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Abstract: The coronavirus disease 2019 (COVID-19) pandemic caused by the coronavirus strain has
had massive global impact, and has interrupted economic and social activity. The daily confirmed
COVID-19 cases in Saudi Arabia are shown to be affected by some explanatory variables that are
recorded daily: recovered COVID-19 cases, critical cases, daily active cases, tests per million, curfew
hours, maximal temperatures, maximal relative humidity, maximal wind speed, and maximal pressure.
Restrictions applied by the Saudi Arabia government due to the COVID-19 outbreak, from the suspen-
sion of Umrah and flights, and the lockdown of some cities with a curfew are based on information
about COVID-19. The aim of the paper is to propose some predictive regression models similar to
generalized linear models (GLMs) for fitting COVID-19 data in Saudi Arabia to analyze, forecast, and
extract meaningful information that helps decision makers. In this direction, we propose some regres-
sion models on the basis of inverted exponential distribution (IE-Reg), Bayesian (BReg) and empirical
Bayesian regression (EBReg) models for use in conjunction with inverted exponential distribution (IE-
BReg and IE-EBReg). In all approaches, we use the logarithm (log) link function, gamma prior and
two loss functions in the Bayesian approach, namely, the zero-one and LINEX loss functions. To deal
with the outliers in the proposed models, we apply Huber and Tukey’s bisquare (biweight) functions.
In addition, we use the iteratively reweighted least squares (IRLS) algorithm to estimate Bayesian re-
gression coefficients. Further, we compare IE-Reg, IE-BReg, and IE-EBReg using some criteria, such
as Akaike’s information criterion (AIC), Bayesian information criterion (BIC), deviance (D), and mean
squared error (MSE). Finally, we apply the collected data of the daily confirmed from March 23 - June
21, 2020 with the corresponding explanatory variables to the theoretical findings. IE-EBReg shows
good model for the COVID-19 cases in Saudi Arabia compared with the other models

Keywords: Bayesian generalized linear models; empirical Bayesian; Huber’s function; LINEX loss
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1. Introduction

Since the beginning of 2020, the world has been facing a coronavirus pandemic (COVID-19) at a
rapid and alarming rate, representing a significant challenge for humanity and a serious threat to life.
Although many countries have taken multiple and sometimes harsh measures to limit the spread of the
virus and reduce its spread, the eyes of the public are now turning to scientists, doctors, and researchers
of all scientific disciplines in the hope of finding a quick and successful treatment for this virus. Many
authors have investigated the association of environmental and meteorological factors on the spread of
COVID-19, see for example, Tello-Leal, et al. [1], Kodera, et al. [2], Meo, et al. [3], Casado-Aranda,
et al. [4], Dogan, et al. [5], Fu, et al. [6] and Yuan, et al. [7].

McCullagh and Nelder [8] published a book on GLMs that led to their widespread use and appre-
ciations. They extended the scoring method to maximume-likelihood estimation (MLE) in exponential
families. Nelder and Pregibon [9] described methods of jointly estimating parameters of both link and
variance functions. The iteratively reweighted least squares (IRLS) algorithm is amenable to statistics
and measures that are common to all GLMs. Nelder and Wedderburn [10] used the Newton—Raphson
process for regression coefficient estimates. Yuan and Bentler [11] reported that the convergence prop-
erties of the Fisher scoring algorithm are affected by many factors. One among the observed variables
is multicollinearity. If the sample or model implied covariance matrix is close to singular, the Fisher
scoring algorithm may have difficulty reaching a set of converged solutions. Nelder and Wedder-
burn [10] reported that the Newton—Raphson process with expected second derivatives is equivalent to
Fisher’s scoring technique. Additionally, de Jong and Heller [12] reported that the Newton—Raphson
iteration equation leads to a sequence that often rapidly converges. This includes the D statistic along
with specific residuals and influence measures. Liao [13] introduced a systematic way of interpreting
commonly used probability models: logit, probit, and other GLMs. For recent works of using these
models to the field of epidemiology and to the healthcare, see for example, Richardson and Hartman
[14], Song, et al. [15], Mohamadou, et al. [16] and Trunfio, et al. [17].

The inverted exponential (IE) distribution that was introduced by Keller and Kamath [18]. The
role of IE distributions is indispensable in many applications of reliability theory for its memoryless
property and its constant failure rate. Dey [20] considered IE distribution as life distribution (see
Abdel-Aty et al. [19], and Dey [20]). Singh et al. [21] obtained Bayes estimates for parameters of 1E
distribution by using informative and noninformative priors. They also compared the classical method
with the Bayesian through the simulation study.

The Bayesian approach of the statistical modeling provides an alternative to standard GLMs.
Posterior-mode estimation is an alternative to full posterior analysis or posterior mean estimation,
which avoids numerical integrations or simulation methods. It was proposed by many authors (for
more details, see Fahrmeir and Tutz [22] and Cepeda and Gamerman [23]). Dey et al. [24] described
how to conceptualize, perform, and critique traditional GLMs from a Bayesian perspective, and how
to use modern computational methods to summarize inferences using simulations. Olsson [25] gave
an overview of GLMs and presented practical examples. The exponential family of distributions are
discussed with maximum-likelihood estimation and ways of assessing the fit of the model. For the
Bayesian estimation in this context, a useful asymmetric loss function known as the LINEX loss func-
tion was introduced by Varian (1975) and has been widely used by several authors. A highly used one
is the zero—one loss function (for more details, see Sano et al. [26]). Robbins [27] has provided a more
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robust estimate and for estimating the parameters of prior distribution (hyperparameters), studies on
the empirical Bayes (EB) method, Wei [28] has proposed the EB test of the regression coefficient, and
working out the EB test decision rule by using kernel estimation of multivariate density function and its
first-order partial derivatives, Singh [29] has proposed an EB approach in a multiple linear-regression
model, Houston and Woodruft [30] have derived EB estimates using an m-group regression model to
regress within-group estimates toward common values. More studies by many authors discussed EB
test problems for parameters in a class of linear-regression model and other topics, e.g., Wind [31],
Huang [32], Karunamuni [33], Yuan [34], Chen [35], Efron [36], Shao [37], Kim and Nembhard [38],
and Jampachaisri et al. [39].

