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Abstract: In this paper, we study the initial boundary value problem for a class of fractional p-
Laplacian Kirchhoff type diffusion equations with logarithmic nonlinearity. Under suitable assump-
tions, we obtain the extinction property and accurate decay estimates of solutions by virtue of the
logarithmic Sobolev inequality. Moreover, we discuss the blow-up property and global boundedness
of solutions.
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1. Introduction

In this paper, we study the extinction and the blow-up for the following fractional p-Laplacian
Kirchhoff type equations with logarithmic nonlinearity.

ut + M(‖u‖p)(−∆)s
pu = λ|u|r−2u ln |u| − β|u|q−2u, in Ω × (0,T ),

u(0) = u0, in Ω,

u = 0, on ∂Ω × (0,T ),
(1.1)

where

‖u‖ =
("

Q

|u(x) − u(y)|p

|x − y|N+sp dxdy
) 1

p
,

Q = R2N\(CΩ × CΩ), CΩ = RN\Ω, Ω ⊂ RN (N > 2s) is a bounded domain with Lipschitz boundary,
s ∈ (0, 1), 1 < p < 2, 1 < q ≤ 2, r > 1, λ, β > 0, (−∆)s

p is the fractional p-Laplacian operator and
satisfies

(−∆)s
pu(x) = 2 lim

γ→0+

∫
RN\Bγ(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+sp dy,
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where u(x) ∈ C∞ and u(x) has compact support in Ω, Bγ(x) ⊂ RN is the ball with center x and radius γ.
u0(x) ∈ L∞(Ω) ∩W s,p

0 (Ω) is a nonzero non-negative function, where L∞(Ω) and W s,p
0 (Ω) are Lebesgue

space and fractional Sobolev space respectively, which will be given in section 2. M(·) is a Kirchhoff

function with the following assumptions
(M1) 0 < s < 1,M(τ) := a + bθτθ−1 for τ ∈ R+

0 := [0,+∞) ( a > 0, b ≥ 0 are two constants), θ ≥ 1;
(M2) M : R+

0 → R
+
0 \{0} is continuous and there exits m0 ≥ 0 such M(τ) ≥ m0 for all τ ≥ 0.

It is worth pointing out that the interest in studying problems like (1.1) relies not only on mathe-
matical purposes, but also on their significance in real models. For example, in the study of biological
populations, we can use u(x, t) to represent the density of the population at x at time t, the term (−∆)s

pu
represents the diffusion of density, µ|u|q−2u represents the internal source and λ|u|r−2u ln |u| denotes ex-
ternal influencing factors. For more practical applications of problems like (1.1), please refer to the
studies [1–3].

Compared with integer-order equations, it is very difficult to study the problem (1.1), which con-
tains both non-local terms (including fractional p-Laplacian operators and Kirchhoff functions) and
logarithmic nonlinearity. For the fractional order theory, we refer the readers to the studies [4–6].
In [7, 8], the authors use Sobolev space and Nehari manifold to study the existence of solutions for
fractional equations. In [9, 10], the solutions for fractional equations are discussed by virtue of Ne-
hari manifold and fibrillation diagram. By using different methods from above, the properties of the
solutions for such partial differential equations are considered by the method of variational principle
and topological theory in the the literature [11–13]. Moreover, the authors prefer to use potential well
theory, Galerkin approximation and Nehari manifold method to prove the existence of solutions, decay
estimation and blow-up, we refer the reader to the literature [14–16].

Existence, extinction and blow-up of solutions are three important topics which regard parabolic
problems; in particular, the study of extinction properties has made great progress in recent years.
In [17], Liu considered the following initial boundary value problem for the fractional p-Laplacian
equation

ut − div(|∇u|p−2∇u) + βuq = λur, x ∈ Ω, t > 0, (1.2)

where 1 < p < 2, q ≤ 1 and r, λ, β > 0. By employing the differential inequality and comparison
principle, they obtained the extinction and the non-extinction of weak solutions. In [18], Sarra Toual-
bia et al. considered the following initial boundary value problem of a nonlocal heat equations with
logarithmic nonlinearity

ut − div(|∇u|p−2∇u) = |u|p−2u log |u| −
∮

Ω

|u|p−2u log |u|dx, x ∈ Ω, t > 0, (1.3)

where p ∈ (2,+∞). By using the logarithmic Sobolev inequality and potential well method, they
obtained decay, blow-up and non-extinction of solutions. In [19], Xiang and Yang studied the first
initial boundary value problem of the following fractional p-Kirchhoff type

ut + M([u]p
s,p)(−∆)s

pu = λ|u|r−2u − µ|u|q−2u, (x, t) ∈ Ω × (0,∞), (1.4)

where M : [0,∞) → (0,∞) is a continuous function, 0 < s < 1 < p < 2, 1 < q ≤ 2, r > 1, λ, µ > 0.
Under suitable assumptions, they proved the extinction and non-extinction of solutions and perfected
the Gagliardo-Nirenberg inequality. For more information on the extinction properties of the solution,
please refer to the studies [20–23].
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Inspired by the above works, we overcome the research difficulties of logarithmic nonlinearity, p-
Laplace operator and Kirchhoff coefficients in problem (1.1) based on the potential well theory, Nehari
manifold and differential inequality methods, we give the extinction and the blow-up properties of
solutions. In addition, we give the global boundedness of the solution by appropriate assumptions. To
the best of our knowledge, it is the first result in the literature to investigate the extinction and blow-up
of solutions for fractional p-Laplacian Kirchhoff type with logarithmic nonlinearity.

