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Abstract: This paper is devoted to studying the existence and nonexistence of traveling wave solu-
tion for a nonlocal dispersal delayed predator-prey system with the Beddington-DeAngelis functional
response and harvesting. By constructing the suitable upper-lower solutions and applying Schauder’s
fixed point theorem, we show that there exists a positive constant ¢* such that the system possesses
a traveling wave solution for any given ¢ > ¢*. Moreover, the asymptotic behavior of traveling wave
solution at infinity is obtained by the contracting rectangles method. The existence of traveling wave
solution for ¢ = ¢* is established by means of Corduneanu’s theorem. The nonexistence of traveling
wave solution in the case of ¢ < ¢* is also discussed.
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1. Introduction

Nowadays predator-prey models have been widely applied in biological and ecological phenomena.
The most general prey-predator population model is represented by

X(1) = xG(x) = yP (x,y),
y(@) = yH(x,y),
where x(¢) and y(¢) denote the density of the prey and predator at time ¢, respectively. G(x) is the per

capita growth rate of the prey in the absence of predator, P(x,y) represents the functional response of
predators and H(x, y) measures the growth rate of predators.
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A prototype of G(x) is the logistic growth pattern of G(x) = r (1 - ﬁ), where r > 0 denotes the prey
intrinsic growth rate and N means the carrying capacity in the absence of predator [1]. One of known
growth rate of predators is the Leslie-Gower type: H(x,y) = « (1 - ki) [2,3], where « is the intrinsic
growth rates of predator and k is the conversion factor of prey into predators.

Lotka-Volterra response was used by Lotka [4] in studying a hypothetical chemical reaction and
by Volterra [5] in modeling a predator-prey interaction. Lotka-Volterra response function is a straight
line through the origin and is unbounded. The solutions of Lotka-Volterra model are not structural
stable, thus a small perturbation can have a very marked effect [6]. The Holling-type II functional
responses function is P(x,y) = —5—, where c is the maximum number of prey consumed per predator
per unit time [7,8]. When a = 1 and b = 0, the functional response is of Lotka-Volterra type. In 1975,
Beddington [9] and DeAngelis et al. [10] developed a predator-prey model of the mutual interference
effects, in which the relationship between predators’ searching efficiency and both prey and predator is

presented. The Beddington-DeAngelis (B-D) functional response is defined by

SX

P 2 = b
) 1 +ax + by

where s,a,b > 0, s is the consumption rate, a means the saturation constant for an alternative prey
and b stands for the predator interference. The predator-prey models with the B-D functional response
have been well-studied in the literature, for example, see [11-14] and references therein.

From the view of human needs, the exploitation of biological resources and harvest of population
are commonly practised in the fields of fishery, wildlife, and forestry management. Many mathematical
models have been proposed and developed to better describe the relationship between predator and prey
populations by taking into account the harvesting, for instance, see [14—18]. In a very general way,
harvesting for predator-prey models can be divided into three types. If the harvesting function A(?) is a
constant, it is called constant-rate or constant yield harvesting. It arises when a quota is specified (for
example, through permits, as in deer hunting seasons in many areas, or by agreement as sometimes
occurring in whaling) [19, 20]. If the function A(¢) is a linear function of population size, it is called
proportional or constant-effort harvesting [16—-18]. The harvesting function A(f) can be of nonlinear
form, for example, one of which is the so-called Michaelis-Menten type harvesting used in ecology
and economics [21,22].

Movements of some individuals usually cannot be restricted to a small area, and they are often free,
so integral operators have been widely applied to model the long-distance dispersal problem [23]. That
is, the diffusion process depends on the distance between two niches of population, such as the model:

0
8—u(x, H= f J(x = y)u(y,t) — u(x,1))dy + f(u),
t R

where fR J(x=y)(u(y, t)—u(x, t))dy represents the nonlocal dispersal process [24,25]. Such model arises
not only in biological phenomena, but also in many other fields, such as phase transition modelling
[25-28].

There is, however, considerable evidence that time delay should not be neglected in biological and
ecological phenomena. The growth rate of population of species and the response of one species to
the interactions with other species are mediated by some time delay. Other causes of response delays
include differences in resource consumption with respect to age structure, migration and diffusion of
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populations, gestation and maturation periods, delays in behavioral response to environmental changes,
and dependence of a population on a food supply that requires time to recover from grazing [15, 25].
Hence, in order to make the modeling of interactions between predator and prey more realistic, time
delay is often necessarily incorporated into predator-prey models [22,28-31].

