we have

1 d . molpp Lp-1 1 Lp-1 Lp-1
— I ———lu P < A—u || =Bl || 3.22
" ldt” Il TTE 1)pll I wll Il = Bl Il (3.22)
where r; = 5’:;*_11), rh = ”(’;’;f]_”. Note that, since r; < p;, by the Holder’s inequality and the fractional

Sobolev embedding theorem , we have

) -r )]7 *7r )p

a7 II” <l IIP <IQI s C (| (3.23)

Using the same discussion as above, one can conclude that

Py (y—1)
Crz(l 192)(8 ”u p ”p +& p rp (1= 192)|

I IIr2 <o

(3.24)
where s, > r,, % € (0,1), & > 0 and

ri(ro —p)

Sy = 7'1192 +pt(1 — 192), 192 = .
ra(ri = p)
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Combining (3.22)-(3.24) and A < P4, we obtain

1
—_— '+ C 12 +C | <0,
1 || || olli 7 || M ||
and Cg > 0, C; > 0, where
Ip? 1 G
:( moylp ~ g —C” )lQl v C P,
(+p-1) eoc Ps

r(9p-1)

C7 —ﬁ /l |Q| I’z(l ﬂz)gf r2(1 192)

Using Lemma 2.2 and a direct calculation, we have

e
{||M||l+1 < [(olp + L)t~ &7 reqo,1y),
||M||l+1 = 07 re [T47 00)7
where |
Ty= —— In( gl + 1
e & il f + 1)

The proof is completed.

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

Proof of Theorem 1.3
We consider first the case 2N/(N + 2s) < p < 2 with 4 < A4, P;. Taking v = u in Definition 1.1, we
obtain
li w’dx + M(|JullP)||ullP = /lf |e|? In |u|dx —ﬁf uldx.
2dt Jgo Q Q

Note that ||u||” > /11||M||£ and by Lemma 2.1, Lemma 2.5 and Lemma 2.6, we have

1d A
5 il + (1m0 = - (UL (P, Q) + InCR) ull” + Bl < 0.
By (3.3) and 8 > 0 and A < 4; P, we obtain

1d
o —llull3 + Cgllull§ <

where
Cs=C' L 1€

2(N- sp) Np(

A
o = (U L(p Q) + In(R)) >

By a direct calculation, we obtain

L
{||M||2 <[(olE” + Cop -2, re 0.7y,
lleell2 = 0, t € [Ts5, ),
where {
Ts = ————Iluoll> ™"
5 2 - p)Cs ||M0||2

(3.30)

(3.31)

(3.32)

(3.33)
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Next, we consider the case 1 < p < 2N(N + 2s) with A < P,. Multiplying (1.1) by u"' (I; > [ > 1)
and integrating, by Lemma 2.1, Lemma 2.4, Lemma 2.5 and Lemma 2.6, we obtain

1
l+1du%ﬁ+GMuv|w+mwﬁﬁlsa (3.34)
1

_ (_mohp”  _ ApLp.Q) _ Apl(®) :
where G| = ((M_l)p pov Al(p+ll—1))' By Lemma 2.3 , we obtain

e e I
lellsr < € Ml 7Tl

(3.35)

q+h-

where
[((g+L —Dp; =+ Dplp+1 = 1)

[(g+4—Dp;—(p+4L-Dplth + 1)
By the choice of /;, we have 0 < 93 < 1. Hence, using the Young inequality, for every r; > 0 and
& > 0, we obtain

3:

(1-93)pr3 P (1-93)r3 93r3(p+li—1)
+1 -1 =933 —(p+l{-1) (p+l —D—(1-93)r
i,y < €7 (ealla™7 117 4+ ] P T, (3.36)

We now choose
g+L-Dp+L-1)

p+h—D+(@+h - D -)