In order to introduce our main results, we first give some related definitions and sets.
Definition 1.1(Weak solution). A function u(x, t) is said to be a weak solution of problem (1.1), if
(x, t) ∈ Ω × [0,T ), u ∈ Lp(0,T ; W s,p

0 (Ω)) ∩ C(0,T ; L2(Ω)
)
, ut ∈ L2(0,T ; L2(Ω)

)
, u(x, 0) = u0(x) ∈

W s,p
0 (Ω), for all v ∈ W s,p

0 (Ω), t ∈ (0,T ), the following equation holds∫
Ω

utvdx + M(‖u‖p)〈u, v〉 = λ

∫
Ω

v|u|r−2u ln |u|dx − β
∫

Ω

v|u|q−2udx,

where

〈u, v〉 =

"
Q

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp dxdy.

Definition 1.2(Extinction of solutions). Let u(t) be a weak solution of problem (1.1). We call u(t) an
extinction if there exists T > 0 such that u(x, t) > 0 for all t ∈ (t,T ) and u(x, t) ≡ 0 for all t ∈ [T,+∞).

Define the following two functionals on W s,p
0 (Ω)

E(u) =
1
p

a‖u‖p +
1
p

b‖u‖θp − λ
1
r

∫
Ω

|u|r ln |u|dx + λ
1
r2

∫
Ω

|u|rdx + β
1
q

∫
Ω

|u|qdx, (1.5)

I(u) = a‖u‖p + θb‖u‖θp − λ

∫
Ω

|u|r ln |u|dx + β‖u‖qq. (1.6)

Let
Z =

{
u ∈ Lp(0,T ; W s,p

0 (Ω)) ∩C(0,T ; L2(Ω)
)
, ut ∈ L2(0,T ; L2(Ω)

)}
.

Remark 1 Since u ∈ Z , 1 < p < 2, M(·) is a continuous function and∫
Ω

|u|r ln |u|dx ≤
1
σ
‖u‖r+σ

r+σ ≤
1
σ

Cr+σ
r+σ‖u‖

r+σ,

where 0 < σ < p∗s − r, then we can claim that E(u) and I(u) are well-defined in W s,p
0 (Ω). Further, by

arguing essentially as in [24], one can prove the that

u 7→
∫

Ω

|u|r ln |u|dx

is continuous from W s,p
0 (Ω) to R. It follows that E(u) and I(u) are continuous.

Define some sets as follows

W := {u ∈ W s,p
0 (Ω) | I(u) > 0, E(u) < h} ∪ {0}, (1.7)

V := {u ∈ W s,p
0 (Ω) | I(u) < 0, E(u) < h}, (1.8)
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the mountain pass level
h := inf

u∈N
E(u), (1.9)

the Nehari manifold
N := {u ∈ W s,p

0 (Ω)\{0} | I(u) = 0}. (1.10)

Moreover, we define
N+ := {u ∈ W s,p

0 (Ω) | I(u) > 0}, (1.11)

N− := {u ∈ W s,p
0 (Ω) | I(u) < 0}. (1.12)

Let λ1 be the first eigenvalue of the problem

(−∆)s
pu = λ|u|p−2u in Ω, u|RN\Ω = 0, (1.13)

and φ(x) > 0 a.e. in Ω be the eigenfunction corresponding to the eigenvalue λ1 > 0, φ(x) ∈ L∞(Ω) and
‖φ‖L∞(Ω) ≤ 1.

First, we give some results satisfying I(u0) > 0 and q = 2.
Theorem 1.1 Assume that I(u0) > 0, r = p and q = 2. Let m0 be as in assumption (M2), and let

l :=
2N − (s + N)p

sp
, P1 :=

m0

λ1L(p,Ω) + ln(R)
, P2 :=

λ1m0lpp−1

[λ1L(p,Ω) + ln(R)](p + l − 1)p−1 ,

where L(p,Ω) and R are given in Lemma 2.1 and Lemma 2.5. Then, there exist positive constants C1,
C2, T1 and T2 such that

(i) If λ < λ1P1, then the weak solution of (1.1) vanishes in the sense of ‖ · ‖2 as t → +∞.

(ii) If 2N/(N + 2s) < p < 2 and λ < λ1P1 or 1 < p ≤ 2N/(N + 2s) and λ < P2, then the nonnegative
solutions of (1.1) vanish in finite time, and‖u‖2 ≤

[(
‖u0‖

2−p
2 + C1

β

)
e(p−2)βt −

C1
β

] 1
2−p
, t ∈ [0,T1),

‖u‖2 ≡ 0, t ∈ [T1,∞),

for 2N/(N + 2s) < p < 2, and‖u‖l+1 ≤
[(
‖u0‖

2−p
l+1 + C2

β

)
e(p−2)βt −

C2
β

] 1
2−p
, t ∈ [0,T2),

‖u‖l+1 ≡ 0, t ∈ [T2,∞),

for 1 < p < 2N/(N + 2s).
Theorem 1.2 Assume that I(u0) > 0, 0 < σ ≤ p∗s − r, r > p and q = 2. Let m0 be as in assumption
(M2), and let

P3 := max
{ m0

L(r,Ω)Rr−p + εΦ
,

β

Φε
r(ϑ1−1)

p−r(1−ϑ1)

}
, P4 := max

{ m0lpp

ε1(p + l − 1)p , βε
r2(1−ϑ2)

p−r2(1−ϑ2)