In order to reduce the influence of outliers on the estimate, some robust measures were proposed in
the literature. The common robust estimation method can be divided into several categories: M, MM,
median, L1, Msplit, R, S, least-trimmed squares, and sign-constraint robust least squares estimation.
Among these, Huber’s M estimation has become one of the main robust estimation methods by virtue
of its simple calculation and convenience to implement (see Li et al. [40]). The key aspect is the
involvement of a loss function that is applied to data errors that was selected to less rapidly increase
than the square loss function that is used in least-squares or maximum-likelihood procedures. There
exist several well-known families of loss functions, such as Huber, Hampel, and Tukey’s biweight (or
bisquare) that can be used for the computation of M estimators (see Sinova and Aelst [41]).

A major contribution of this paper is to propose similarity to GLMs, except that the distribution
of the response is not a member of the exponential family using the Bayesian approach. We interest
in IE distribution of which the flexible distribution can describe different lifetimes from medicine,
reliability, ecology, biological studies, and other areas. We propose the Bayesian and non Bayesian
inverted exponential regression models to model and analyze Covid-19-related data with the aim of
explaining the relationships between Covid-19 cases and environmental-related variables. The paper
is organized as follows: In Section 2, we present an overview of GLMs and propose the IE-Reg model
under a log link function. In Section 3, we perform IE-BReg and IE-EBReg under a gamma prior,
log link, and two loss functions. We propose Huber’s and Tukey’s bisquare (biweight) function to
improve Bayesian models. We also adopted the iteratively reweighted least squares (IRLS) algorithm
to estimate the Bayesian regression coefficients. In Section 4, we apply IE-Reg, IE-BReg, and IE-
EBReg models, including an estimation, and use criteria such as AIC, BIC, MSE, and D to the Saudi
COVID-19 dataset collected from March 23 to June 21, 2020. Finally, Section 5 draws a succinct
conclusion to the findings.

2. Classical approach

Nelder and Wedderburn [10] introduced the class of GLMs, defined according to the assumption
that yy, y,, ...y, are observations of the response variable, with density function y; as follows:

Fin6) = OO =12, n, @.1)

where ¥/(+), c(-) are known functions, with 6; being the canonical parameter. Link function g(.), related
to the regression coefficients, is given by

gy =m=xp, i=12..n, (2.2)
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where g(u;) = 6;, B = (B1, ..., 8,)" 18 a vector of p unknown regression parameters, x. = (X1, X2, ..., Xip)
is a vector of explanatory variables, and #; is a linear predictor of vectors x; and 8. Here, g(.) :
(0,00) — R is a link function, which is a monotonic differentiable invertible function. The model
given by (2.1) and (2.2) is called the GLM. The GLM class includes, as special cases, linear-regression
and analysis-of-variance models, logit and probit models for quantal responses, log—linear models, and
multinomial response models for counts (for more details, see McCaullagh and Nelder [42]).
Consider that the probability density function of IE distribution is as follows (see Abdel-Aty et al.

[19]):

foiy) = y—yze‘z; y>0, y>0, (2.3)
which has no mean and v is a scale parameter. The median value of the response variable is given by
~ Y
= ) 24
log(2) .

Since mean does not exist, we use the median f instead of it in the link function (see Das and Dey
[43]). The cumulative function of IE distribution is given by

Fy;y)=e; y>0.
Let y; be a random sample from IE, and y; = fi; log(2), the log-likelihood function based on y;, is given
by
log(2)f;
Yi
Regression coefficients are estimated using Fisher’s scoring technique (for more details, see Nelder
and Wedderburn [10], and McCaullagh and Nelder [42]). In order to develop the GLMs for our models,
IE-Reg is similar to GLMs, except that the distribution of the response variable is not a member of the
exponential family (Ferrari and Cribari-Neto [44]). We also suggest the logarithm (log) link functions
of g(.), in view of (2.2) as in the following lemma.

log(2
I = I(@ly) = log(@) + log( et )) . =12, 2.5)
Yi

Lemma 2.1:
Let the response variable Y have an IE distribution, i = 1,2, ...,n, and let the link function of the
form be

g(i) =log(in) =mi =xB, i=1,2,..,n (2.6)
Thus, estimated coeflicients B’ = (BO, [31, e, ,ép) using Fisher’s scoring technique at the sth iteration
based on the IRLS process are given by
BY =X'X)'X'Z s=1,2,3,. 2.7)
where X is a covariates matrix, B(. ) is an initial vector, Z' = (21,22, ...,2,), and
P 24 Vlog(2
= Db [ Ao )). 28)
= Yi

The procedure in (2.7) can be repeated until |3 — 34~D| < &. IE-Reg model in this case is given by
i = BB it B iy (2.9)

Proof: See the appendices
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3. Bayesian approach

Diaconis and Ylvisker [43] introduced conjugate prior distribution for the exponential family,
which, as in (2.1), can be shown as

7(0;) = ky ™ol =12 .. n, (3.1)

where k; 1s a normalization constant, and m, u, are natural parameters. 6; values are connected to the
regression coeflicients by link function n; = xi8 as

g (m) =0, (3.2)
Posterior distribution of 6; is given by
76y = kze(yz+muo)ﬁz—(1+m)t//(91)_ (3.3)
Das and Dey [43] suggested a Jacobian of transformation and rewrote (3.3) with term 7;, as

m(nily) = kze@i*mﬂo)g*w;)—(l+m)w(g*(m)) g (n) 3.4)

o

where k, is a normalization constant, and (aga—,(]") # 0. They used a zero—one loss function to attain the
posterior mode of (3.4) as 7j; = h(y;); hence, estimated coefficients 8* = (,(3’3, ﬁ’[, o ,3;)’ are given by

B =XX)"'Xn, (3.5)

where [3* is the least-squares estimates, and 77 = (71, 2, ..., 1],,) (for more details, see Das and Dey [43],
and Das and Dey [45]).

3.1. IE-BReg and IE-EBReg models

In order to develop a Bayesian approach, we suggest Bayesian and empirical Bayesian regression
models (IE-BReg and IE-EBReg) that are similar to Bayesian GLMs, except that the distribution of the
response variable is not a member of the exponential family. We used the general form of the posterior
in (3.4), and since g(-) is a monotonic differentiable function, we then attain posterior Bayes estimates.
In addition, we use log link function with zero—one and LINEX loss functions to be appropriate of
Bayes estimates. IE-BReg and IE-EBReg estimators correspond to the log link function using different
loss functions, as in the following lemmas.

