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Abstract: Gliomas are common malignant tumors of the central nervous system. Despite the surgical 

resection and postoperative radiotherapy and chemotherapy, the prognosis of glioma remains poor. 

Therefore, it is important to reveal the molecular mechanisms that promotes glioma progression. 

Microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. The GEO2R 

tool was used to identify 428 differentially expressed genes (DEGs) and a core module from three 

microarray datasets. Heat maps were drawn based on DEGs. Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the 

DAVID database. The core module was significantly involved in several KEGG pathways, such as 

“cell cycle”, “viral carcinogenesis”, “progesterone-mediated oocyte maturation”, “p53 signaling 

pathway”. The protein-protein interaction (PPI) networks and modules were built using the STRING 

database and the MCODE plugin, respectively, which were visualized using Cytoscape software. 

Identification of hub genes in the core module using the CytoHubba plugin. The top modular genes 

AURKA, CDC20, CDK1, CENPF, and TOP2A were associated with glioma development and 

prognosis. In the Human Protein Atlas (HPA) database, CDC20, CENPF and TOP2A have significant 

protein expression. Univariate and multivariate cox regression analysis showed that only CENPF had 

independent influencing factors in the CGGA database. GSEA analysis found that CENPF was 

significantly enriched in the cell cycle, P53 signaling pathway, MAPK signaling pathway, DNA 

replication, spliceosome, ubiquitin-mediated proteolysis, focal adhesion, pathway in cancer, glioma, 

which was highly consistent with previous studies. Our study revealed a core module that was 

highly correlated with glioma development. The key gene CENPF and signaling pathways were 

identified through a series of bioinformatics analysis. CENPF was identified as a candidate 

biomarker molecule. 

http://www.aimspress.com/article/10.3934/mbe.2020392
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1. Introduction  

Glioma is the most common and fatal primary tumor of the central nervous system, accounting 

for more than 80% of malignant brain tumors [1]. Among these, glioblastoma multiforme (GBM, 

World Health Organization grade IV glioma) is the most aggressive and most common primary tumor 

in adults, with an average incidence rate of 4 to 5 per 100,000 people per year [2]. Although we have 

made great progress in the past few decades and have made great progress in understanding the basic 

mechanisms of glioma development, the median survival of glioblastoma is only 12 to 15 months [3–5]. 

The 3-year survival rate of patients with glioblastoma is only 4 to 15% [6]. Therefore, there is an urgent 

need for developing new therapeutics for glioma patients. 

The current care for glioma consists of maximal resection combined with radiotherapy and 

chemotherapy [7]. Surgery can delay clinical symptoms, prolong survival, and obtain enough tumor 

specimens to identify tissue and molecular pathology diagnoses. At present, molecular pathology of 

nervous system malignant tumors have made great progress and found a series of molecular markers 

that are helpful for clinical diagnosis and predicting formation, invasion, progression and prognosis of 

glioma. The main molecular markers, such as IDH mutation, Codeletion of chromosomal arms 1p 

and 19q, MGMT promoter methylation, EGFRvIII, ATRX mutations, TERT promoter mutation and 

Ki-67 are being used in molecular pathological diagnosis, treatment options, and prognostic evaluation 

with glioma patients [8]. These molecular markers play a central role in regulating tumor cell 

proliferation and apoptosis. In recent years, the cancer genome atlas (TCGA) has identified many core 

signaling pathways for the pathogenesis of malignant glioma: RTK/RAS/PI3K signal pathway, P53 

signal pathway, retinoblastoma protein (RB) signal pathway [9]. These molecular markers and signal 

pathways are important for individualized treatment and clinical prognosis of glioma. Although the 

classification of tumors in the central nervous system is still based on morphological criteria, molecular 

phenotypic changes have provided some important supporting basis for the differential diagnosis of 

tumors. For example, integrated mutations in IDH, TP53 and ATRX suggest astrogliomas. IDH 

mutation, 1p/19q co-deletion, and TERT promoter mutation suggest oligoglioma. Mutations in the 

IDH wild-type and TERT promoter suggest adult glioblastoma. IDH wild-type and BRAF mutations 

are indicative of low-grade gliomas in children or adolescents. Integrating molecular subtypes into the 

classification of gliomas helps to deepen the understanding of the nature of gliomas. And this huge 

progress is inseparable from the development of bioinformatics. Many therapies targeting these 

molecular markers have been used in clinical trials, but few have ultimately succeeded. Therefore, it 

is urgent to identify new therapeutic targets for glioma. 