1

}
,
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where

Φ = ln(R)|Ω|
s1−r

s1 Cr(1−ϑ1)
p∗s

, p∗s =
N p

N − sp
, s1 = 2ϑ1 + p∗s(1 − ϑ1), ϑ1 =

2(r − p)
r(2 − p)

, r2 =
p(l + r + σ − 1)

l + p − 1
,

Cp∗s is the best constant of embedding from W s,p
0 (Ω) to Lp∗s (Ω), L(p,Ω) and R are given in Lemma 2.1

and Lemma 2.5, and ε, ε1 > 0 are two constants. Then, there exist positive constants C4, C5, C6, C7, T3

and T4 such that the non-negative weak solution of problem (1.1) vanishes in finite time and‖u‖2 ≤
[(
‖u0‖

2−p
l+1 +

C5
C4

)
e(p−2)C4t −

C5
C4

] 1
2−p
, t ∈ [0,T3),

‖u‖2 ≡ 0, t ∈ [T3,∞),

for 2N/(N + 2s) ≤ p < 2, λ < P3, and‖u‖l+1 ≤
[(
‖u0‖

2−p
l+1 +

C6
C7

)
e(p−2)C7t −

C6
C7

] 1
2−p
, t ∈ [0,T4),

‖u‖l+1 ≡ 0, t ∈ [T4,∞),

for 1 < p < 2N/(N + 2s), λ < P4.
Secondly, we give some results satisfying I(u0) > 0 and q < 2.

Theorem 1.3 Assume that I(u0) > 0, p = r, l1 > l ≥ 1 and 1 < q < 2. Let m0 be as in assumption (M2),
and let

P5 :=
λ1m0l1 pp−1

[λ1L(p,Ω) + ln(R)](p + l1 − 1)p−1 ,

where L(p,Ω) and R are given in Lemma 2.1 and Lemma 2.5. If 2N/(N + 2s) < p < 2 with λ < λ1P1

or 1 < p ≤ 2N/(N + 2s) with λ < P5, then the non-negative weak solution of problem (1.1) vanishes
in finite time for any non-negative initial data.
Theorem 1.4 Assume that I(u0) > 0, l1 > l ≥ 1, r ≤ 2 and 1 < q < 2. Let m0 be as in assumption (M2),
and let

P6 := max
{ m0

L(r,Ω)Rr−p ,
βε

(1−ϑ4)r4
p−(1−ϑ4)r4
3 C(ϑ4−1)r4

p∗s
Rr4−r

ln(R)|Ω|
2−r

2

}
, P7 :=

1
C
βε

(ϑ3−1)r3
(1−ϑ3)−(p+l1−1)

2 C
(ϑ3−1)pr3

p+l1−1

p∗s
,

ϑ3 =
[(q + l1 − 1)p∗s − (l1 + 1)p](p + l1 − 1)
[(q + l1 − 1)p∗s − (p + l1 − 1)p](l1 + 1)

, ϑ4 =
(p∗s − 2)p
(p∗s − q)2

, C =
1

eσ
|Ω|

1− r5
l1+1 Cr5

l1+1Rr5−r3 ,

r3 =
(q + l1 − 1)(p + l1 − 1)

ϑ3(p + l1 − 1) + (q + l1 − 1)(1 − ϑ3)
, r4 =

qp
q(1 − ϑ4) + ϑ4 p

, r5 = l1 + r + σ − 1,

and ε2, ε3 > 0 are two constants. If 2N/(N + 2s) < p < 2 with λ < P6 or 1 < p ≤ 2N/(N + 2s)
with λ < P7, then the non-negative weak solution of problem (1.1) vanishes in finite time for any
non-negative initial data.

Finally, we discuss the global boundedness and blow up of weak solutions.
Theorem 1.5 Let u(x, t) be the weak solution of problem (1.1).

(i) If E(u0) < 0 , r = p > q and θ = 1, then the weak solution u(x, t) blows up at +∞;
(ii) If 0 < E(u0) ≤ h and I(u0) ≥ 0, then the weak solution u(x, t) is globally bounded.
The rest of the paper is organized as follows. In Section 2, we give some related spaces and lemmas.

In Section 3, we give the proof process for the main results of problem (1.1).
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2. Preliminaries

In order to facilitate the proof of the main results, we start this section by introducing some symbols
and Lemmas that will be used throughout the paper.

In this section, we assume that 0 < s < 1 < p < 2 and Ω ∈ RN (N > 2s) is a bounded domain
with Lipschitz boundary. We denote by ‖u‖i (i ≥ 1) the norm of Lebesgue space Li(Ω). Let W s,p(Ω) be
the linear space of Lebesgue measurable functions u from RN to R such that the restriction to Ω of any
function u in W s,p(Ω) belongs to Lp(Ω) and"

Q

|u(x) − u(y)|p

|x − y|N+sp dxdy < ∞,

where Q = R2N\(CΩ × CΩ), CΩ = RN\Ω. The space W s,p(Ω) is equipped with the norm

‖u‖W s,p(Ω) =
(
‖u‖p

p +

"
Q

|u(x) − u(y)|p

|x − y|N+sp dxdy
) 1

p
.

We further give a closed linear subspace

W s,p
0 (Ω) =

{
u ∈ W s,p(Ω)|u(x) = 0 a.e. in RN\Ω

}
.

As shown in [19], it can be concluded that

‖u‖ =
("

Q

|u(x) − u(y)|p

|x − y|N+sp dxdy
) 1

p

is an equivalent norm of W s,p
0 (Ω).