Lemma 3.1: (IE-BReg and IE-EBReg models based on zero—one loss function)
Let the response variable Y have an IE distribution, and the link function of the form be as in (2.6).
Consider that 7 has a gamma prior G (a, 1) with the following density function

I'(@)

Thus, the posterior mode of 7; by using zero—one loss function can be derived by solving the following
equation:

n(ji) = e et 1> 0,4,a>0. (3.6)

. a+1 .
n = lOg [m], 1= 1,2, ey 1. (37)

Vi

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2303-2330.



2308

Estimated coefficients 3* are given as in (3.5). In this case, IE-BReg and IE-EBReg models are given
by

ﬁ:s _ eﬁg+ﬁ”l‘x,v]+....+[§;x,~p. (3.8)

In the case of IE-EBReg, empirical Bayes estimates for unknown prior distribution parameter A are
given by MLE from the data. Therefore, IE-EBReg estimates are found by placing these estimated
prior distribution parameter into Equation (3.7) by A.

Proof: See the appendices

Lemma 3.2

Let the response variable Y have an IE distribution, and the link function of the form be as in
(2.6). Consider that & has a gamma prior G (a, 1) with the density function as in (3.6). Using Jacobian
transformation from fi; to 7;, the posterior function of 7; can be written as in the following equation

ni( 4 102
(ily;) oc e~ (a5 )).

Thus, the scale parameter of the prior G (e, A) is less than or equal one (1 < 1) and its variance (%) is
greater than or equal the mean (u).

Proof: See the appendices

Lemma 3.3: (IE-BReg and IE-EBReg models based on LINEX loss function)

Let the response variable Y have an IE distribution, and let the link function of the form be as given
in (2.6). Consider that & has a gamma prior with density function as given in (3.6). As a result, the
posterior Bayes estimates of 77;, by using the LINEX loss function, can be derived as follows

-1 A% log(2
n; = — log og( 1) -~ | i=1,2,..n (3.9)
@ hir@(1+22)

The estimated coefficients 3* and the IE-BReg and IE-EBReg models and their estimates in this case
are given as in (3.5) and (3.8), respectively. In the caes of IE-EBReg model, the regression coefficients
estimates is found by placing these estimated prior distribution parameter into Equation (3.9) by A.

Proof: See the appendices

Lemma 3.4:

Let the response variable Y have an IE distribution, and the link function of the form be as in
(2.6). Consider that i has a gamma prior G (a, 1) with the density function as in (3.6). Using Jacobian
transformation from fi; to n;, the posterior function of 7; can be written as in the following equation

Ry o [g" o™ 01+ 5 20
ni

i (3.10)

Thus, the scale parameter of the prior G (a, A) is greater than or equal one (4 > 1) and its variance (0%)
is less than or equal the mean (u).

Proof: See the appendices
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3.2. Robust IE-BReg and IE-EBReg models

M-estimation is considered to be the most common method of robust regression. It was proposed
by Huber [46] in the presence of outliers, and it is more efficient than ordinary least squares (OLS)
(Rousseeuw and Leroy [47], and Chang, et al. [48]). The Huber’s function takes the following form
(Huber [46, 49]):

2
2 "<k,
r) = 2 3.11
p) {Mm—a ">k 31D

where k is the tuning constant, r is the residual corresponding to the observation in OLS, and p(-)
is the objective function that satisfies certain properties. Often, p(-) can be formed by using a linear
combination of the residuals. Defining function %p(r) and the corresponding weight function in this
case is as follows:

T Lo >k (5-12)

Ir”

Mﬂ:MH:{L "<k,

Another M-estimation function is the Tukey bisquare’s (biweight) function. This is based on
Tukey’s function, taking the form of that in Sinova and Van Aelst [41]

ﬁ _ _(r\2713
pm={6“ [ - (), I <k, 5.13)

£, I > k,
where k is the tuning constant and r is the residual corresponding to the observation in OLS. Defining
function (%p(r) = ¥(r) and the corresponding weight function in this case is given as follows:

(3.14)

Y _ Ww(r) = [1- (DM, Il <k,
ro 70, I > k.

To make the IE-BReg and IE-EBReg models are robust, we suggest the Huber’s and biweight functions
for these models based on an adopted IRLS algorithm. There are also many other versions of the M-
estimation function that could be used here.

Lemma 3.5: (IE-BReg and IE-EBReg models based on M-estimation functions)

Let the response variable Y have an IE distribution, and let the link function of the form be as given
in (2.6). Consider that g has a gamma prior with density function is given as in (3.6). Using the
Jacobian transformation from fi; to n; and using the log link function, we have the posterior distribution
of n; is given as in (3.10). Thus, the estimated coefficients 3* = (ﬁg, ,@T, ces [3;)’ are given as

N A -1 A

ﬁ*(s) — (X/W(ﬁ*(s—l)) X) X/W(ﬁ*(s—l)) ﬁ, s=1,2,3,..., (3.15)
where 7; = h(y) and 77 = (71,72, ...,7],) are the posterior Bayes estimates of 7; using the zero—one
or LINEX loss functions, and W = diag(wi,w,,...,w,), w; are the selected weights depending on

M-estimation functions. In this case, coeflicients are estimated using the adopted IRLS Algorithm.

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2303-2330.



2310

An adopted algorithm based on IRLS and M-estimation is employed as follows:

Equation (3.15) is solved using an adopted algorithm on the basis of the standard IRLS algorithm
(for more details, see Maronna et al. [50], Wen and Liu [51], and Kikuchi et al. [52]). This algorithm
is proposed for the solution of the IE-BReg and IE-EBReg estimates, that is employed in the following
steps:

(i) Setting the iteration counter at ¢ = 0, finding an initial estimates of regression coefficients

ﬁ;(Q), j=0,1,2,..., p— 1 using IE-Reg estimates.

(i1) The initial residuals r(*l.()q) =Y - ¢XB'") are based on the log link function that is given as in (2.6),
and calculate an initial scale estimate s*@ = 1.4826(median|r;k(q)|).

(iii ) An initial standardized residuals uf(q) = ;—EZ are calculated and used to calculate initial estimates
for the weight function. Preliminary weights are w;‘(q) = w(u;‘(q)).

(iv ) Calculate A as the prior distribution 7(1) is G (@, A) in the case of IE-EBReg using MLE esti-
mates, or the scale parameter A is known in the case of IE-BReg model.