In recent years, the development of high-throughput sequencing technology and gene chip 

technology has promoted the molecular revolution to provide an unprecedented opportunity for the 

study of molecular mechanisms in cancer biology [10]. Through these new technologies, more and 

more candidate genes for diseases have been discovered [11,12]. Gene chips, also known as DNA 

microarrays, make it possible to obtain a large number of effective cancer-related gene expression 

profiles [13]. Thus, DNA microarrays play an important role in the discovery of molecular markers for 

predicting cancer prognosis [14,15]. The Gene Expression Omnibus (GEO) database is a major 

repository that stores high-throughput functional genomic data sets generated using microarray-based 
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and sequence-based techniques for the identification of key genes involved in tumorigenesis, 

progression, prognosis, and resistance [16]. Identification of glioma-related potential molecular 

biomarkers is essential for improving the clinical efficacy of glioma [17]. 

Bioinformatics analysis of multiple datasets may help us identify molecular biomarkers 

associated with glioma development. In this study, a comprehensive bioinformatics analysis of GBM 

gene expression profiles was performed to identify potential key biomarkers of GBM. Microarray 

datasets obtained from the GEO database were used to identify differentially expressed genes (DEGs) 

between GBM and normal brain tissues. Through enrichment analysis, the biological functions of the 

resulting DEGs were clarified and a protein-protein interaction (PPI) network was established. Key 

genes were screened through a series of integrated bioinformatics analyses. 

2. Materials and methods 

2.1. Microarray datasets 

We selected microarray data from the Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo), which is a visual, friendly and free public database. The keyword 

we searched for is “glioma”. If the following conditions are met, it is considered that the next step can 

be analyzed: 1) Studies included both glioblastoma and normal brain tissue; 2) Species are limited to 

Homo sapiens; 3) Attribute name was limited tissue; 4) Platform was microarray. Then, three gene 

expression profiles (GSE108476, GSE50161 and GSE116520) were obtained from the GEO database. 

The GSE108476 dataset submitted by Gusev Y based on the GPL570 platform (Affymetrix Human 

Genome U133 Plus 2.0 Array) was selected 221 glioblastomas and 28 normal brains. The GSE50161 

dataset submitted by Griesinger AM based on the GPL570 platform (Affymetrix Human Genome 

U133 Plus 2.0 Array) was selected 34 glioblastomas and 13 normal brains. The GSE116520 dataset 

submitted by Kruthika BS based on the GPL10558 platform (Illumina HumanHT-12 V4.0 expression 

beadchip) was selected 17 glioblastomas and 8 normal brains. The flow chart for bioinformatics 

analysis of public datasets is shown in Figure 1. 

2.2. The Chinese Glioma Genome Atlas (CGGA) database 

The Chinese Glioma Genome Atlas (CGGA) database (http://www.cgga.org.cn) is a user-friendly 

web application for data storage and analysis to explore glioma datasets from Chinese samples [18]. 

This study retrospectively collected RNA sequencing data from 693 glioma patients from the CGGA 

database, ranging from WHO grade II-IV, as a validation cohort. Information on these patients is 

available from the online database website. 

2.3. Identification of DEGs 

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r) is an interactive web tool that allows users to 

compare two or more sets of samples in the GEO series to identify DEGs under different experimental 

conditions. Adjusted P value was used to reduce the false discovery rate (FDR). The cut-off values for 

DEGs screening were based on FDR < 0.05 and |logFC| ≧ 1.0. The overlapping DEGs in the three 

datasets were retained for further analysis. 
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Figure 1. Flow chart of bioinformatics analysis. 