= q + [; — 1. That means

r3 =

P3r3(p+l—1)

and we notice that m

— lyzz)m lihsa (1‘7(;717—3()3111) +1—1
i,y < €7 (eallu™7 117 + &1 T g ), (3.37)
We choose ool
_ [l( mohp?  ApL(p,Q)  ApIn(R) ]3(’37[1{1)1
P\ - p+h—1 N(p+h-1) '
By (3.34) and (3.37) and A < Ps, we obtain
1 l1+1 C
T 1di || ullp 7y + Collully?,, <
Where I3—-1)pr: (#3-1)r3
C — C p3+/1—|3ﬁ[1( mollpp _ APL(P, Q) _ /117 hl(R) )] =+ -D
P B\p+L—-1r p+ihi-1 Ap+h-1) ’

and Cy > 0, which implies that

1
Li+1- Iy +1-r
{||M||11+1 < [||M0||1:1 "=l - 1)C9f] B t € [0, Tp),

||u||ll+1 = 05 t € [T67 OO),
where
T — Li+1-r3
6 —(11 T 1= r3)C9”u0”"“
The proof is completed. O
Proof of Theorem 1.4
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We consider first the case r < 2. When 2N /(N + 2) < p < 2, multiplying (1.1) by u, we obtain

1d

—— uzdx+M(||u||p)||u||”:Aflulrlnluldx—ﬂfuqu. (3.38)

Similar to the Theorem 1.2, we obtain
1d _ 2r
Ed—tllulli + (mo — AL(r, QR P)|Jull” < AIn(R)|Q llully — Bllul?. (3.39)

Taking 8 = 0 in Lemma 2.3, we have

1-9. 9 1-9 1=04)1],, 119
lellz < Hoall” " Nl < €™Ml =" adl g, (3.40)
I q P q
where ¥, = %. Then, taking into account that 4, € (0, 1), we can apply Young’s inequality: for

every r, > 0 and &3 > 0, we have

gDy F4rap
lally < €O (esllull” + 3 lully ™). (3.41)
Taking
Y= qp
q(l = 94) + Oup’

5 p—(1=94)ry
then 42— = g. By (3.39), (3.41), Lemma 2.5 and A < Pg, and let &5 = (Z=tHeDE2) 7 ye
obtain

1d
2dtllullz + Ciollully < (3.42)
where
(1=84)rg

Cio = e} I CUTIRAT — AR)IQIT > 0,

which implies that our result holds.
When 1 < p < 2N/(N + 2s), we multiply (1.1) by u" (I, > [ > 1), by Lemma 2.4 and Lemma 2.7,
we obtain

1 I+l mol, p” | .
ll+1dt|| [ TR v R — Il = Bl . (3.43)

where s = [} + r + 0 — 1. Using the Holder inequality and (3.37), and we choose

pHly=1+(1=93)r3

:[ mol, p? ] e
Pl -1y

o
then, we have
(93-1)r3 (193—1)pr3

el 1 +1 (1=93)r3—=(p+l—1) p+l—
I+ 1dt” lier + Pey €

for 0 < o < 2 — r. After performing some simple calculations, we finally obtain

1
—(TIQI i llll;?, (3.44)

lully,, <

1
l+1;nMﬁ+cmme <0, (3.45)
1
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where
(193—1)r3 (3-prs

: 1 s
(1-93)r3=(p+11-1) -1 1- _
Ci —382 I Gl -AC, C= —|.Q| ’1”Clr5 1Rr5 s,
Ps eo 1+

Note that A < P7, then C;; > 0, which implies that

1
l1+1- [ +1-r
{wmﬂstm;“+m—h—naﬂ'3, 10,7,
0,

||u||11+1 = te [T77 00)9
where
T — Lh+1-r3
! (L +1-r3)Cyy ol
The proof is completed.
Proof of Theorem 1.5
(i) By the definition of E(u) and I(«), we obtain
1 1 (p—-9 1
Q) = ~10) + ~b(1 = )l + L= Dy 4 A lul,
p p qp p

Choosing v = u, in Definition 1.1, we have

f wdx = —M(||ullP)u, u,) + A f ulul"*uln uldx — 8 f u|uludx.
Q Q

Q

Note that
Ly
dt
By (3.47) and (3.48), we obtain

%E(u) + fgu,u,dx =0,

which implies that
t
E(u)=E(uo)—f -3l
0

Setting I'(1) = 3 fQ lu(x, t)|>dx, then we have
I'(r) = fu,udx = —I(u).
Q
By (3.46) and (3.49) and (3.50), we obtain
, 6p 1 q 1 p
I"(t) = — pE(u) + b(1 = O)||ul” + gﬁ(l? = @llullf + ﬁ;”“llp
1
= — pE(uo) + b(1 — O)lull” + 5,3(19 = Pllull?