(v) Calculate Bayes estimates 7; = h(y);i = 1, ..., n using the prior G (@, 1) and zero—one or LINEX
loss functions.

(vi ) Using weights from Steps i—iii and Steps iv and v to find estimators in (3.15).

(vit ) Set g = g + 1; then, go to Step ii. Steps (i1) to (vii) are repeated until the estimate of [3*“1) is

stabilized from the previous iteration, which means: |3*@*" — 3*@)| < ¢,

Under regularity conditions, estimator 3* has asymptotically normal distribution 3* = N (,8*, X'wWXx )‘1)
(see Houston and Woodruft [30], Tellinghuisen [53]).

4. Data analysis

In this section, we apply the IE-Reg, IE-BReg, and IE-EBReg models for the daily confirmed
COVID-19 cases in Saudi Arabia. The relevant dataset in this application is COVID-19 data from
Saudi Arabia in 2020. These data contain 91 observations from March 23-June 21, 2020 in which the
response variable Y is the daily confirmed COVID-19 cases in Saudi Arabia. Explanatory variables are:
X1; daily recovered COVID-19 cases, X,, daily critical COVID-19 cases; X3, daily active COVID-19
cases; Xy, tests per million (PCR tests); X5, curfew hours per day; Xs, maximal temperature in Celsius
per day; X7, maximal relative humidity (%); Xs, maximal wind speed in miles per hour (mph); and
Xy, maximal pressure in hectopascal (hPa). In the case of variables X;,i = 6, ...,9 are the average for
the cities of Riyadh, Jeddah, and Dammam that have had the highest number of confirmed and death
cases. This dataset was taken from the Ministry of Health of Saudi Arabia (COVID-19 dashboard) and
the Ministry of Health’s Twitter account.

Lemmas in Sections 2 and 3 were applied to these data. IE-Reg, IE-BReg, and IE-EBReg models
based on log link and loss functions were used. Bayes coeflicients were obtained using a gamma
prior G (@, 4) to a known shape @ and an unknown scale A parameter. We used generated data from
a gamma prior distribution to estimate A in the case of IE-BReg model and use our data in the case
of IE-EBReg model. We also compared the performance of all these models. Different plots, such
as the quantile—quantile (Q—Q) plot, the empirical cumulative distribution function (ECDF), and box
plot, were proposed to aid in distributional assessment and identify outliers. In addition, Huber’s and
biweight functions are suggested in the case of Lemma (3.5) to avoid such distortions due to outliers
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(for more details, see Sinova and Van Aelst [41]). The backward-selection method is used in the IE-
EBReg model to remove the input variable (see Table 3). Modeling performance is measured in terms
of some criteria, such as AIC, BIC, D, D/df (divided by its degrees of freedom), and mean square error
(MSE) (de Jong and Heller [12]). We also used Thiel’s inequality coefficient (TIC) to compare the
prediction accuracy of the selected models (Leuthold [54], and Niu et al. [55]). To check the adequacy
for the selected models, we consider the deviance residuals (see McCaullagh and Nelder [42]). The
predictive results of these models and other numerical results are shown in Tables 1-8. R software
was used to carry out calculations. In order to compare with known distributions, the glm() function in
“stats” was used to fit the GLMs (Faraway [56]). Functions qqPlot(), ecdf(), boxplot, and ks.test() in R
package “’stats” were used for the assessment distributions (Fox and Weisberg [57]).

K-S test is used to recommend the IE distribution as a good fit for the daily confirmed COVID-19
cases in Saudi Arabia comparing with some other distributions as given below:

K-S test of daily confirmed COVID-19 cases in Saudi Arabia using different distributions.
Distribution Gaussian Exponential Gamma Inverted Exponential Inverse Gaussian
p-value 0.0000 0.0000 0.141 0.169 0.016

Based on the results obtained from the above table, the large p-value for the test indicated that 1E
distribution fit the response variable in the given data quite well. Figure 1 provides the Q-Q plot,
ECDF, and fitted functions of the selected models, and it is clear that IE distribution fits these data
well.

(a) (b)
w
w ‘_ * Gamma
— == | Gi

o | T |z imrce Gau
B n - . E
[ =] f [} @
o (=]
- N o
o 7 & ~ 7
= f L
S .8 g
= | L
E o g w |
i.aE o
[=]
[ -
= o
= i
=}

= o |
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Figure 1. (a) Q-Q plots of the daily confirmed COVID-19 cases in Saudi Arabia based on IE
(b) ECDF plot based on different distributions.
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Figure 2. Box plots of the variables of Saudi Arabia COVID-19 dataset.

Figure 2 presents box plots corresponding to each of the Saudi Arabia COVID-19 dataset variables,
and the chart also maps outliers that exceeded the values of fences. The plot also displays the maxi-
mum, minimum, and median of the data, along with the first and third quantile. The outliers could also
be identified as in Figure 2 (shown as unfilled circles) in explanatory variable X,, and we can observe
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a big difference between the maximal value and the rest of the observation, which is beyond the outer
fence. This case could be considered a very extreme outlier. The chart also shows more outliers on
variables X3, X5, and Xg. For the X, and X3 box plots, variables having outliers were much higher
than the third quartile or much lower than the first quartile of the box was. Possible reasons for this
deviation may be when daily active or critical cases exceeded the recovered cases, or daily recovered
cases exceeded active or critical cases. There is no outlier in the daily-confirmed-cases variable in the
context of box-plot analysis, and this variable was slightly asymmetrically distributed with a relatively
heavy tail.

Table 1 presents that the MSE value of the IE-Reg, gamma models was large, while the MSE
values of the inverse Gaussian was very large. Table 2 shows that the MSE value of the IE-Reg model
was large, while the MSE values of the IE-BReg and IE-EBReg models were small. In the case of
IE-Reg model, 3 was stabilized when Fisher’s scoring procedure converged at s = 15 because of
|31 — | < 0. In the case of the IE-BReg and IE-EBReg models, the fitting results based on Huber’s
function had the largest MSE values compare to the MSE values based on biweight function. The
results in this table also show that the MSE values based on biweight function and without use any
weight function were almost similar, but fitting results based on biweight function were best in terms
of AIC, and D statistics. Comparing between Bayesian fitting results, we observed that the results
based on LINEX loss function were better than those of the zero—one loss function. Gamma prior
variance was larger than the mean in the case of used the zero—one loss function, while gamma prior
variance was less than the mean in the case of used the LINEX loss function.