2.4. Functional and pathway enrichment analysis 

Gene ontology (GO) is a database established by the Gene Ontology Consortium to describe the 

function of gene products, covering biological processes, molecular functions and cellular  

components [19]. Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database resource that 

integrates genomic, chemical, and system function information to explain biological genome 

sequences and other high-throughput sequencing data [20]. GO and KEGG enrichment analysis was 

performed using the DAVID (https://david.ncifcrf.gov) online tool, which is a bioinformatics database 

that integrates biological data and analysis tools to provide biofunctional annotations for a large 

number of genes or proteins, helping users extract biological information from them [21]. P-value < 0.05 

was set as the cut-off criterion. 
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2.5. Construction and analysis of PPI network 

The STRING website (http://string-db.org/cgi/) is an online tool that evaluates the protein-protein 

interaction information. To analyze the relationship between DEGs, the PPI network was built using 

the STRING online tool and the interaction score > 0.4 was chosen as the cutoff criterion. 

Subsequently, the PPI network was analyzed using the Molecular Complex Detection (MCODE) 

tool in Cytoscape [22]. Finally, the cytohubba tool was used to select the hub genes in Cytoscape [23]. 

2.6. Expression levels and survival analysis of hub genes 

Gene difference analysis and Overall survival curve were obtained from database using Gene 

Expression Profiling Interactive Analysis (GEPIA) online tools. GEPIA is a web server for cancer and 

normal gene expression profiling and interaction analysis. GEPIA provides key interactive and 

customizable functions, including differential expression analysis, correlation analysis, patient 

survival analysis, and similar gene detection. GEPIA, based on Cancer Genome Atlas database (TCGA) 

and Genotype-Tissue Expression (GTEx) database, was used to analyze differential expression levels 

and survival of the hub genes [24]. P ＜ 0.05 was considered statistically significant. 

2.7. The human protein atlas analysis 

The Human Protein Atlas (HPA) database is a friendly database dedicated to providing tissue and 

cell distribution information for all human proteins and providing public access for free [25]. The HPA 

database was used to examine the expression of hub genes in gliomas. Antibodies used in the HPA 

database were: AURKA (CAB001454), CDC20 (HPA055288), CDK1 (HPA003387), CENPF 

(HPA064308), TOP2A (HPA006458). 

2.8. Gene set enrichment analysis (GSEA) 

GSEA was used for KEGG enrichment analysis of target genes based on TCGA database. The 

screening criteria were based on 25%, 75% cut-off values. GSEA was used to gene sets from the 

Molecular Signatures Database. P-value < 0.05 and FDR < 0.25 was considered statistically significant. 

2.9. Statistical analysis 

The chi-square analysis was used to analyze the correlation between gene expression and 

clinicopathological features. The Cox proportional hazards model was used in the multivariate 

prognostic analysis. P-value < 0.05 was considered to be statistically significant in all of the statistical 

analyses. For data analysis, we were all performed using GraphPad Prism 6 and SPSS 20 software. 

3. Results 

3.1. Retrieve microarray datasets associated with glioblastomas and normal brain tissues 

According to the search criteria, 3 microarray datasets were retrieved from the GEO database, 

http://string-db.org/cgi/input.pl?sessionId=iA1oH4xNK2vE&input_page_show_search=on
http://www.baidu.com/link?url=YLMGuNovrZ-RmzQwpVXwwIZICCeS5mZcCXUt0qqpH_LqXgfNLfo61Kwuy4e-QSu8
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including 272 glioblastomas and 49 normal brain tissues (Table 1). GSE108476 dataset was produced 

by Affymetrix Human Genome U133 Plus 2.0 Array (GPL570); GSE50161 dataset by Affymetrix 

Human Genome U133 Plus 2.0 Array (GPL570); and GSE116520 dataset by Illumina HumanHT-12 

V4.0 expression beadchip (GPL10558). 