1 !
+ A=|lullf + pf llul3d.
p 0

1d
(u) = ——(allull” + blju||’") — A f |t unt, In uldx + B f |l un,dx.
)% dt Q Q

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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Since p > g, then é,u(p — @)llull? > 0, we obtain
I'(t) > —pE(up) > 0.
By a simple calculation, we get
lull; = —2pE(uo)t + 2llugll3, forall t > 0,

which implies that our result holds.
(i1) Here, we only prove the case of E(uy) < h, and the proof of E(uy) = h is similar. Choosing
v = u in Definition 1.1, we have

1d
5 = el + M(ladll”)|ed)” = f |l In uldx — Bllullg, (3.51)
2dt Q

2 ’t 2 * *

Next, taking v = u, in Definition 1.1 and integrating with respect to time from O to ¢, we have
t
f llull3dx + E(u(t)) = E(uo) < h,fort > 0. (3.53)
0

We claim that u(x, 1) € W for any ¢ > 0. If it is false, there exists a f, € R{\{0} such that u(t,) € oW,

which implies
I(u(x, 1)) = 0 or E(u(x, 19)) = h.
From (3.53), E(u(ty)) = h is not true. So u(ty) € N, then by the definition of % in (1.9), we have
E(u(ty)) > h, which also contradicts with (3.53). Hence, u(ty) € W. By (3.52) and u(¢r) € W for all
t > 0, we obtain
el < Nutol1-
O

Remark 2 Compared with problem (1.4), we not only discuss the extinction of weak solutions of prob-
lem (1.1) with logarithmic nonlinearity, but also prove that the weak solutions are globally bounded
and blow up at infinity.

Acknowledgments

This research was supported by the Project for Young Talents Growth of Guizhou Provincial Depart-
ment of Education under (Grant No.Ky[2017]133), and by the project of Guizhou Minzu University
under (Grant No.16yjrexm002 and No.GZMU[2019]YB04).

Conflict of interest

The authors declare no potential conflict of interests.
References

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2832-2848.



2847

—

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. M. Xiang, V. D. RaDulescu, B. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence

and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.

M. Kirkilionis, S. KraMker, R. Rannacher, Some nonclassical trends in parabolic and parabolic-
like evolutions, Trends Nonlinear Anal., 3 (2003), 153-191.

L. Caffarelli, Nonlocal diffusions, drifts and games, Nonlinear Partial Differ. Equ., 7 (2012),
37-52.

E. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull.
Sci. Math., 5 (2012), 521-573.

E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differ. Equ., 49 (2014),
795-826.

H. Brezis, P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev
spaces, J. Evolut. Equ., 4 (2001), 387—404.

E. Azroul, A. Benkirane, A. Boumazourh, M. Shimi, Exstence results for fractional p(x,-)-
Laplacian problem via the nehari manifold approach, Appl. Math. Optim., 50 (2020), 968—1007.

M. Xiang, V. D. RaDulescu, B. Zhang, A critical fractional Choquard-Kirchhoff problem with
magnetic field, Commun. Contemp. Math., 21 (2019), 1850004.

L. X. Truong, The nehari manifold for a class of Schrdinger equation involving fractional p-
Laplacian and sign-changing logarithmic nonlinearity, J. Math. Phys., 60 (2019), 111505.

L. X. Truong, The nehari manifold for fractional p-Laplacian equation with logarithmic nonlin-
earity on whole space, Comput. Math. Appl., 78 (2019), 3931-3940.