The purpose of this paper is to study the existence and nonexistence of traveling wave solution of a
nonlocal dispersal delayed predator-prey model with the B-D functional response and harvesting:

ou 3 u(x, ) su(x, Hv(x,t — 1)
i dy (J = u)(x, 1) — u(x, 1)) + ru(x, t)(l -k )— T+ auCe) + bvet—1) qu(x, 1), o
0 : '
6_‘; =dr((J = v)(x, 1) —v(x, 1)) + v(x, 1) (a _ﬁ_u(l)}:); _t)T).) ,

where

U*M@ﬂ=£ﬂwmwwﬁ®,

g represents the prey harvesting, T denotes the time delay, and a, b, r, d, d», s, K, @ and B are positive
real constants. To reduce the number of parameters in system (1.1), we make the following transfor-
mations:
L glzﬂ, gzzﬂ,
K r r r
a = ak, Z):@, @:C—y, B:ﬁ, q:g

s r sK r
For the sake of convenience, we ignore the bars on u, v and other parameters, then system (1.1) can be
re-expressed as

<l

<

f=rt, T=rr,

uv(x,t — 1) B
1 +au+bv(x,t—71)

u, =diy(Jxu—u)+u(l—u) - qu,
) (1.2)
vy :dz(J*v—v)+v(a—ﬁm).

Biologically, we require 0 < g < 1. It is easy to see that system (1.2) has two spatially constant equi-

libria (1 — ¢, 0) and (1", v*), where u* = (1 — g) “Et VB0 wdhe o 2 and & = (a8 + ba) (1 - g).

In biology and ecology, traveling wave solutions are often used to describe the spatial-temporal
process where the predator invades the territory of prey and they eventually coexist [25]. A solution of
system (1.2) is called a traveling wave with the speed ¢ > 0 if there exist positive function ¢, and ¢,

defined on R such that

u(x, t) = ¢1(Z)’ V(.x, t) = ¢2(Z)7 Z=x+ct

Here ¢; and ¢, represent the wave profiles and (¢, ¢,) satisfies the resultant system:

¢1(2)p2(z — c71)
1 + a¢1(z) + bga(z — ¢7)
¢2(Z) )
$i1(z—c1))’

¢ (2) = di (J % $1(2) = $1(2) + $1(2)(1 = ¢1(2)) -

- q$1(2),
(1.3)
cd(2) = dy (J * $2(2) = ¢2(2)) + ¢2(2) (a -B

and

J*a@:jﬁom@—w®.

R
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Our primary interest lies in the traveling wave solution of system (1.3) connecting (1 —g, 0) and (u*,v")
with the asymptotic behavior:

1im (¢1(2,62(2) = (1= ¢, 0), i (61(2), $2(2)) = (', V"). (1.4)

The asymptotic behavior of traveling wave solution plays an important role in dispersion models of
biological populations, because it describes the propagation processes of different species and enables
us to understand how some species migrate from one area into another area until the density attains a
certain value.

Recently, the existence of traveling wave solution for the nonlocal dispersal systems with the time
delay has been extensively studied [28-33]. We can see that system (1.3) is non-monotone system
and Schauder’s fixed point theorem is a quiet powerful technique for constructing a suitable invariant
set (see, for example [31,33-36]). To explore the existence of traveling wave solution of nonlocal
dispersal systems with ¢ > ¢*, we need to construct an invariant cone in a large bounded domain with
the initial functions [33-35], where the nonlocal dispersal kernel function J is assumed to be compactly
supported. For the existence of traveling wave solution at the critical point ¢ = ¢*, Corduneanu’s
theorem and the limiting method are useful techniques [33, 36].

Throughout this paper, for the nonlocal dispersal kernel function J of system (1.3), we make the
following assumptions:

(G1) J is a smooth function in R, Lebesgue measurable with J € C!(R) and

J(x)=J(-x) =0, f](x)dx =1.

R

(G2) [, J(x)edx < +00, A € R.

For convenience, we assume the parameters of system (1.3) satisfying
1
O0<d <dp, O0<g<l1, b>1, a>-, 0<ba<p.
q

The rest of this paper is structured as follows. We construct an appropriate pair of upper-lower
solutions of system (1.3) for ¢ > ¢* in Section 2. We apply Schauder’s fixed point theorem to investigate
the existence of traveling wave solution for ¢ > ¢* and develop the contracting rectangles method to
study the asymptotic behavior of system (1.3) in Section 3. The existence of traveling wave solution
for ¢ = ¢* is discussed by means of Corduneanu’s theorem and Lebesgue’s dominated convergence
theorem in Section 4. Section 5 is dedicated to the nonexistence of traveling wave for 0 < ¢ < ¢*. A
brief conclusion is given in Section 6.