Table 1. Details of the four microarray datasets used in this study. 

GBM, glioblastoma multiforme; NB, normal brain. 

3.2. DEGs related to glioma genesis  

428 differentially expressed genes (DEGs) were found using the GEO2R online tool analysis 

(adjusted P < 0.05 and |FC| > 2). These DEGs were shared by GSE108476, GSE50161 and GSE116520 

datasets (Figure 2). Subsequently, to test DEGs, we mapped the heat map of the differential genes 

through these 3 datasets (Figure 3). 

 

Figure 2. Identification of 428 DEGs from three GEO datasets. The Venn diagram shows 

the overlap of differential genes in the GSE50161, GSE108476 and GSE116520 datasets. 

Green: DEGs of GSE50161; Blue: DEGs of GSE108476; Red: DEGs of GSE116520. 

ID Platform Sample References 

GSE108476 GPL570 GBM = 221, NB = 28 [26] 

GSE50161 GPL570 GBM = 34, NB = 13 [27] 

GSE116520 GPL10558  GBM = 17, NB = 8 [28]   

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL10558
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Figure 3. Heat map drawing of the DEGs. (A) Heat map of differential genes in GSE50161. 

(B) Heat map of differential genes in GSE116520. (C) Heat map of differential genes in 

GSE108476. Red: up-regulation of DEGs; Blue: down-regulation of DEGs. 

3.3. GO Term and KEGG pathway enrichment analysis of DEGs 

To further predict the biological mechanism of DEGs, we performed functional and pathway 

enrichment analysis, including GO and KEGG. The GO term enrichment analysis showed that in the 

biological processes-associated category, the DEGs were enriched in the interferon-γ-mediated 

signaling pathway, positive regulation of GTPase activity, signal transduction, microtubule 

cytoskeleton organization (Figure 4A and Table S1). Also, cell component analysis showed that the 

DEGs were enriched in the cytoplasm, the perinuclear region of cytoplasm, cell junction, plasma 

membrane and cytosol (Figure 4A and Table S1). Besides, in terms of molecular function, the DEGs 

were enriched in protein binding, protein kinase activity, receptor binding, ATP binding, GTPase 

activator activity and drug binding (Figure 4A and Table S1). Finally, as shown in Figure 4B, KEGG 

pathway analysis showed that the DEGs were enriched in the ErbB signaling pathway, GABAergic 

synapse, progesterone-mediated oocyte maturation, cAMP signaling pathway, microRNAs in cancer. 

Detailed information of these pathways was listed in Table S2. 



2084 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 2077–2096. 

 

Figure 4. The GO and KEGG enrichment analysis of the DEGs. (A) The GO enrichment 

analysis of the DEGs. (B) The KEGG enrichment analysis of the DEGs. The size of the 

circle represents the number of genes involved in the pathway, and the color represents the 

FDR value. 

3.4. Protein-protein Interaction (PPI) network construction and analysis of modules 

The PPI network was analyzed by STRING which contains 421 nodes and 1083 edges. The k-

means clustering of DEGs by STRING was divided into 2 categories (Figure 5A). We found a cluster 

of genes in the glioma-related network, all of which were up-regulated and play a central role in the 

entire network. Then, we used the MCODE in Cytoscape software to mine highly clustered modules 

from this network. As expected, a module with higher connectivity (cluster score = 20.3) was identified, 
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the module has 23 nodes and 223 edges (Figure 5B). To further predict the biological mechanism of 

the core molecule, we performed pathway enrichment analysis. The module molecules were involved 

in several KEGG pathways including “cell cycle”, “viral carcinogenesis”, “progesterone-mediated 

oocyte maturation”, “oocyte meiosis”, “p53 signaling pathway” and “cellular senescence” (Figure 5C 

and Table S3). These results indicated that the highly clustered modules may play an important role in 

the development of glioma. 