Next we give the necessary Lemmas.
Lemma 2.1 ( [25]) Let u ∈ W s,p

0 (Ω)\{0}. Then∫
Ω

|u|p ln |u|dx ≤ L(p,Ω)‖u‖p + ln(‖u‖)
∫

Ω

|u|pdx,

where L(p,Ω) := |Ω|

ep + 1
e(p∗s−p)C

p∗s
p∗s

, Cp∗s is the best constant of embedding from W s,p
0 (Ω) to Lp∗s (Ω).

Lemma 2.2 ( [26]) Let y(t) be a non-negative absolutely continuous function on [T0,+∞) satisfying

dy
dt

+ αyk + βy ≤ 0, t ≥ 0, y(0) ≥ 0,

where α, β > 0 are constants and k ∈ (0, 1). Theny(t) ≤
[(

y1−k(T0) + α
β

)
e(k−1)β(t−T0) − α

β

] 1
1−k
, t ∈ [T0,T∗),

y(t) ≡ 0, t ∈ [T∗,+∞),

where T∗ = 1
(1−k)β ln

(
1 +

β

α
y1−k(T0)

)
.

Lemma 2.3 ( [27]) Suppose that β∗ ≥ 0, N > sp ≥ 1, and 1 ≤ r ≤ q ≤ (β∗ + 1)p∗s, then for u such that
|u|β

∗

u ∈ W s,p
0 (Ω), we have

‖u‖q ≤ C
1−ϑ
β∗+1

p∗s
‖u‖ϑr ‖|u|

β∗u‖
1−ϑ
β∗+1 ,
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with ϑ =
[(β∗+1)p∗s−q]r
[(β∗+1)p∗s−r]q , where Cp∗s is the embedding constant for W s,p

0 (Ω) ↪→ Lp∗s (Ω).
Lemma 2.4 ( [19]) Let 1 < p < ∞ and g : R→ R be an increasing function. Define

G(t) =

∫ t

0
g′(τ)

1
p dτ, t ∈ R

then
|a − b|p−2(a − b)(g(a) − g(b)) ≥ |G(a) −G(b)|p for all a, b ∈ R.

Lemma 2.5 Assume that (M1) holds. Let u ∈ W s,p
0 (Ω)\{0}, 0 < σ ≤ p∗s − r. We have

(i) if 0 < ‖u‖ ≤ R, then I(u) > 0;
(ii) if I(u) ≤ 0, then ‖u‖ > R,

where
R =

( aσ
λCr+σ

r+σ

) 1
r+σ−p

,

Cr+σ is the embedding constant for W s,p
0 (Ω) ↪→ Lr+σ(Ω).

Proof. Since u ∈ W s,p
0 (Ω)\{0}, and

σ ln |u(x)| < |u(x)|σ for a.e.x ∈ Ω.

Then by the definition of I(u), we obtain

I(u) =a‖u‖p + θb‖u‖θp + β‖u‖qq − λ
∫

Ω

|u|r ln |u|dx

> a‖u‖p + θb‖u‖θp + β‖u‖qq − λ
1
σ
‖u‖r+σ

r+σ

≥ a‖u‖p − λ
1
σ
‖u‖r+σ

r+σ

≥
(
a − λ

1
σ

Cr+σ
r+σ‖u‖

r+σ−p)‖u‖p,

where Cr+σ is the embedding constant for W s,p
0 (Ω) ↪→ Lr+σ(Ω).

We can get

I(u) >
(
a − λ

1
σ

Cr+σ
r+σ‖u‖

r+σ−p)‖u‖p. (2.1)

If 0 < ‖u‖ ≤ R, then it follows from the definition of R that

a − λ
1
σ

Cr+σ
r+σ‖u‖

r+σ−p ≥ 0,

thus (i) holds.
If I(u) ≤ 0, by (2.1), we have

a − λ
1
σ

Cr+σ
r+σ‖u‖

r+σ−p < 0,

thus (ii) holds. �
Lemmas 2.6 is similar to [28, Lemmas 9], so we ignore its proof.

Lemma 2.6 ( [28]) Assume that E(u0) ≤ h, then the sets N+ and N− are both invariant for u(t), i.e, if
u0 ∈ N− (resp. u0 ∈ N+), then u(t) ∈ N− (resp. u(t) ∈ N+) for all t ∈ [0,T ).
Lemma 2.7 ( [29]) Let α be positive. Then

tp ln(t) ≤
1

eα
tp+α, for all p, t > 0.
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3. Proof of main results

In this section, we prove that the main results of problem (1.1).
Proof of Theorem 1.1

(1) Taking v = u in Definition 1.1, we obtain

1
2

d
dt

∫
Ω

u2dx + M(‖u‖p)‖u‖p = λ

∫
Ω

|u|p ln |u|dx − β
∫

Ω

u2dx. (3.1)

By Lemma 2.1, Lemma 2.5 and Lemma 2.6, we obtain

1
2

d
dt

∫
Ω

u2dx +
(
m0 − λL(p,Ω) −

λ

λ1
ln(R)

)
‖u‖p + β

∫
Ω

u2dx ≤ 0.

Since λ < λ1P1, we get
1
2

d
dt

∫
Ω

u2dx + β

∫
Ω

u2dx ≤ 0.

thus
‖u(·, t)‖22 ≤ ‖u0‖

2
2e−2βt.

which implies that ‖u(·, t)‖2 → 0 as t → +∞.