2. Upper-lower solutions

Definition 2.1. Assume that Z := {z1,25, -+ ,2,} € R contains finite points of R. We say that the
functions (¢,, ¢,) and (?1, ?2) are a pair of upper-lower solutions of system (1.3), if for any z € R \ Z,
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5;(z) and gf (z) (i = 1,2) are bounded and continuous such that

F($1,9,)(2) =di(J * $,(2) = $,(2) = ¢,(2) + $,()(1 = 6,(2))
$1(2)9 (2~ c7) Z <0
1 +a51(z)+b?2(z—cq-) q$,(z) <0,
F(@,,$,)@) =di(J x ¢ (2) = ¢ (2)) = c¢/ (D) + $ ()1 = § (2))
B ?1 (Z)¢2(Z: CT) 3 q¢ (Z) > 0’ (21)
L+ag (2) +bgy(z—ct)
F($1,9,)(2) =do(J * $,(2) — $,(2)) = c6(2) + $y(2)(a - p=220 <,
¢,z — c7)
’ QZ(Z)
F(9,:9,)Q) =daJ * 9,() = ¢,(2) ~ f(d) + ¢, (e =B P 2
—1

Define
frd,c,d) =d ( f J(y)e™dy — 1) —cA+o,
R

where o > 0. By a direct calculation, for ¢ > 0 and 4 > 0 we have

(F1) fo(dy,c,0) =0 and f,(d>, c,0) > 0;

(F2) %=

Jo = —1<0, %] _ =-c<O0and Z = [ J(y)eVdy—1>0;

> oA

2
(F3) 2k > 0.

From (F1)—(F3), it follows that there exist ¢* > 0 and A* > 0 such that [35]

8fa/(d2’ c, /l)

=0.
o1 (c*,%)

Jo(dp,¢",4") =0 and

Lemma 2.1. There exist ¢ > c¢* and positive constants 0 < A, < A* < A3 < Ay such that

=0 A=0,41=14 =0 A=A, =43
fo(dl,c,/l) >0 /lE(/ll,'i‘Oo) ) fa(d2509/l) >0 /16(0,/12)U(/13,+00)o
<0 21€(0,2) <0 A€, 43)

Proof. We only need to show A, > A3. Itis easy to see f,(d», ¢, A3) = fo(di,c, A1) = 0and fo(dy,c, A1) <
fu(di, c,41). Due to d, > d, and (F2), we have f,(d,,c, 1)) < f,(ds,c, 47). It indicates f,(d>, c, A3) <
folda, c, Ay), 1.e., 4 > A3. o

Now, we will construct an appropriate pair of upper-lower solutions for system (1.3). We fix ¢ > c*.
For any given constant m > 1, it is easy to check that the function

g(Z) — e/lzz _ me@z
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has a unique zero point at zp = — 912312 where 0 € (A, min{24;, A3}), and a unique maximum point at

Inm

i =~ aen < 2o Clearly, g is continuous on R and positive on (—oo, 7;). For any given y € R we let

0) = f " Iy = Mg - £

with z € [z, 20]. Since O(z) is nondecreasing for z € [z, z0] and O(zp) > 0, we can find a sufficiently

small 6 € (O, %) and z, € (zy, 2p) such that

0=g(z), O(z)>0.
Let p and m satisfy the following conditions:

1
(AD) p> " foldied)”

B
(A2) m > — G

Then, we introduce 51(2), Ez(z), ?l(z), Qz(z) as follows:

$@=1-q zeR, 22
(l—q)(l—%) 727,

_ 23

s T P ”
_ 1= 220,

$,(2) = { %em <0, 29

- 1%5 722, (2.5)

?2 )= 1%1(6/& _ meGZ) 72< 2o, .

where z; < 0 is defined by e'% + pe®?® = 1.

Lemma 2.2. Assume ¢ > c*. Then (g_bl, 52) and (?1, ?2) defined by (2.2)—(2.5) are a pair of upper-
lower solutions of system (1.3).

Proof. Firstly, we show that

F(d¢,)@ =<0
holds for z € R. For any z € R, we have ¢,(z) = 1 — ¢gE and

F($1.¢)@=1-qq- Co g )
=2 I+a(l —g)+b¢ (z-cT)
 (-g,-eD)
1+a(l—-gq)+ b?z(z —CT)

<0.

-q(1-9q)

For z # z;, we would like to show that
F(¢,.6,)@ 20.
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When z > z;, we have ¢ (z) = (1 - q)(l _ %)’ $,(2) < 1% and

1_ 1-¢g B
b+a(l-q)b-1)+b(1-gq)

_ b-1 b-
F(gl,%)(z)z(l—q)T[l—a—q) 2 q]zo.

In view of fy(d;,c, 1) < foldy,c,A3) < fo(dy,c,A3) = 0 and (Al), for z < z; < 0 we have ?1 =
(1= q)|1 - Leh? + pe™s)|, ¢, = L™ and

F(,.8) @) 2 d, ( fR JO)1 = )| 1= 7 (1 + peh(“”)] dy~(1-¢) [1 — (e pem)])

b
c A A 2 1 1 2
+(a- q)E (/lle Y+ ploe ZZ) +(1-9) [1 3 (e 1“4+ pe ZZ)]

2 glaz(z —-cT)
1+ ag + bo,

1- 1-
= —qum [d] (f J(y)e dy — 1) - C/ll] - qpe/l2Z [dl (f J(y)e " dy — 1) - C/lz]
R R