Table 1. Efficiency of Gamma, inverse Gaussian, Inverted exponential(IE-Reg), IE-Bayesian
regression (IE-BReg), and IE-empirical Bayesian regression (IE-EBReg) models.

The Model IE-Reg IE-BReg IE-EBReg Inverse Gaussian ~Gamma
Prior G(2.610,1.389)
Loss and Weight function LINEX and Huber LINEX and biweight
AIC 39.339 64.867 65.837 181.256 147.107
D 4.666 30.194 31.163 25.093 18.392
D/df 0.058 0.373 0.385 0.302 0.222
MSE 3.880 0.201 0.188 5935513 1.303

Table 2 also shows that the IE-EBReg model based on gamma prior G(2.610, 1.420) and biweight
function was the best on our dataset, since D and D/df (D/df = 0.380),df = 83 were acceptable with
a low MSE compared to that of the other models. Tables 1 and 2 show that the D/df of this model was
very close to 1, indicating that the fitting degree was very good. The value of z statistic was large, so
there was also a significant relationship among the variables.

Through this comparison, we can conclude that the predictive model was IE-EBReg based on bi-
weight and LINEX functions, and it is given as follows:

? — e—27.535+0.457x1 +0.415x3+0.675x4+21.012x5+33.815x6+13.687x7+24.888x9 ) (4 1 )

In the side of the adopted IRLS procedure based on M-estimation, 3 is stabilized and it converged
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at s = 15 because of |3 — 09| < 4.2¢ — 06. The performance of the selected model was indicative
that the adopted algorithm works well. The actual and predicted for the IE-EBReg model compared to
IE-Reg are represented graphically in Figure 3. Figure 4 show that the deviance residuals against the
indices of the observations suggest that the residuals for the IE-EBReg model are randomly scattered
around zero. From Table 2 and 3, we can conclude that, for the selected model among possible 1E-
EBReg models based on the smallest AIC = 54.151 and lowest MSE = 0.230 with eight variables, this
fitting result was the best when using level of significance @ = 0.05.

Table 4 presents the fitting results for the IE-EBReg model based on biweight function that is the
best based on relative errors. For the prediction results, Table 5 shows that the IE-EBReg model based
on Huber’s function compared to that based on biweight function had the worst prediction accuracy
because the TIC value was closer to 1, while the TIC value for the IE-EBReg model based on biweight
function was closer to 0.

According to the residuals results of the IE-BReg and IE-EBReg models, it can be found that the
errors of the first data are too large, which seriously affects of results, see Table 6 (Case 1). To make
a precision comparison, we removed one observation form data i = 1 that have large error and we
reestimated the model after removing from the data (Case 2). Furthermore, we replaced y, with the
mean of observation from i = 2 to i = 11 and we reestimated the model after modifying the data
(Case 3). We also replaced y;,i = 1,4,5,6,7,9 with the mean of observation fromi =2toi = 11 and
we reestimated the model after modifying the data (Case 4). However, we removed the observations
i = 1,4,5,6,7,9 and we reestimated the model after removing observations (Case 5). The relative
changes in the parameter estimates are presented in Table 6. The the deviance residuals against the
indices of the observations suggest that the residuals are randomly scattered around zero at level of
significance @ = 0.001 (Cox Stuart test) for the IE-BReg and IE-EBReg models based on the priors
G(2.3537,1.410) and G(2.3537,1.493).

Table 6 and 7 show that, the IE-EBReg model (Case 4) is the best for our data, and it is given as
follows:

? — e—27.657+0.510x1+0.466X3+0.655x4+26.546xs+32.713xg,+14.248x7+24.847x:; (4 2)

In the side of the adopted IRLS procedure based on M-estimation, 3**) is stabilized and it converged at
s = 15 because of |3 —3*!¥| < 0. The actual and predicted for the IE-EBReg model compared to IE-
Reg model is represented graphically in Figure 5. From Table 8, we can conclude that, this model has
smallest AIC = 50.6634 and a low MSE = 0.2014, and there was also a significant relationship among
the variables when using level of significance @ = 0.05. Figure 6 show that the deviance residuals
against the indices of the observations suggest that the residuals for the IE-EBReg model (Case 4) are
randomly scattered around zero. In comparison between IE-EBReg models that were shown in (4.1)
and (4.2), and based on the results on Table 2 and 6, we can conclude that the IE-EBReg model in (4.2)
is the best for our data.
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Table 2. AIC, BIC, D and MSE of IE-Reg, IE-BReg, and IE-EBReg models.

Step  Model Prior Loss Function  AIC BIC D MSE
Step 1 IE-Reg 39.339 64.448 4.666 3.880
IE-BReg-Huber G(0.893,0.641) zero—one 65.700 90.808 31.026 0.560
IE-BReg-biweight 66.054 91.163 31.381 0.486
IE-BReg 66.059 91.167 31.385 0.486
IE-BReg-Huber G(2.610, 1.393) LINEX 67.559 89.917 30.135 0.201
IE-BReg-biweight 65.773 90.882 31.100 0.188
IE-BReg 65.781 90.890 31.108 0.188
IE-EBReg-Huber G(0.893,0.642) zero—one 65.736  90.845 31.063 0.561
IE-EBReg-biweight 66.087 91.195 31.413 0.487
IE-EBReg 66.092 91.200 31.418 0.487
IE-EBReg-Huber G(2.610, 1.389) LINEX 64.867 89.976 30.194 0.201
IE-EBReg-biweight 65.837 90.945 31.163 0.188
IE-EBReg 65.845 90.954 31.171 0.188

Step2 IE-Reg 37.381 59.979 4.707 3.887
IE-BReg-Huber G(0.844,0.616) zero—one 62.673 85.271 29.999 0.554
IE-BReg-biweight 63.082 85.680 30.408 0.473
IE-BReg 63.093 85.691 30.419 0.472
IE-BReg-Huber G(2.350,1.672) LINEX 54783 79.891 20.109 0.262
IE-BReg-biweight 54.128 76.725 21.454 0.237
IE-BReg 54.155 76.752 21.481 0.237
IE-EBReg-Huber G(0.844,0.614) zZero—one 62.600 85.198 29.926 0.554
IE-EBReg-biwight 63.027 85.625 30.353 0.471
IE-EBReg 63.038 85.636 30.364 0.469
IE-EBReg-Huber G(2.350,1.621) LINEX 52.522  75.120 19.848 0.261
IE-EBReg-biweight 54.151 76.749 21.477 0.230
IE-EBReg 54.186 76.784 21.512 0.230