(2)We consider first the case 2N/(N + 2s) < p < 2 with λ < λ1P1. By (3.1) and Lemma 2.1, Lemma
2.5 and Lemma 2.6, we have

1
2

d
dt
‖u‖22 +

(
m0 −

λ

λ1

(
λ1L(p,Ω) + ln(R)

))
‖u‖p + β‖u‖22 ≤ 0. (3.2)

Using Hölder’s inequality and the fractional Sobolev embedding theorem, we have

‖u‖2 ≤ |Ω|
1
2−

N−sp
N p ‖u‖ N p

N−sp
≤ Cp∗s |Ω|

1
2−

N−sp
N p ‖u‖, (3.3)

where Cp∗s > 0 is the embedding constant. By (3.2), (3.3) and λ < λ1P1, we obtain

1
2

d
dt
‖u‖22 + C1‖u‖

p
2 + β‖u‖22 ≤ 0, (3.4)

where
C1 = C−p

p∗s
|Ω|

N−sp
N − P

2
(
m0 −

λ

λ1

(
λ1L(p,Ω) + ln(R)

))
> 0. (3.5)

Setting y(t) = ‖u(·, t)‖22, y(0) = ‖u0(·)‖22, by Lemma 2.2, we obtain‖u‖2 ≤
[(
‖u0‖

2−p
2 + C1

β

)
e(p−2)βt −

C1
β

] 1
2−p
, t ∈ [0,T1),

‖u‖2 ≡ 0, t ∈ [T1,∞),

where
T1 =

1
(2 − p)β

ln
(
1 +

β

C1
‖u0‖

2−p
2

)
. (3.6)
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Next, we consider the case 1 < p ≤ 2N/(N + 2s) and λ < λ1P2. Taking ν = ul in Definition 1.1,
where l =

2N−(s+N)p
sp ≥ 1 , by Lemma 2.1, Lemma 2.4, Lemma 2.5 and Lemma 2.6, we obtain

1
l + 1

d
dt
‖u‖l+1

l+1 + G‖u
p+l−1

p ‖p + β‖u‖l+1
l+1 ≤ 0, (3.7)

where G =
(

m0lpp

(p+l−1)p −
λpL(p,Ω)

p+l−1 −
λp ln(R)
λ1(p+l−1)

)
. By the very choice of l and the fractional Sobolev embedding

theorem, we have

‖u‖
p+l−1

p

l+1 =
( ∫

Ω

u
p+l−1

p ·
N p

N−sp dx
) N−sp

N p
≤ Cp∗s‖u

p+l−1
p ‖. (3.8)

Hence,
1

l + 1
d
dt
‖u‖l+1

l+1 + C2‖u‖
p+l−1
l+1 + β‖u‖l+1

l+1 ≤ 0, (3.9)

where

C2 = C−p
p∗S

( m0lpp

(p + l − 1)p −
λpL(p,Ω)
p + l − 1

−
λp ln(R)

λ1(p + l − 1)

)
, (3.10)

since λ < P2, then C2 > 0. Setting y(t) = ‖u(·, t)‖l+1, y(0) = ‖u0(·)‖l+1, by Lemma 2.2, we obtain‖u‖l+1 ≤
[(
‖u0‖

2−p
l+1 + C2

β

)
e(p−2)βt −

C2
β

] 1
2−p
, t ∈ [0,T2),

‖u‖l+1 ≡ 0, t ∈ [T2,∞),

where
T2 =

1
(2 − p)β

ln
(
1 +

β

C2
‖u0‖

2−p
l+1

)
. (3.11)

The proof is completed. �

Proof of Theorem 1.2
We consider first the case p < r < 2 and 2N/(N + 2s) < p < 2. Taking ν = u in Definition 1.1, we

have
1
2

d
dt
‖u‖22 + M(‖u‖p)‖u‖p =

∫
Ω

|u|r ln |u|dx − β‖u‖22. (3.12)

By Lemma 2.1, Lemma 2.5 and Lemma 2.6, we obtain

1
2

d
dt
‖u‖22 + M(‖u‖p)‖u‖p ≤ λL(r,Ω)‖u‖r + λ ln(R)‖u‖rr − β‖u‖

2
2. (3.13)

Using Hölder’s inequality and the interpolation inequality, the fractional Sobolev embedding theorem
and Young inequality, we can easily obtain (see [19])

‖u‖rr ≤ |Ω|
s1−r

s1 ‖u‖rs1
≤ |Ω|

s1−r
s1 Cr(1−ϑ1)

p∗s
(ε‖u‖p + ε

r(ϑ1−1)
p−r(1−ϑ1) ‖u‖22), (3.14)

where s1 > r, ϑ1 ∈ (0, 1), ε > 0 and

s1 = 2ϑ1 + p∗s(1 − ϑ1), ϑ1 =
2(r − p)
r(2 − p)

.
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By (3.13) and (3.14), we have

1
2

d
dt
‖u‖22 + C3‖u‖p + C4‖u‖22 ≤ 0, (3.15)

where
C3 = m0 − λL(r,Ω)Rr−p − λε ln(R)|Ω|

s1−r
s1 Cr(1−ϑ1)

p∗s
, (3.16)

C4 = β − λ ln(R)|Ω|
s1−r

s1 Cr(1−ϑ1)
p∗s

ε
r(ϑ1−1)

p−r(1−ϑ1) . (3.17)

Since 2N/(N + 2s) < p < 2 and λ < P3, by the fractional embedding theorem and (3.3), we obtain

1
2

d
dt
‖u‖22 + C5‖u‖

p
2 + C4‖u‖22 ≤ 0, (3.18)

and C3 > 0, C4 > 0, where
C5 = C3C

−p
p∗s
|Ω|

N−sp
N − P

2 . (3.19)