M. Xiang, V. D. RaDulescu, B. Zhang, Combined effects for fracttonal Schrodinger-Kirchhoff
systems with critical, Contr. Opti. Calc. Vari., 24 (2018), 1249-1273.

A. Ardila, H. Alex, Existence and stability of standing waves for nonlinear fractional Schrodinger
equation with logarithmic nonlinearity, Nonlinear Anal. Theor. Methods Appl., 4 (2017), 52—64.

Y. L. Li, D. B. Wang, J. L. Zhang, Sign-changing solutions for a class of p-Laplacian Kirchhoft-
type problem with logarithmic nonlinearity, AIMS Math., 5(2020), 2100-2112.

T. Boudjeriou, Global existence and blow-up for the fractional p-Laplacian with logarithmic
nonlinearity, Mediterr J. Math., 17 (2020), 1-24.

T. Boudjeriou, Stability of solutions for a parabolic problem involving fractional p-Laplacian with
logarithmic nonlinearity, Mediterr J. Math., 17 (2020), 27-51.

P. Dai, C. Mu, G. Xu, Blow-up phenomena for a pseudo-parabolic equation with p-Laplacian and
logarithmic nonlinearity terms, J. Math. Anal. Appl., 481 (2019), 123439.

W. Liu, Extinction properties of solutions for a class of fast diffusive p-Laplacian equations,
Nonlinear Anal. Theory Meth. Appl., 74 (2011), 4520-4532.

S. Toualbia, Z. Abderrahmane, S. Boulaaras, Decay estimate and non-extinction of solutions of
p-Laplacian nonlocal heat equations, AIMS Math., 5 (2020), 1663—1679.

M. Xiang, D. Yang, Nonlocal Kirchhoff problems: Extinction and non-extinction of solutions, J.
Math. Anal. Appl., 477 (2019), 133-152.

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2832-2848.



2848

20. B. Guo, W. Gao, Non-extinction of solutions to a fast diffusive p-Laplace equation with Neumann
boundary conditions, J. Math. Anal. Appl., 2 (2015), 1527-1531.

21. W. Gao, B. Guo, Finite-time blow-up and extinction rates of solutions to an initial Neumann
problem involving the p(x, t)-Laplace operator and a non-local term, Discrete Contin. Dyn. Syst.,
36 (2015), 715-730.

22. L. Yan, Z. Yang, Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic
nonlinearity, Bound. Value. Probl., 121 (2018), 1-11.

23. Y. Tian, C. Mu, Extinction and non-extinction for a p-Laplacian equation with nonlinear source,
Nonlinear Anal., 69 (2008), 2422-2431.

24. Y. Cao, C. Liu, Initial boundary value problem for a mixed pseudo-parabolic p-Laplacian type
equation with logarithmic nonlinearity, Electron. J. Differ. Equ., 18 (2018), 1-19.

25. M. Xiang, D. Hu, D. Yang, Least energy solutions for fractional Kirchhoff problems with loga-
rithmic nonlinearity, Nonlinear Anal., 198 (2020), 111899.

26. S. Chen, The extinction behavior of solutions for a class of reaction diffusion equations, Appl.
Math. Mech., 22 (2001), 1352-1356.

27. M. Xiang, D. Yang, B. Zhang, Degenerate Kirchhoff-type fractional diffusion problem with
logarithmic nonlinearity, Asympt. Anal., 188 (2019), 1-17.

28. H. Ding, J. Zhou, Global existence and blow-up for a parabolic problem of Kirchhoff type with
logarithmic nonlinearity, Appl. Math. Optim., 478 (2019), 393-420.

29. S. Boulaaras, Some existence results for elliptic Kirchhoff equation with changing sign data and
a logarithmic nonlinearity, J. Intell. Fuzzy Syst., 42 (2019), 8335-8344.

_ ©2021 the Author(s), licensee AIMS Press. This
N\ . . . .

Vo o o is an open access article distributed under the
@ AIMS Press terms of the Creative Commons Attribution License
o (http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2832-2848.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Proof of main results