(1 —C])Z , 2z 1 1z 22 ?aZ(Z—CT)
_,_—(e’l +pe/l )[1_5(61 +peﬂ )]_1+a¢1 +b$(Z_CT)
=1 2

1
2 iz Az
-(1-9 [I—E(e lz+pe27)

o _1 ;qu/lgz [dl (f.](y)e_/lzydy - 1) - C/lz] — $y(z— 1)
R

1- 1 -
-4 peﬂ2Z [dl ( f J(y)e_m dy — 1) - c/l2] i qe’h(z_”)
R

b
= 1-4 9 oz [(—p) (dl (f J(y)e > dy — 1) - C/lz) - e’b"]
b R
1 —
> quhz [(=p)foldy, e, o) — 1] > 0. (2.6)

Now, we show

F(¢,,¢,)(z) <0

for z # 0. In the case of z > 0, we have ¢, = 1 — g and ¢, = 1%]. Then

_ 1- =4
F@,,$,)(2) < bq{a—ﬁ ”q}
l-¢q B
o

b
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For z < 0, we obtain ¢, = = —Ze®* and

_ _ 1- 1-
F(¢1,¢2)(Z) < d2 (f‘](y) q ﬂz(Z_y)dy qe/lzz) ch/lzeﬂzz

b
+ 1_qe/lzz |:(}’ _ ée/lzz]

b b
1- 1-
= ——det2| g f I dy - 1) = ey +a| - 2D 1-9) pe:
b R B
1 -
_ _ﬁ( = Q)ezﬂzz <0.

Finally, to show
F($,.4)@) 20

for z # z,, we use the inequality ?1 >(1-¢q) (1 - é) and ?2 = %6 if z > z,. Then

d)(1 —¢q) e (z-y) 0(z—y) e
F(9,,¢)@) 2——— JO) (€ = me") dy + J(y)sdy -6
7—22 —00
1 1-
+ —qé[ B qa]
b (I-¢ - -) b
dy(1 - g) f . 5\ 1- | Bé]
>_—- _ 22 _ _
2= ( —ooJ(Z y)(e me )dy > + 5 6a )
_dy(1-¢q) -q [ Bo ]
=T 0@ b I S
1-¢ Bo ]
> - >
S 6[& b1l 2 0,
dueto0 <68 < ”(bﬂl)
On the other hand, if z < z,, we have ¢ Tq (e‘2Z - me"z) and thus

F(o:9)@ 2272 [0 (¢4 - meto)ay— (e - me)] - L2 (1t - e

R

1- 2z Z B 1- 2z Z
L _mee)[a_(l_q)(l_%) 4 _mee)]

1—
:qu”ﬂ [d2 fJ(y)e‘mdy - 1) -ch+a
R

- '
- mqugz d, (f J(y)e %dy — 1) -+ a
i R
_BA =) o

{_ -
> — mqugz »dz (j[;](y)e_ezdy - 1) -0+« (b= 1)

(-m) (dz ( f J(y)e *dy - 1) — O+ a) _ Le%—wz]
R b-1
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>1bq 92[( m)(dz(jl;J(y)e_gzdy—1)—09+a/)—%]

1
> bq HZ[( m) fo(da, c, 6) — 1]>o.

The last inequality holds due to 8 € (A,, m1n{2/12, A3}) and condition (A2). |

3. Existence of traveling wave solution for ¢ > ¢*

In this section, we start with discussing the existence of traveling wave solution for system (1.3) with
condition (1.4) by using the upper-lower solutions of system (1.3), which is defined in the preceding
section, to construct an invariant set.

Let C be a set of bounded and uniformly continuous functions from R to R? and

F={(41.¢)€C: )< <), z€R, i =12},

where ¢ (z) and ¢ (z) (i=1,2) are defined by (2.2)—(2.5). Thus for any (¢;, ¢,) € I', we have (1 — q)bT <
$1(z) <1 —gand 0 < ¢(2) <1 b
For @ = (¢, ¢,) € I', we define
H(91,62)(@) = diJ # $1(2) + F1(91(2). 92z = 7)),
Hy(¢1,92)(2) := daJ * $a2(2) + Fa(¢1(z = ¢7), $2(2)),

where

Y2
Fiyu,y) =0 —d)y +v |1 =y, - ————— —¢g]|,
101, y2) = (y —diyn yl( oI5 - q)

Fr(y1,y2) = (y —d2)y2 + 2 (a —ﬁi—z) ,

1
for some constant y. For any fixed y > max {dl +(1-¢q) (l + 1) d, + 23 } it follows that F; is
nondecreasing in y; and is decreasing in y, for y; € [(1 - , 1 - q] and y, € [ , ] Also, F5 is

nondecreasing with respect to y; and y, for y; € [(1 — )b L 1 - ] and y, € [ , ;"]

b
Define an operator P = (P, P,) : I' = C by

1 ¥4
Pi(¢1,¢2)(2) = Ef e

1 ¥4
Pa(¢1,¢2)(2) = Ef e

S H (1, 62)(3)dy,

“ Ho(1, 62)()dy.