Step3 1E-Reg 35.621 55708 4947 4.015
IE-BReg-Huber G(0.820,0.593) Zero—one 59.890 79977 29.217 0.539
IE-BReg-biweight 60.450 80.537 29.777 0.445
IE-BReg 60.453 80.540 29.780 0.445
IE-BReg-Huber G(2.610,1.451) LINEX 60.320 80.407 29.647 0.205
IE-BReg-biweight 60.970 81.057 30.296 0.196
IE-BReg 60.973 81.060 30.299 0.196
IE-EBReg-Huber G(0.820,0.607) zero—one 60.561 80.648 29.887 0.537
IE-EBReg-biweight 60.970 81.057 30.297 0.465
IE-EBReg 60.974 81.061 30.300 0.465
IE-EBReg-Huber G(2.610, 1.420) LINEX 60.493 80.580 29.819 0.200
IE-EBReg-biweight 61.472 81.559 30.799 0.192
IE-EBReg 61.476 81.563 30.803 0.192
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Table 3. AIC, BIC, D and MSE of IE-Reg, IE-BReg, and IE-EBReg models.

Step  Variables B z-Statistics  P-value B z-Statistics  P-value
Huber biweight
Step 1 Intercept -31.068 -3.790 0.0002 -27.730 -3.457 0.0005
X 0.460 16.211 0.0000  0.461 16.673 0.0000
X 0.258 2.107 0.0351 0.292 2.401 0.0163
X3 0.419 14.949 0.0000  0.420 15.404 0.0000
Xy 0.757 4.329 0.0000  0.648 3.876 0.0001
X5 23.821 5.981 0.0000  23.409 5.973 0.0000
X 32.640 5.503 0.0000  32.170 5.513 0.0000
X7 14.379 10.368 0.0000  13.551 9.962 0.0000
Xs 0.211 0.109 09132  -0.668 -0.349 0.7271
Xy 28.421 3.486 0.0004  25.170 3.154 0.0016

Step2 Intercept -36.839 -4.597 0.0000 -32.435 -4.136 0.0000

X 0.542 18.750 0.0000  0.523 19.327 0.0000
X 0.263 2.147 0.0318  0.336 2.763 0.006
X3 0.495 17.643 0.0000  0.477 18.048 0.0000
X4 0.827 4.687 0.0000  0.729 4.430 0.0000
X5 25.401 6.370 0.0000  26.728 6.819 0.0000
Xe 36.826 6.307 0.0000  37.064 6.467 0.0000
X7 16.828 12.124 0.0000  15.534 11.456 0.0000
Xy 33.688 4.219 0.0000  29.331 3.752 0.0002

Step3 Intercept -30.825 -3.867 0.0001  -27.535 -3.518 0.0004

X 0.456 16.450 0.0000  0.457 16.997 0.0000
X3 0.415 15.304 0.0000  0.415 15.846 0.0000
X4 0.790 4.599 0.0000  0.675 4.132 0.0000
Xs 21.823 5.600 0.0000  22.012 5.692 0.0000
Xs 33.856 5.845 0.0000  33.815 5.925 0.0000
X7 14.402 10.453 0.0000  13.687 10.102 0.0000
Xy 28.142 3.543 0.0004  24.888 3.190 0.0014
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Table 4. Fitting results of IE-EBReg §; based on LINEX, Huber’s, and biweight functions
(during fitting interval.

Date Vi i lvi — 9 Relative error % i [yi — 9| Relative error %
Huber biweight
4/26/2020 1223 1348 125 10.25 1351 128 10.439
4/27/2020 1289 1172 117 9.050 1177 112 8.697
4/28/2020 1266 1.032 234 18.46 1026 240 18.959
4/29/2020 1325 1257 68 5.11 1249 76 5.724
4/30/2020 1351 1.223 128 9.470 1222 129 9.542
5/1/2020 1344 1357 13 0.994 1353 9 0.652
5/2/2020 1362 1514 152 11.15 1491 129 9.490
5/3/2020 1552 1582 30 1.94 1566 14 0.890
5/5/2020 1645 1364 281 17.07 1357 288 17.495

Table 5. Predicted results of IE-EBReg J; based on LINEX, Huber’s, and biweight functions

with seven variables (out of fitting interval).

A

Date i Vi lyvi—%l RE.% TIC $i vi-9| RE% TIC
Huber biweight

6/22/2020 3393 3340 53 1.55  0.0612 3165 228 6.731  0.0529
6/23/2020 3139 2789 350 11.16 2693 446 14.205
6/24/2020 3123 2627 496 15.87 2519 604 19.355
6/25/2020 3372 4000 628 18.63 3765 393 11.658
6/26/2020 3938 4272 334 8.48 4012 73.772  1.873
6/27/2020 3927 4448 521 13.28 4107 180.124  4.587

R.E.: Relative Error
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Table 6. AIC, D, MSE and Cox Stuart test for the deviance residuals of IE-EBReg model

based on biweight function.

Model Cases Prior AIC D MSE  Cox Stuart test
p-value
IE-BReg 1 G(2.6352,1.3613) 63.4138 32.7401 0.1870 0.0001
2 64.4422  27.8167 0.1727 0.0001
3 61.1159 28.6864 0.1727 0.0001
4 58.9767 24.6503 0.1700 0.0001
5 75.1276  15.6250 0.1617 0.0003
IE-EBReg 1 G(2.6352,1.3574) 63.5012  32.8276 0.1869 0.0001
2 64.5095 27.8839 0.1726 0.0001
3 61.1903  28.7608 0.1725 0.0001
4 59.0385 24.7120 0.1698 0.0001
5 75.1385 15.6359 0.1612 0.0003
IE-BReg 1 G(2.3537,1.4910) 52.99269 22.3190 0.2354 0.0161
2 55.6927  19.0672 0.2090 0.0008
3 51.8461 19.4166 0.2086 0.0008
4 50.6692 16.3428 0.2015 0.0025
5 70.3465 10.8439 0.1787 0.0079
IE-EBReg 1 G(2.3537,1.4928) 52.9776  22.3039 0.2352 0.0161
2 55.6846  19.0591 0.2089 0.0161
3 51.8356  19.4061 0.2085 0.0066
4 50.6634 16.3369 0.2014 0.0025
5 70.3563  10.8536 0.1787 0.0079

Case 1: using the original data; n=91.