 

Figure 5. Identification and biological function of glioma genesis-related modules. (A) 

Construction of glioma genesis-related PPI network. The interactions between DEGs were 

visualized by the STRING database. In the STRING database, the DEGs were divided into 2 

categories according to k-means clustering (red and green). (B) Glioma genesis-related 

module. Members of this module are highly connected and up-regulated in glioma tissue. 

(C) Significantly enriched KEGG pathways of the module. Adjusted P < 0.05 was 

considered statistically significant. 

3.5. Identification, expression and prognosis of hub genes 
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We next focused on the top module genes, as their expression in glioma tissues was highly 

upregulated in all datasets considered in this study. We used cytoHubba from Cytoscape software to 

evaluate the role of molecules in PPI networks by different scoring methods. As shown in Table 2, five 

hub genes were selected by cytoHubba using six methods, including AURKA, CDC20, CDK1, CENPF 

and TOP2A.  

GEPIA, an online database of data from the TCGA and GTEx databases, included 207 normal 

subjects and 681 glioma patients. As shown in Figure 6A, all the hub genes were significantly 

upregulated in glioma, compared with the normal brain (P < 0.05). By overall survival (OS) analysis, 

we found that high expression of hub genes was associated with poor survival (Figure 6B). These results 

suggested that the five hub genes were closely related to the occurrence and development of glioma. 

Table 2. Hub genes for highly expressed genes ranked in cytoHubba. 

Selected genes were the overlap hub genes in the top 10 by six ranked methods respectively in cytoHubba. 

MCC: Maximal clique centrality; MNC: Maximum neighborhood component; Degree: Node connect degree; 

EPC: Edge percolated component. 

3.6. Protein expression and distribution of hub genes in gliomas 

In the HPA database, we were able to find pathological sections of normal and glioma patients 

for Hub gene protein staining. Immunohistochemical results of five hub genes in the HPA database 

showed that CENPF and CDC20 were highly expressed in the nucleus and cytoplasm of glioma cells, 

but were almost undetectable in normal brain tissues (Figure 7). TOP2A is highly expressed in the 

nucleus of glioma cells and is not detected in normal brain tissues. Although AURKA and CDK1 are 

expressed in the nucleus of glioma cells, the positive rate is lower (Figure 7). This result shows that 

CDC20, CENPF and TOP2A may have more research significance in glioma. 

Catelogy The rank method in cytoHubba 

 MCC MNC Degree EPC Closeness Radiality 

Gene symbol top 10 CDCA5 MYC MYC CCNA2 MYC MYC 

 PBK SNAP25 SNAP25 CDK1 SNAP25 SNAP25 

 MELK CDK1 CDK1 TOP2A CDK1 CENPF 

 CENPF CCNA2 CCNA2 AURKA AURKA CDK1 

 TOP2A AURKA AURKA CDC20 CENPF AURKA 

 CDC20 TOP2A CDC20 PBK CDC20 NES 

 CDK1 CDC20 TOP2A CENPF CCNA2 CD44 

 CCNA2 CDKN3 CDKN3 CDKN3 CD44 CDC20 

 AURKA CENPF CENPF MYC TOP2A CDK4 

 HJURP PBK CD44 HJURP CDKN3 TOP2A 
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Figure 6. Expression and prognosis of hub molecules AURKA, CDC20, CDK1, CENPF 

and TOP2A in glioma. (A) Validation of the expression levels of AURKA, CDC20, CDK1, 

CENPF and TOP2A in different pathological grades of glioma (based on TCGA data in 

GEPIA online tool). (B) Overall survival (OS) analysis based on AURKA, CDC20, CDK1, 

CENPF and TOP2A expression. T: tumor; N: normal; LGG: low grade glioma; GBM: 

glioblastoma multiforme; *P < 0.05 was considered statistically significant. 