nor tlyz’ Wi ! : luti yst ( ' ) LEtp S (O’ C) and ” : ” denote the Euclidean
m in R-. e define
p( ? ) {I €C: sup ||(I)(Z)||€ Pl < oo}

zeR
and
@], := sup [O(2)lle "
zZER

It is easy to see that (B,(R,R?)),|-|,) is a Banach space. Clearly, I is nonempty, bounded, convex and
closed in B,(R,R?).
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Lemma3.1. P: I - T.
Proof. For any ®(z) = (¢1, ¢2)(2) € I', owing to the monotonicity of F; and F, we have
{H1(¢1,¢z)(z) 2di) %9 () +F,(2) = H (2, z€R,
Hi($1,42)(2) < diJ * ¢,(2) + Fi(2) = Hi(2), € R,

and
{Hz(¢1,¢z)(z) 2 dyJ x ¢ (2) + Fy(2) = Hy(2), z€R,

Hi(¢1,$2)(2) < doJ * ¢,(2) + Fy(2) =: Ha(z), z € R,
in which F, I, F, and F, are defined by

Fid) = (v - d)$, ) + 6,0 | 1 =g = $,2) L
= - + -4~ - - ’
1(Z Y D$1(2) + ¢,(2 q- ¢ 1+ ag,(2) +b?2(Z— cT)
F\(2) = (= d)é )+ ¢ 0|1 - g - 6 () - —PEZD) :
LA Rl Rl —1 1+ a?l(z) + by (z — cT1)
and -
Fy(2) = (y — d2),(2) + $,(2) (a _ﬂ—gbi) ’
¢1(z = c7)
. ] ¢,(2)
Fy@) =y~ dg, () + ¢, _'BW '
Let

1 [ _yew — 1 [ yen—
BI(Z):EI e < H (ydy, Pl(Z):Ef e < Hi(y)dy, z€R,

—00

1 N _ vy — 1 < ey —
PO = f e H )y, Pod) = f P Hy(y)dy, 2 € R.

—00

Obviously, P,(z) < Pi(z) < Pi(2) (i = 1,2). It suffices to prove that
¢ <P, Pi)<¢), 2R, i=12.

We denote zp = —oo and z,,,; = oo. For any z € R\ Z, there exists a k € {0,1,2,...,m} such that
Z € (2, Zk+1), and

— 1 < _ Y=y —
Pi(z) = - e < Hi(y)dy

k 1 < 1 z Y@=y —
(i)
1 Zi1 2%
1 1 () ey — —
< Z‘;f +;L e e )dy + v,
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Due to the continuity of both Pi(z) and 51(1)’ we get
Pi(2) < ¢,(2), z€R.

Similarly, we have
¢ ()< P2, z€R,

and

$,(2) < Py(@)(2) < $(2), z € R.
Consequently, we obtain P(I') C T.

Lemma 3.2. P: T — I' is continuous with respect to | - |,,.
Proof. For any © = (¢1,¢;) and ¥ = (Y1, ¢») € I', we have
|Hi (1, $2)(2) = Hi(Y1, ¥2)(2)

<d, LJ(Z =M1 = Y1WIdy + (¥ —di + 1 = @)l (2) = Y1(2)]

$1(DPa(z — ¢7) B Y (QWo(z — cT1)
1 +a¢(z) + bpy(z—ct) 1+ ay,(2) + by(z — c1)

F1010) + QN6 — v (D) + '

and

‘ ¢z —c) @Yz —cT)
1 +a¢i(z) + ba(z —ct) 1+ ayi(z) + ba(z — c7)

=gy _
27D+
(1+a-9%) (1+a(1 - g5)

1 —
<Tq(2 = Pl$12) =1 (D + (1 = g)(1 + a(l = g)lp2(z — cT) = Ya(z = ¢7))|

1-¢g)(1 1-
CZDAL =Dy (e - er) — otz - em)

1
<30 = D2 = Pli(2) —¥1 @) + a(l = g)2 = @)l¢az =€) = Yalz = 7)),

A straightforward calculation yields
IP1(@1,62)(2) = P11, ¢2)(@)le ™
diePd T Ly
<A [ 000 - wiom)as
—00 R

c
—d 1 - —plzl Z Y=y
+ (y—-d +C q)e f o )|¢1(y) — Y (y)ldy
21 — —plz| Z Yy
.\ % f 1) — pr ()ldy

1 _ 2 _ —P|Z| 2 patam)
LS q><cb 9e f e Ipi(y) — v )ldy

1 - 2 - _p|Z| N pataml
ot L f P15y — 1) — Ualy — cDIdy

e_p|Z| < _yz=s)
:dl e ¢
¢ Jw

( fR J(s = V1) — va()ldy| ds
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— Y1 (y)ldy

2 —plzl 2 _
+y- d1+(1—q)(3+—q)] f e
b c J.w

e Pl Y@y
+a(l —g)(2 - 61) f e < |y — 1) = Yoy — c)ldy.