Similar to the Theorem 1.1, one can prove the that‖u‖2 ≤
[(
‖u0‖

2−p
l+1 +

C5
C4

)
e(p−2)C4t −

C5
C4

] 1
2−p
, t ∈ [0,T3),

‖u‖2 ≡ 0, t ∈ [T3,∞),

where
T3 =

1
(2 − p)C4

ln
(
1 +

C4

C5
‖u0‖

2−p
2

)
. (3.20)

When 1 < p ≤ 2N/(N + 2s), p < r ≤ 2 and λ < P4. Taking ν = ul (l =
2N−sp−N p

sp ≥ 1) in Definition
1.1, by Lemma 2.4 and Lemma 2.7, we obtain

1
l + 1

d
dt
‖u‖l+1

l+1 +
m0lpp

(p + l − 1)p ‖u
l+p−1

p ‖p ≤ λ
1

eσ
‖u‖l+r+σ−1

l+r+σ−1 − β‖u‖
l+1
l+1 (3.21)

further, we have

1
l + 1

d
dt
‖u

l+p−1
p ‖r1

r1
+

m0lpp

(p + l − 1)p ‖u
l+p−1

p ‖p ≤ λ
1

eσ
‖u

l+p−1
p ‖r2

r2
− β‖u

l+p−1
p ‖r1

r1
(3.22)

where r1 =
p(l+1)
l+p−1 , r2 =

p(l+r+σ−1)
l+p−1 . Note that, since r1 < p∗s, by the Hölder’s inequality and the fractional

Sobolev embedding theorem , we have

‖u
l+p−1

p ‖p
r1
≤ |Ω|

(p∗s−r1)p
r1 p∗s ‖u

l+p−1
p ‖

p
p∗s
≤ |Ω|

(p∗s−r1)p
r1 p∗s Cp

p∗s
‖u

l+p−1
p ‖p. (3.23)

Using the same discussion as above, one can conclude that

‖u
l+p−1

p ‖r2
r2
≤ |Ω|

s2−r2
s2 Cr2(1−ϑ2)

p∗s
(ε1‖u

l+p−1
p ‖p + ε

r2(ϑ2−1)
p−r2(1−ϑ2)

1 ‖u
l+p−1

p ‖r1
r1

), (3.24)

where s2 > r2, ϑ2 ∈ (0, 1), ε1 > 0 and

s2 = r1ϑ2 + p∗s(1 − ϑ2), ϑ2 =
r1(r2 − p)
r2(r1 − p)

.
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Combining (3.22)-(3.24) and λ < P4, we obtain

1
l + 1

d
dt
‖u

l+p−1
p ‖r1

r1
+ C6‖u

l+p−1
p ‖p

r1
+ C7‖u

l+p−1
p ‖r1

r1
≤ 0, (3.25)

and C6 > 0, C7 > 0, where

C6 =
( m0lpp

(l + p − 1)p − λε1
1

eσ
Cr2(1−ϑ2)

p∗s
|Ω|

s2−r2
s2

)
|Ω|

(r1−p∗s )p
r1 p∗s C−p

p∗s
, (3.26)

C7 = β − λ
1

eσ
|Ω|

s2−r2
s2 Cr2(1−ϑ2)

p∗s
ε

r2(ϑ2−1)
p−r2(1−ϑ2)

1 . (3.27)

Using Lemma 2.2 and a direct calculation, we have‖u‖l+1 ≤
[(
‖u0‖

2−p
l+1 +

C6
C7

)
e(p−2)C7t −

C6
C7

] 1
2−p
, t ∈ [0,T4),

‖u‖l+1 ≡ 0, t ∈ [T4,∞),

where
T4 =

1
(2 − p)C7

ln(
C7

C6
‖u0‖

2−p
l+1 + 1). (3.28)

The proof is completed. �

Proof of Theorem 1.3
We consider first the case 2N/(N + 2s) < p < 2 with λ < λ1P1. Taking v = u in Definition 1.1, we

obtain
1
2

d
dt

∫
Ω

u2dx + M(‖u‖p)‖u‖p = λ

∫
Ω

|u|p ln |u|dx − β
∫

Ω

uqdx. (3.29)

Note that ‖u‖p ≥ λ1‖u‖
p
p and by Lemma 2.1, Lemma 2.5 and Lemma 2.6, we have

1
2

d
dt
‖u‖22 +

(
m0 −

λ

λ1

(
λ1L(p,Ω) + ln(R)

))
‖u‖p + β‖u‖qq ≤ 0. (3.30)

By (3.3) and β > 0 and λ < λ1P1, we obtain

1
2

d
dt
‖u‖22 + C8‖u‖

p
2 ≤ 0, (3.31)

where
C8 = C−p

p∗s
|Ω|

2(N−sp)−N p
2N

(
m0 −

λ

λ1

(
λ1L(p,Ω) + ln(R)

))
> 0. (3.32)

By a direct calculation, we obtain‖u‖2 ≤
[(
‖u0‖

2−p
2 + C8(p − 2)t

] 1
2−p
, t ∈ [0,T5),

‖u‖2 ≡ 0, t ∈ [T5,∞),

where
T5 =

1
(2 − p)C8

‖u0‖
2−p
2 . (3.33)
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Next, we consider the case 1 < p ≤ 2N(N + 2s) with λ < P2. Multiplying (1.1) by ul1 (l1 > l ≥ 1)
and integrating, by Lemma 2.1, Lemma 2.4, Lemma 2.5 and Lemma 2.6, we obtain