3.7. Validation of the prognostic value of CDC20, CENPF, TOP2A using the CGGA database 

693 cases of glioma patients with high-throughput sequencing were selected from the CGGA 

database. Divided into high expression group and low expression group by the median of expression 

level. Chi-square test results showed that CDC20, TOP2A and CENPF were associated with glioma 

WHO grade, IDH mutation, 1p, 19q co-deletion, recurrence and chemoradiotherapy (Tables 3, S4 and 
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S5). P <0.05 was considered statistically significant. Univariate and multivariate cox regression 

analysis showed that only CENPF was the same with IDH status and 1p19q co-deletion status has the 

independent influencing factors (P < 0.01) (Table 4). CDC20 and TOP2A have no independent 

influencing factors (P > 0.05) (Table 4). Hence, CENPF has the potential to be a marker for predicting 

the prognosis of glioma. 

 

Figure 7. The expression of AURKA, CDC20, CDK1, CENPF and TOP2A in normal brain 

tissue and glioma tissues according to the HPA database. Immunohistochemistry results 

showed that CDC20, CENPF and TOP2A were not detected in normal brain tissues and 

highly expressed in glioma tissues. Magnification × 100. LGG: low-grade glioma; HGG: 

high-grade glioma. 
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Table 3. Correlation between CENPF expression and clinicopathological in gliomas. 

Clinicopathological 

Parameter, value 

CENPF expression 

N Low expression (%) High expression (%) χ2 P value 

Gender      

Male 398 (57.4) 206 (51.8) 192 (48.2)   

Female 295 (42.6) 140 (47.5) 155 (52.5) 1.254 0.263 

Age      

≥ 43 349 (50.4) 167 (47.9) 182 (52.1)   

< 43 343 (49.5) 179 (52.2) 164 (47.8) 1.301 0.254 

Missing 1 (0.1) 0 (0.0) 1 (100.0)   

WHO grade      

II 188 (27.1) 137 (72.9) 51 (27.1)   

III 255 (36.8) 124 (48.6) 131 (51.4)   

IV 249 (36.0) 85 (34.1) 164 (65.9) 64.597 < 0.001* 

Missing 1 (0.1) 0 (0.0) 1 (100.0)   

IDH mutation      

Wildtype 286 (41.3) 110 (38.5) 176 (61.5)   

Mutant 356 (51.4) 188 (52.8) 168 (47.2) 13.126 < 0.001* 

Missing 51 (7.3) 48 (94.1) 3 (5.9)   

1p, 19q codeletion 

status 
     

Non-codel 478 (69.0) 198 (41.4) 280 (58.6)   

Codel 145 (20.9) 85 (58.6) 60 (41.4) 13.273 < 0.001* 

Missing 70 (10.1) 63 (90.0) 7 (10.0)   

Recurrent      

Yes 271 (39.1) 98 (36.2) 173 (63.8)   

No 422 (60.9) 248 (58.8) 174 (41.2) 33.731 < 0.001* 

Radiotherapy status      

Yes 509 (73.5) 246 (48.3) 263 (51.7)   

No 113 (16.3) 72 (63.7) 41 (36.3) 8.762 0.003* 

Missing 71 (10.2) 28 (39.4) 43 (60.6)   

Chemotherapy status      

Yes 457 (65.9) 209 (45.7) 248 (54.3)   

No 151 (21.8) 100 (66.2) 51 (33.8) 19.07 < 0.001* 

Missing 85 (12.2) 37 (43.5) 48 (56.5)   

3.8. GSEA analysis of the core gene CENPF 

To further understand CENPF, we analyzed its role in glioma by GSEA based on the TCGA 

database. P-value < 0.05 and FDR < 0.25 was considered statistically significant. As shown in Figure 8, 

the results indicated that the high expression of CENPF exhibited appreciable relevance to cell cycle, 

P53 signaling pathway, MAPK signaling pathway, DNA replication, spliceosome, ubiquitin-mediated 

proteolysis, focal adhesion, pathway in cancer, glioma, which were highly consistent with previous results. 
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Table 4. Univariate and multivariate cox regression analysis of the hub genes. 