Case 2: using the data after removing one observation (i=1); n=90.
Case 3: using the data after replaced one observation by the mean ; n=91.
Case 4: using the data after replaced the observation (i=1,4,5,6,7,9) by the mean; n=91.

Case 5: using the data after removing the observations (i=1,4,5,6,7,9); n=85.
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10

Figure 3. Fitting of IE-Reg and IE-EBReg with 7 variables as in Table 2.
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Figure 4. Plot of deviance residuals for the IE-EBReg based on biweight and LINEX as in
Table 2.

Figures 3 shows that the IE-EBReg model based on biweight and LINEX loss function generally fits
the dataset better than other models. This also clear from Figure 4 as the plot of the deviance residuals
against the indices of the observations suggest that the residuals are randomly scattered around zero at
level of significant 0.001.
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Table 7. The Relative errors % of predicted and fitting results of the IE-EBReg based on

prior G(2.3537, 1.4928).

Date Vi Case 1 Case 2 Case 3 Case 4 Case 5

Fitting results ~ 4/26/2020 1.223  6.1574  4.0055 4.3964 55198  9.0944
4/27/2020 1289 13.6654 13.5397 13.6369 12.5813  7.6865

4/28/2020 1266 24.5773 22.1173 22.6232 22.1945 18.4163

4/29/2020 1325 10.1971  9.4581 9.5203  9.2789  7.7580

4/30/2020 1351 14.0620 13.5364 13.7209 12.7740  8.0207

5/1/2020 1344  3.2130  3.7411 37135 27615 1.3526

5/2/2020 1362  6.5542  6.0133  6.1913  6.3622  6.9241

5/3/2020 1552 1.2706 1.6513 1.5618 1.1365  0.5708

5/4/2020 1645 20.6544 19.1781 19.3377 19.3725 18.7971

5/5/2020 1595 23.7866 22.1910 22.2850 22.4925 22.7538

Predicted results  6/22/2020 3.393  0.8852  8.1235 8.1629  8.3268  7.4896
6/23/2020 3139 10.5945 16.4515 16.4037 16.2531 14.3989
6/24/2020 3123 16.6312 23.2819 23.0829 23.2841 23.6959

6/25/2020 3372 21.0604 8.9519  9.4537 85929  5.4076

6/26/2020 3938 11.3371 2.3426  2.5350 1.4769  2.2651

6/27/2020 3927 14.6806 4.6155  4.7346  3.3727 1.3583

TIC statistics 0.0900  0.0594 0.0594 0.0586  0.0557

R B IE-Reg
IE-EBReg h

10

4
1
i
i

Figure 5. Fitting of IE-Reg and IE-EBReg models with 7 variables as in Table 6.
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Figure 6. Plot of deviance residuals for the IE-EBReg model (Case 4) as in Table 6.

Figure 5 shows that the IE-EBReg model (Case 4) which based on biweight and LINEX function fits
the dataset better. Also, Figure 6 shows the deviance residuals against the indices of the observations

suggest that the residuals are randomly scattered around zero at level of significant 0.001.

Table 8. IE-EBReg model based on LINEX, biweight functions (Case 4).

Variables B Z-statistics ~ Standard Error SE  p-value AIC D MSE
Intercept  -27.6574 -3.5193 7.8588 0.0004 50.6634 16.3369 0.2014
X 0.5103 20.0674 0.0254 0.0000

X3 0.4660 19.3073 0.0241 0.0000

X4 0.6548 4.6898 0.1396 0.0000

Xs 26.5458 6.9168 3.8379 0.0000

X 32.7134 5.9260 5.5203 0.0000

X7 14.2477 10.5226 1.3540 0.0000

Xy 24.8469 3.1705 7.8369 0.0015

5. Conclusions

In this paper the regression models IE-Reg, IE-BReg and IE-EBReg for modeling the daily con-
firmed Saudi COVID-19 cases with some envionmental-related variables (covariates) are considered.
Zero-one and LINEX loss functions were used to attain the Bayesian and empirical Bayesian estimates
based on the log-link function. In a non-Bayesian approach, parameter estimation is done by the Fisher
scoring technique, and closed-form expressions are provided for the score function, and for Fisher’s
information matrix and its inverse.In the Bayesian approach, parameter estimation is performed using a
gamma prior distribution, Jacobian transformation, and least-squares estimates. The IE-Reg, IE-BReg,
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and IE-EBReg models were compared to find which model predicted better. To deal with outlier prob-
lems, IE-BReg based on Huber’s and biweight functions, and the adopted algorithm based on IRLS to
find the estimates, were proposed. For distributional assessment, Q-Q, ECDF, box plots, and the KS
test were applied. Some criteria, namely, AIC, BIC, D, D/df, and MSE, were also computed for all
regression models.

According to the results of the application, it was concluded that IE-BReg and IE-EBReg with a
log link function performed the best in terms of the AIC, BIC, D, D/df, and MSE statistics, so they are
recommended for these data. In contrast, IE-Reg showed poor results compared with those of the other
models. Results indicated that the IE-EBReg model is highly capable of improving the performance
of regression models to a greater extent in the prediction of daily confirmed COVID-19 cases in Saudi
Arabia. Finally, it is found the following regressors are significant for the model: Explanatory variables
are: X1, daily recovered COVID-19 cases; X3, daily active COVID-19 cases; X4, tests per million
(PCR tests); X5, curfew hours per day; X6, maximal temperature in Celsius per day; X7, maximal
relative humidity (%); and X9, maximal pressure in hectopascal (hPa).
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Appendices

5.1. Proof of Lemma 2.1:

Suppose that, in y; ~ f(y;;7y), as in (2.3), the log-likelihood function based on y;, i = 1,2,...,nis
given as in (2.5). Link function log(ii;) connecting the f; with linear model x in this case is given as
in (2.6). Score function U, for log likelihood is written from one observation as

ol(B) ol; Ofi; On;
U,.B) = =1,2,..,p. 5.1
= 3, Z 3F; om; 9B, P G-b
From (2.5) and (2.6), we have
1 log(Z)) _
U.B) = (— - RiXirs (5.2)
Z Hi Yi
which can be written in matrix notation as
U(B)=XQ(y.a(B))- (53)
Taking the second derivatives of /(5), we have
ou, 0l = ( log(2) O
@ _ P1B) _ Z( log(2) 9 ) e
ap;  IB;oB: yi 0B,
hence,
ouU, (,3)) C ( ) Ofti
E log(2)x;;
( 9B; ; IB; "
Since E ( ) 7 lolg(2) and g%; = xjjfl;, then I,; = —E (angj(ﬁ)) = )7 x;jX;r, and Fisher’s information matrix
is given as
I(B)=x'w(B) X, (5.4)
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where W (B) is the unit matrix. Fisher’s scoring process can be applied to obtain