We further have
—p\zl
( J(s = Y1 (y) — wl(y)ldy) ds
—P\zl y( ) . o
= J(S—)’)epy|¢1(y)—l//1()’)|€ dy)ds
|(D T|Pf e —(2-p)(z—s) (f J(y)eplyldy) ds
c —00 R
2 | J(y)e™d
SMICD -,
Y —¢cp
and

e Pkl e—plzl
f f ) — 1)l 'dy
c —00 —00
<w fz e—(%—p)(z—y)dy
S N
1
< |D — P,
Y—cp
Processing in an analogous manner, we can derive
e P re e erT
f ety - 1) = Yoy - cDldy < ——|® = ..
¢ Jo y—cp

We now choose

2d, [ J)e”dy +y —dy + (1 - q)[3+ (4 +ae”") 2 - g
Y= cp

1 =

such that
IP1(¢1, $2)(2) — Pi(Yr1, ¥2)(@le ™ < Li|® — P,

On the other hand, we have

|P2(1, $2)(2) — Po(tr1, 2)(2)]e ™
drye R T e
- f < (f J(y_s)|¢2@)—l//2()’)|dy)ds

c

b

(7 d2+0‘+(b1 )e_plzlfz ey
+ e
—0

c

— Ya(y)ldy

3.1
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_a|Z| N Y=y,
e B [ - - - iy

<L,|® - ¥, (3.2)

where

2y [ I dy +y —dy + @+ B
2 - .

y—cp
In view of (3.1)—(3.2), there exists some constant L* > O such that

|P(¢) — P(Y)|, < L'|® — W,

Hence, P is a continuous operator from I to I'. O

For any given N € R, let R}, := (o0, N] and consider the domain of the functions of the space B,
onRy:

B, (Ry.R?) = {CD € Clr,,  sup I (2) le™* < oo},

ZERY

Then (Bp (R;,, Rz) NN ) is a Banach space equipped with the norm | - ) defined by

@I := sup |O (2) [le™¥F.

Ry
Let us recall Corduneanu’s Theorem [37, §2.12].
Lemma 3.3. Let F C B, (R&, Rz) be a set satisfying the following conditions:
(1) F is bounded in B, (Rj,R?));
(2) the functions belonging to F are equicontinuous on any compact interval of Ry,

(3) the functions in F are equiconvergent, i.e., for any given € > 0, there is a corresponding
Z(&) < 0 such that ||®(z) — ®(—o0)||le™¥F < & for z < Z(e) and ® € F.

Then F is compact in B, (Rz_v’ R2).
Lemma 3.4. P(I') is compact in B,.

Proof. For any ® = (¢1,¢,) € ' and n € N, we define

P(®)(n) z>n,
(D = .
P {P((D)(Z) 7 € (—oo, n]. (3-3)

Clearly, P*(I') is compact if P(I')(z)|r; is compact. We will show that the functions belonging to
P(I')(2)|r; satisfy all three conditions (1)—=(3) in Lemma 3.3. Since P(I') C T, it is easy to see that
P(I')(2)|r; is bounded. Indeed, for any z;,z, € (=0, n] we deduce
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|P1 (1, 82) (1) €2 = Py (61, 92) (z2) |
= Zler f T g () dy - f T

. (¢1,62) (») d)"
1 o~ (plil+2z1) fZl e Hy (¢1, ¢2) (v) dy — e~ (P2t i) fzz e H, (¢1,62) () dy‘

c

1 2y
< ;e @ f eZ)Hl (@1, 2) (v) dy‘
21
1 —plzal | ,- Lz -Iz7 =Xz | ,-plzil —plzal “ Ly
+E(e 2lemct e 4o |e —e |) e’Hy (¢1,¢2) (y)dy

< (1-g)ec [(1 + )Im -zl + 1]

Similarly, we have

|P2(¢1,¢2)(Z1)€_plzll—P2(¢1,¢2)(Z2)€_plzﬂ|Slb;yq()""a £ et M1+ D) -zi+1).