Parameter 
Univariate analysis Multivariate analysis 

P-value HR 95% CI P-value HR 95% CI 

Gender 

(Female vs. male) 
0.907 1.012 0.826–1.241 0.100 1.226 0.962–1.562 

Age (years) 

(≧ 43 vs. < 43) 
< 0.001* 1.732 1.411–2.125 0.001* 1.474 1.161–1.873 

WHO grade 

(II vs. III vs. IV) 
< 0.001* 2.740 2.359–3.182 < 0.001* 2.128 1.719–2.636 

IDH mutation 

(Wildtype vs. Mutant) 
< 0.001* 3.237 2.615–4.008 < 0.001* 1.749 1.318–2.319 

1p, 19q codeletion status 

(Non-codel vs. Codel) 
< 0.001* 0.263 0.187–0.369 < 0.001* 0.439 0.292–0.659 

Recurrent 

(Primary vs. Recurrent) 
< 0.001* 2.089 1.702–2.564 < 0.001* 2.444 1.924–3.103 

Radiotherapy status 

(Yes vs. No) 
0.020 1.430 1.057–1.935 0.333 0.829 0.568–1.212 

Chemotherapy status 

(Yes vs. No) 
0.003 1.506 1.154–1.966 0.010 0.635 0.449–0.899 

CENPF expression 

(high expression vs. low 

expression) 

< 0.001* 2.942 2.374–3.645 < 0.001* 2.403 1.736–3.325 

CDC20 expression 

(high expression vs. low 

expression) 

< 0.001* 2.536 2.054–3.131 0.920 0.982 0.688–1.401 

TOP2A expression 

(high expression vs. low 

expression) 

< 0.001* 2.142 1.739–2.639 0.617 1.097 0.763–1.576 

4. Discussion 

With the progress of a series of large-scale scientific research projects such as the Human Genome 

Project and the Brain Project, glioma treatment will face new challenges and opportunities. At present, 

the research hotspots of scientists all over the world mainly focus on molecular targeted therapy, 

immunotherapy, understanding of tumor microenvironment, glioma stem cells and exosomes [1,29]. 

Although glioma research has achieved unprecedented development and progress in many disciplines, 

glioma transcriptome analysis remains the focus of current research. 

To explore key genes that significantly affect the prognosis of gliomas, our current study 

systematically integrates three independent microarray datasets containing GBM and normal brain 

tissue from the GEO database. Through a series of bioinformatics analyses, we found a high-linking 

module containing 23 glioma risk genes that better distinguish between glioma and normal brain tissue. 

The top genes seem to be related to the development, progression and prognosis of glioma.  

The modules identified in this study were highly connected. Through functional enrichment 
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analysis, we found that the module participates in a variety of KEGG pathways. The occurrence and 

development of gliomas are inseparable from the regulation of the cell cycle. The proteins involved in 

the cell cycle are called cyclin proteins and are classified into cyclins A, B, D, E, G, and H [30]. They 

bind to key protein kinases (cyclin-dependent kinases, CDKs) and regulate their enzymatic activity, 

helping to advance and coordinate the cell cycle [31]. Many studies now have found that cycle arrest 

in the G2/M phase inhibits the progression of glioma through targeting molecules [32–34]. Other 

studies have found that targeted inhibition of certain proteins can arrest the cycle of GO/G1 phase and 

lead to inhibition of glioma progression [35–37]. Besides, maintenance and repair of DNA telomeres 

is an important process to prevent genomic instability and cancer [38]. P53 signaling pathway 

inhibition has been widely reported as necessary for glioma development [39,40]. Cellular senescence 

refers to the process in which cell proliferation and differentiation abilities and physiological functions 

gradually decline overtime during the execution of life activities. Recent research shows that induced 

cell senescence has anti-tumor effects [41]. There is increasing evidence that human cytomegalovirus 

(HCMV) infection is associated with GBM and leads to the growth and metastasis of GBM cells [42]. 