1(B")BY = (BB + U (B), s=1,2,3,...
From (5.3) and (5.4), we have
(oW () 0080 = (0w (3) X)) + X @ (). 59
and
X'XBY = X' [XB*V + 0 (v, (V)]
Thus, the estimated coefficients 3 are given by
B = X)X | XB + 0 (n g (B47"))| = X0 'X'Z

as given in (2.7). To derive the MLS of 3, IRLS algorithm is used. Under regularity conditions on the
likelihood function, the MLE [5’(3) is asymptotically normal, unbiased, and efficient, with covariance
matrix equal to the inverse of Fisher’s information matrix (Houston and Woodruff [30]). Therefore,
asymptotically,

B=N|gxwx)"|,
where (X’WX)™! is the inverse of Fisher’s information matrix.

5.2. Proof of Lemma 3.1:

Suppose that y; ~ f(y;;y) is as in (2.3), v = filog(2); then, the density function of y; is given by

log(2)uz  log;

SO ) = (5.6)

i
Consider a gamma prior for fi;, which can be written as in (3.6). Posterior distribution of fi; is given by

A% log(2)i! = ( 1og<2))

T(@)y? (5.7)

n(f@ily:) =

Using Jacobian transformation from fi; to n;, and using the log link function that is given as in (2.6),
we have

—g" () A+ 22

)08" (i)

r(mily:) o< [g7(17:)]%e o (5.8)
where g*(1;) = € = j1; and ag ('7‘ = ¢'i. Then,
_elif 4102
m(nly;) oc e+ e (M z ) (5.9)

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2303-2330.



2328

Taking the derivative of the log posterior, we have

dlog(m(nly:))

o (1 +a)— e (1+M):0, (5.10)
om; '

Vi

hence, the posterior mode of 7; is given as in (3.7). Thus, the estimated coefficients 3*, IE-BReg, and
IE-EBReg models in this case, are given as in (3.5) and (3.8), respectively.

In the case that prior distribution parameter A is unknown, for this estimation task, A estimates are
obtained via numerical maximization of the following marginal likelihood (Shao [37], Dikici et al.
[58], and Coluccia et al. [59])

roi =[] [ fosamGulyoda. 5.11)
i=1

Thus, the IE-EBReg estimate is found by placing these estimated prior distribution parameter into
Equation (3.7) by A.

5.3. Proof of Lemma 3.2:

Suppose that y; ~ f(y;;7y) is as in (2.3), y = filog(2); then, the density function of y; is given as in
(5.6). Consider a gamma prior G(a, 1) for f1;, which can be written as in (3.6). Posterior distribution of
fi; 1s given as in (5.7). Using Jacobian transformation from fi; to 7;, zero—one loss function and using
the log link function as in (2.6), we have

R log(2
(1+a)=e (/1+ &()). (5.12)
Yi
Because of 0 < @ < o0, thus,
R log(2
| < et (ui()) < o0, (5.13)
Yi
hence, we get
1 log(2
A>—A—( og( )). (5.14)
el Vi
Since 0 < y; < oo for every i = 1, ..., n, thus
1 log(2 1
o < T_( og( ))<—A. (5.15)
el Vi el

From (5.14) and (5.15), we find 1 < L, but " < 1, because of equation (5.13) and the fact " <

el
e (/l + bf—(z)) Now, by using 4 > 1 and A < -, then we obtain A < 1. Hence, 1 > 1 and & > £, thus
the variance of [1 is greater than or equal the mean.
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5.4. Proof of Lemma 3.3:

Suppose that y; ~ f(y;;y) is as it is in (2.3), y = filog(2), and the density function of y; is given as
in (2.3). Consider fi; has a gamma prior with density function, which can be written as in (3.6). Using
the posterior distribution of 7; that is given in (5.9), we have

E(e™™") = f e "r(nily)dn;, (5.16)
A(ll 2 0 —e'li log(2)
- A108@) [y (5 g (5.17)
F@)y; J-w
and
A7 log(2
E(e) = - 0g( 1)og<z> _ (5.18)
Fe (1+52)
Using the LINEX loss function, we have
A7 log(2 .
082 _ o (5.19)

2 log(2)
T(a)y? (1+ =2)
Thus, the posterior Bayes estimates of 7; by using the LINEX loss function are given as in (3.9).

In the case that prior distribution parameter A is unknown for this estimation task, A estimates are
obtained via numerical maximization of the marginal likelihood of Equation (5.11). As a result, the
IE-EBReg estimates are found by placing these estimated prior distribution parameters into Equation
(3.9) by .

5.5. Proof of Lemma 3.4:

Suppose that y; ~ f(y;;y) 1s as in (2.3), v = filog(2); then, the density function of y; is given as in
(5.6). Consider a gamma prior G(a, A1) for j1;, which can be written as in (3.6). Posterior distribution of
[i; 1s given as in (5.7). Using Jacobian transformation from f; to n;, LINEX loss function and using the
log link function as in (2.6), we have

A%log(2)
Fa? (A+52)

= ¢ (5.20)

Because of 0 < @ < oo, thus 0 < e % < 1, and

o, F(a)y? log(2) F(a)y? log(2)
< e —log(2) (/l + " ) < Tog2) (/l + " ) (5.21)
Using (5.20) and (5.21), we get
N I“(a)y? log(2)
A% < Tog2) (/l+ " ), (5.22)
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hence
log(2
A% < (/l+ og( )), (5.23)
Yi
and,
log(2
A1) < log@) (5.24)

Vi

Thus, 1 < log(2) and (/l“ ! 1) < loiﬁ Hence, L <1 + lo§(2) Since 0 < y; < oo foreveryi = 1,...,n,

log) '

thus 1 < 1+ < co0. Now, by using + < 1+ lo§(2) and1 <1+ lo§(2) then we obtain 1 < 1,1 > 1 and

& < 9. Thus, the variance of fz [t is smaller than or equal the mean.
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