This implies that P(I')(2)|g- is equicontinuous on any compact interval of R, .
For any ®(2) = (¢1(2), ¢2(2)) € I, we find

1 1 -
(1- 61)(1 3 (e’l'Z + pem)) <d(0)<1—-q, Tq (e’lzz ) <¢i(z) < —= b —4 P

for z < min{z;, z,}. That is,
lim ¢1(z)=1-¢q, lim ¢»(z) =0
7——00 -
Then
i _ L= ) (A2+p) T 279 (atp)
[912) = (1= le™™ < == (177 + pe %) (2 = Oe ! < — =

for z < min{z;, z»}. That is, condition (3) is satisfied. According to Lemma 3.3, P"(I')(z) is compact in
the sense of the norm | - |,. Note that

B 2
_ Yyra—-7\| _
|P"(®)(z) — P(@)(2)le ™ < 2(1 —g) 4|1 + [b—] e — 0, asn— oo.
Y
Hence, P"(®)(z) converge to P(®)(z) with respect to the norm | - |,, and P(I') is compact. O

From Lemmas 3.1-3.4 and Schauder’s fixed point theorem, we can see that P has a fixed point
® € T such that P(®) = @, which is a solution of system (1.3). Hence, we obtain the following
theorem immediately.

Theorem 3.5. Assume that conditions (G1)—(G2) hold. Then for any fixed ¢ > c*, system (1.3) has a
positive solution (¢1(z), $»(z)) € I'. That is, ?i(z) < ¢i(2) < ¢,(2) (i = 1,2), where ¢, and ?i (i=12)
are defined by (2.2)—(2.5).
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We now discuss the asymptotic behavior of traveling wave solution described in Theorem 3.5. For
7 — —oo, it is easy to see that

lim ¢1(z) =1-¢g, lim ¢»(z) =0.
7——00 7——00

By applying the contracting rectangles method, we analyze the asymptotic behavior of traveling wave
solution as 7 — oo. We define

E\(&7) :=§(1—qE—§—#),

1+aé+bn (3.4)
Ex(&1) == n(a —ﬁg),
and
10 (0) = w6, mw):(1+éfa—ex1—myﬂ
ab (3.5)
% 0 .
. Vv -0 0 < 2e L c_l 1
vi(0) := {v*% 95 ¢’ v (6) :=v' + LU (1-9),

for 6 € [0, 1], where (u*, v*) is the equilibrium point of system (1.3) and 0 < € < min { R l}

1+au*? a)’

Theorem 3.6. The following three statements are true.

(C1) uy(0) and v,(0) are continuous and strictly increasing while u,(6) and v,(0) are continuous
and strictly decreasing for 6 € [0, 1].

(C2) Ford € |0,1], we have

u1(0) < ui(0) <ui(1) = u” = ux(1) < ur(6) < ux(0),
vi(0) <vi(0) < vi(1) = v = va(1) < va(6) < 12(0).

(C3) If &1 = ui(6o), m = v1(6h) for any by € (0, 1) and

u1(6p)) < & < uy(6p), vi(Bo) <n < vy(6p),

then E (&1,1) > 0 and E5(&,11) > 0.
If & = uy(6p), ma = vo(6h) for any 6, € (0, 1) and

u1(6p)) < & < uy(6p), vi(6o) <n < vy(6p),
then El(fz, 7]) < 0and Ez(f, 772) < 0.

Proof. 1t is easy to see that (C1)—(C2) are true.
To prove (C3), we claim that for any 6, € (0, 1), there holds E;(£;,n7) > 0 with & = u;(6y) = u*6,
and vi(6y) < n < v2(6y). As E (&, n) is decreasing in 17, we only need to show that E;(u*6y, v2(6y)) > O.
Let
a-b 491 —q) - %
2 1—b(l-q) +bud

vw):—gme+
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Then E; (u*6, %(0)) = 0 for 6 € [0, 1]. In view of a > é, it follows that

1,(60) = v* + gu*(l — 6

a a—>b %(1—@—%}7
= —Zu'p,
BT T T T T =g + b
a a—>b %(1—Q)—a,,;zb
——u"6 +
ST T T T (1= g) + burto
:\7(90)

Thus, E(u*6y, v2(6)) > E(u*6y, v(6p)) = 0.
To show E,(&,11) > O for any 6y € (0,1), n; = vi(6p) and u;(6y)) < & < ur(6y), we know that
E>(&,n) is nondecreasing in £. So it is equivalent to prove E»(u;(6y), vi(6p)) > 0. When 2e < 6y < 1, in

view of v{(6y) = v* 910__: we have

* o€ 1-6
Ex(u1(6). vi(60)) = v1(60) [a —ﬁvujg‘; ] = awwo)H g

()
2(1-¢)

For 0 < 6 < 2¢, using v{(6y) = v* we have

x 6
2(1—¢)

M*QO

1-2¢

g

E>(u1(60), vi(6p)) = vi(6p) [a’ - ] = avi(6)

For any 6, € (0, 1), to show E(&,n) < 0, where & = uy(6y) and vi(6y) < n < v2(6)), it suffices to
prove that E;(u(6p), vi(6y)) < 0. Let ¢(0) := E{(u2(0),v1(60))/ux(0). Then ¢(1) = 0. We proceed by
considering two cases.