1
l1 + 1

d
dt
‖u‖l1+1

l1+1 + G1‖u
p+l1−1

p ‖p + β‖u‖q+l1−1
q+l1−1 ≤ 0, (3.34)

where G1 =
(

m0l1 pp

(p+l1−1)p −
λpL(p,Ω)

p+l1−1 −
λp ln(R)

λ1(p+l1−1)

)
. By Lemma 2.3 , we obtain

‖u‖l1+1 ≤ C
(1−ϑ3)p
p+l1−1

p∗s
‖u

p+l1−1
p ‖

(1−ϑ3)p
p+l1−1 ‖u‖ϑ3

q+l1−1, (3.35)

where
ϑ3 =

[(q + l1 − 1)p∗s − (l1 + 1)p](p + l1 − 1)
[(q + l1 − 1)p∗s − (p + l1 − 1)p](l1 + 1)

.

By the choice of l1, we have 0 < ϑ3 < 1. Hence, using the Young inequality, for every r3 > 0 and
ε2 > 0, we obtain

‖u‖r3
l1+1 ≤ C

(1−ϑ3)pr3
p+l1−1

p∗s

(
ε2‖u

p+l1−1
p ‖p + ε

(1−ϑ3)r3
(1−ϑ3)r3−(p+l1−1)

2 ‖u‖
ϑ3r3(p+l1−1)

(p+l1−1)−(1−ϑ3)r3
q+l1−1

)
. (3.36)

We now choose
r3 =

(q + l1 − 1)(p + l1 − 1)
ϑ3(p + l1 − 1) + (q + l1 − 1)(1 − ϑ3)

,

and we notice that ϑ3r3(p+l1−1)
(p+l1−1)−(1−ϑ3)r3

= q + l1 − 1. That means

‖u‖r3
l1+1 ≤ C

(1−ϑ3)pr3
p+l1−1

p∗s

(
ε2‖u

p+l1−1
p ‖p + ε

(1−ϑ3)r3
(1−ϑ3)r3−(p+l1−1)

2 ‖u‖q+l1−1
q+l1−1

)
. (3.37)

We choose

ε2 =
[1
β

( m0l1 pp

(p + l1 − 1)p −
λpL(p,Ω)
p + l1 − 1

−
λp ln(R)

λ1(p + l1 − 1)

)] (1−ϑ3)r3−(p+l1−1)
−(p+l1−1)

.

By (3.34) and (3.37) and λ < P5, we obtain

1
l1 + 1

d
dt
‖u‖l1+1

l1+1 + C9‖u‖
r3
l1+1 ≤ 0,

where

C9 = C
(ϑ3−1)pr3

p+l1−1

p∗s
β
[1
β

( m0l1 pp

(p + l1 − 1)p −
λpL(p,Ω)
p + l1 − 1

−
λp ln(R)

λ1(p + l1 − 1)

)] (ϑ3−1)r3
−(p+l1−1)

,

and C9 > 0, which implies that‖u‖l1+1 ≤
[
‖u0‖

l1+1−r3
l1+1 + (r3 − l1 − 1)C9t

] 1
l1+1−r3 , t ∈ [0,T6),

‖u‖l1+1 ≡ 0, t ∈ [T6,∞),

where
T6 =

1
(l1 + 1 − r3)C9

‖u0‖
l1+1−r3
l1+1 .

The proof is completed. �
Proof of Theorem 1.4
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We consider first the case r < 2. When 2N/(N + 2) < p < 2, multiplying (1.1) by u, we obtain

1
2

d
dt

∫
Ω

u2dx + M(‖u‖p)‖u‖p = λ

∫
Ω

|u|r ln |u|dx − β
∫

Ω

uqdx. (3.38)

Similar to the Theorem 1.2, we obtain

1
2

d
dt
‖u‖22 +

(
m0 − λL(r,Ω)Rr−p)‖u‖p ≤ λ ln(R)|Ω|

2−r
2 ‖u‖r2 − β‖u‖

q
q. (3.39)

Taking β∗ = 0 in Lemma 2.3, we have

‖u‖2 ≤ ‖u‖
(1−ϑ4)
p∗s
‖u‖ϑ4

q ≤ C(1−ϑ4)
p∗S
‖u‖(1−ϑ4)‖u‖ϑ4

q , (3.40)

where ϑ4 =
(p∗s−2)p
(p∗s−q)2 . Then, taking into account that ϑ4 ∈ (0, 1), we can apply Young’s inequality: for

every r4 > 0 and ε3 > 0, we have

‖u‖r4
2 ≤ C(1−ϑ4)r4

p∗s

(
ε3‖u‖p + ε

(ϑ4−1)r4
p−(1−ϑ4)r4
3 ‖u‖

ϑ4r4 p
p−r4(1−ϑ4)
q

)
. (3.41)

Taking
r4 =

qp
q(1 − ϑ4) + ϑ4 p

,

then ϑ4r4 p
p−k2(1−ϑ4) = q. By (3.39), (3.41), Lemma 2.5 and λ < P6, and let ε3 =