Stoichioproteomics reveal that oocyte meiosis and progesterone-mediated oocyte maturation pathways 

are also associated with gliomas.  However, the relationship with glioma needs further study. 

The top module genes of AURKA, CDC20, CDK1, TOP2A and CENPF were highly correlated 

with the development and progression of glioma. In the glioma TCGA database, high expression of 

AURKA, CDC20, CDK1, CENPF and TOP2A is associated with poor prognosis, which means they 

may become new prognostic markers. Recent studies have found that ARUKA promotes glioma cell 

proliferation and resistance to PI3K inhibitors through the PLK1/CDK1 signaling pathway [43,44]. 

Yiming Ding et al. found that high expression of CDC20 in glioma patients is associated with poor 

prognosis [45]. Yunqiu Zhang et al. investigated that application of the CDC20 gene module co-

expressed signature may provide more selective adjuvant therapy for glioma patients [46]. Zhenhua 

Song et al. showed that activation of survivin signaling by overexpression CDK1, contributed to the 

suppression of the senescence process in senescence-escaping cells [47]. S. Deguchi et al. found that 

down-regulation of TOP2A expression in glioma cell lines resulted in reduced proliferation of 

glioma cells [48].  

In subsequent experiments, TOP2A, CENPF and CDC20 were screened by TCGA and HPA 

databases. RNA sequencing data of 693 glioma patients were obtained from the CGGA database for 

data analysis. Chi-square test found that CENPF, CDC20 and TOP2A were all statistically significant. 

Univariate and multivariate cox regression analysis found that only CENPF was the same with IDH 

status and 1p19q co-deletion status has the independent influencing factors. Centromere protein F 

(CENPF), a protein involved in centromere-centromere complexation and chromosome segregation 

during mitosis, is involved in tumor progression [49]. The latest studies found that CENPF may 

become an important regulator of prostate cancer metabolism through its role in mitochondria [49,50]. 

CENPF is highly expressed in hepatocellular carcinoma and promotes growth and invasion [51]. 

However, it has not been reported that CENPF is associated with glioma. The role of CENPF in 

gliomas was further analyzed by GSEA. The results showed that the high expression of CENPF 

exhibited appreciable relevance to cell cycle, P53 signaling pathway, MAPK signaling pathway, DNA 

replication, spliceosome, ubiquitin-mediated proteolysis, focal adhesion, pathway in cancer, glioma, 

which were overlap with the enrichment pathways in the DEGs and hub genes. In the next step, we 

will conduct experiments to further verify the role of CENPF in gliomas. 
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Figure 8. GSEA results of CENPF in TCGA database. (A) Cell cycle. (B) P53 signaling 

pathway. (C) MAPK signaling pathway. (D) DNA replication. (E) Spliceosome. (F) 

Ubiquitin mediated proteolysis. (G) Focal adhesion. (H) Pathway in cancer. (I) Glioma. 

The green curve represents the enrichment curve. The green curve vertex represents 

Enrichment Score (ES). The horizontal axis represents genes, and the vertical lines on the 

middle graph represent genes on the pathway. If genes are denser in "h" (red part), it means 

that the pathway is enriched in pathways that are positively related to genes. If the gene is 

denser in “1” (blue part), it means that the pathway is enriched in the negatively correlated 

pathway with the gene. 

5. Conclusions 

Our current research systematically integrates multiple microarray gene expression profiles and 

discovers a module related to the development of gliomas. The expression of the top module gene is 

closely related to the occurrence, development and prognosis of glioma. Our work may provide a 

deeper understanding of the molecular mechanism of glioma. Finally, through bioinformatics analysis, 
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we found that CENPF is the core molecule in the top module molecule. For the next step, experiments 

will be carried out to verify the specific mechanism of CENPF in glioma. 
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