(
m0−λL(r,Ω)Rr−p

β

) p−(1−ϑ4)r4
p , we

obtain
1
2

d
dt
‖u‖22 + C10‖u‖r2 ≤ 0, (3.42)

where

C10 = βε
(1−ϑ4)r4

p−(1−ϑ4)r4
3 C(ϑ4−1)r4

p∗s
Rr4−r − λ ln(R)|Ω|

2−r
2 > 0,

which implies that our result holds.
When 1 < p ≤ 2N/(N + 2s), we multiply (1.1) by ul1 (l1 > l ≥ 1), by Lemma 2.4 and Lemma 2.7,

we obtain
1

l1 + 1
d
dt
‖u‖l1+1

l1+1 +
m0l1 pp

(p + l1 − 1)p ‖u
l1+p−1

p ‖p ≤ λ
1

eσ
‖u‖r5

r5
− β‖u‖q+l1−1

q+l1−1, (3.43)

where r5 = l1 + r + σ − 1. Using the Holder inequality and (3.37), and we choose

ε2 =
[ m0l1 pp

β(p + l1 − 1)p

] p+l1−1+(1−ϑ3)r3
p+l1−1

,

then, we have

1
l1 + 1

d
dt
‖u‖l1+1

l1+1 + βε
(ϑ3−1)r3

(1−ϑ3)r3−(p+l1−1)

2 C
(ϑ3−1)pr3

p+l1−1

p∗s
‖u‖r3

l1+1 ≤ λ
1

eσ
|Ω|

1− r5
l1+1 ‖u‖r5

l1+1, (3.44)

for 0 < σ < 2 − r. After performing some simple calculations, we finally obtain

1
l1 + 1

d
dt
‖u‖l1+1

l1+1 + C11‖u‖
r3
l1+1 ≤ 0, (3.45)
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where

C11 = βε
(ϑ3−1)r3

(1−ϑ3)r3−(p+l1−1)

2 C
(ϑ3−1)pr3

p+l1−1

p∗s
− λC, C =

1
eσ
|Ω|

1− r5
l1+1 Cr5

l1+1Rr5−r3 .

Note that λ < P7, then C11 > 0, which implies that‖u‖l1+1 ≤
[
‖u0‖

l1+1−r3
l1+1 + (r3 − l1 − 1)C11t

] 1
l1+1−r3 , t ∈ [0,T7),

‖u‖l1+1 ≡ 0, t ∈ [T7,∞),

where
T7 =

1
(l1 + 1 − r3)C11

‖u0‖
l1+1−r3
l1+1 .

The proof is completed. �
Proof of Theorem 1.5

(i) By the definition of E(u) and I(u), we obtain

E(u) =
1
p

I(u) +
1
p

b(1 − θ)‖u‖θp +
β(p − q)

qp
‖u‖qq + λ

1
p2 ‖u‖

p
p. (3.46)

Choosing ν = ut in Definition 1.1, we have∫
Ω

ututdx = −M(‖u‖p)〈u, ut〉 + λ

∫
Ω

ut|u|r−2u ln |u|dx − β
∫

Ω

ut|u|q−2udx. (3.47)

Note that
d
dt

E(u) =
1
p

d
dt

(a‖u‖p + b‖u‖θp) − λ
∫

Ω

|u|r−2uut ln |u|dx + β

∫
Ω

|u|q−2uutdx. (3.48)

By (3.47) and (3.48), we obtain
d
dt

E(u) +

∫
Ω

ututdx = 0,

which implies that

E(u) = E(u0) −
∫ t

0
‖uτ‖22dτ. (3.49)

Setting Γ(t) = 1
2

∫
Ω
|u(x, t)|2dx, then we have

Γ′(t) =

∫
Ω

utudx = −I(u). (3.50)

By (3.46) and (3.49) and (3.50), we obtain

Γ′(t) = − pE(u) + b(1 − θ)‖u‖θp +
1
q
β(p − q)‖u‖qq + λ

1
p
‖u‖p

p

= − pE(u0) + b(1 − θ)‖u‖θp +
1
q
β(p − q)‖u‖qq

+ λ
1
p
‖u‖p

p + p
∫ t

0
‖uτ‖22dτ.
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Since p > q, then 1
qµ(p − q)‖u‖qq > 0, we obtain

Γ′(t) ≥ −pE(u0) > 0.

By a simple calculation, we get

‖u‖22 ≥ −2pE(u0)t + 2‖u0‖
2
2, for all t > 0,

which implies that our result holds.
(ii) Here, we only prove the case of E(u0) < h, and the proof of E(u0) = h is similar. Choosing

ν = u in Definition 1.1, we have

1
2

d
dt
‖u‖22 + M(‖u‖p)‖u‖p =

∫
Ω

|u|r ln |u|dx − β‖u‖qq, (3.51)

namely
1
2

d
dt
‖u‖22 + I(u) = 0. (3.52)

Next, taking ν = ut in Definition 1.1 and integrating with respect to time from 0 to t, we have∫ t

0
‖uτ‖22dx + E(u(t)) = E(u0) < h, for t > 0. (3.53)

We claim that u(x, t) ∈ W for any t > 0. If it is false, there exists a t0 ∈ R
+
0 \{0} such that u(t0) ∈ ∂W,

which implies
I(u(x, t0)) = 0 or E(u(x, t0)) = h.

From (3.53), E(u(t0)) = h is not true. So u(t0) ∈ N , then by the definition of h in (1.9), we have
E(u(t0)) ≥ h, which also contradicts with (3.53). Hence, u(t0) ∈ W. By (3.52) and u(t) ∈ W for all
t > 0, we obtain

‖u‖22 ≤ ‖u0‖
2
2.

�
Remark 2 Compared with problem (1.4), we not only discuss the extinction of weak solutions of prob-
lem (1.1) with logarithmic nonlinearity, but also prove that the weak solutions are globally bounded
and blow up at infinity.
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