Case 1: for 2¢ < 0 < 1, from (3.5) we have v,(#) = v*‘l’;_i, u(0) = (1 + ﬁ—;‘?(l —e)(l - 0)) u* for
0 € [2¢,1), and then

dp _d (., _ vi(0)
9"\l 47 we® 1+au2(9)+bv1(9))

3 p1(0)
(1 + auy(0) + bv1(0))*°

where
du dv du
p1(6) = —d—;u + auy(0) + bvy(6))* - d—ela + auy(0)) + avl(md—;

=B o+ am®) + by (0) — ——(1 + au’) - P (1 — .
ab 1—¢€ ab

Since ab < Band 0 < e < 1—1, we get

d b Ba* b Ba\? )
£(1+au2(9)+bv1(0))—1_6—514(1—6)—1_6[1—(%) (1—6)]<0.

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1629-1652.



1645

It is easy to see that inf p;(6) = p;(1). In view of 0 < € < min{i, D1 - l}, we have
0€[2e,1) au a
ﬂa * * £\2 * V* *
pr(1) = = (1 — e’ |1+ au’ + bv')’ —av'| - (1 + au®)
ab 1-€
1+ au”
>u' [(1+au* +bv*)? —av' — a
(1-e

>u' [1+2au™ +2bv" — av' — (1 + 2€)(1 + au™)]
> 2u” [bv' — €(1 + au™)]
> 0.

This implies that for 8 € [2¢,1), p1(#) > 0 holds and ¢(6) is nondecreasing. That is, ¢(6) < O.
Moreover, E1(u,(0),v1(0)) = @(@)uy(8) < 0 for 6 € [2¢, 1).

Case 2: for 0 < 6 < 2¢, from (3.5) we have v{(0) = v*ﬁ and u,(0) = (1 + fi—;j(l —e)(l - 0)) u* for
0 € (0,2¢). Then we get

de _ 02(0)
dd (1 + aux(0) + bv,(6))*’
where 5
02(0) = % (1 = &) u*(1 + aus(6) + by, (6))* — 2(1v_ 501+ @) - %u*v*,
- _ : (1 b 1
and 961(5156) 02(0) = p2(2€). In view of 0 < € < min {Z’ e, 1 — 5}, there holds
26) > *>1+ *(1+/3a(1 )1 2))+ ebv' | v (1 + au’) Ba* .,
€) > u au —(1-e)(l-2e - au’) — =—u*v
= » ab 20-9| 2(-9 2ab
. . *Baz 1+ 2¢ . Ba? .
1+2au™ +2u"—(1 - - 1 - —
> u » + 2au” + 2u ab( 3¢) > (1+au”) 2abu
[ 1+2 1+2 . 1 2
= »(1 _ +2 6) i (2— +2 E)au* n (2(1 _3e) - 5)%14*]
> 0.

Since ¢(2€) < 0, for 8 € (0,2¢€) we have p,() > 0 and ¢(8) < 0. This leads to E;(ux(6),v,(0)) =
w(Ouy(0) < 0 for 6 € (0,2¢€). Hence, E|(uy(0),v1(0)) < 0 for 6 € (0, 1).
To prove E»(&,1m,) < 0 for 6y € (0, 1), 1, = v2(6p) and u1(6p)) < € < uy(6p), from (3.5) we deduce
B0, v2(60) = va(@) | - T E L)
u ,V =y a—
B e T e L B (= (1 = ot
v+ fut(1 - 6)
u* + B (1 - 6p)

<) |a -

v+ 2yt (1 - 6p)
= vy(60) |@ ~ B ]
E(V* + l;u*(l —6y))
=0.
Hence, E,(u(6), v,(0)) < 0 for any 6 € (0, 1). O
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Theorem 3.7. Assume that conditions (G1)—(G2) hold and ® = (¢,,¢,) € T is a solution of system
(1.3). Then we have

lim(¢1(2), 62(2) = (', v"). (3.6)

Proof. From (3.5), we observe

u;(0) =0, u(0) = u™ + ﬁ—Z(l —eu >2u" >1-gq,
a

v1(0) = 0, vz(O):v*+gu*>vbu> bq

In view of (¢, ¢,) € I" for z >> 0, it follows that

1 1- 1=
(1—4)(1—5)S¢1(Z)S1—q, Tq5$¢2(Z)S 1,

b

So we have
u1(6p)) < liminf ¢1(z) < lim sup ¢1(z) < uz(6p),
7—00

/0

3.7
vi(6) < ligglf $2(z) < limsup ¢,(z) < va2(6p), G7)

700

for some 4, € (0, 1).
Denote
0" := sup{f € [y, 1)| (3.7) hold}.

Then, 8° = 1. Otherwise, we have 8* < 1 in (3.7). Namely, at least one of the following equalities is
true:
up (0) = liminf ¢, (2), up (6) = limsup ¢ (2),
7—00

Z—00

vi () = liminf ¢, (2), v2(6") = limsup ¢, (2).

7—00

Without loss of generality, we assume that
u1(60°) = liminf ¢ (2).
Z—00

It follows from Lebesgue’s dominated convergence theorem that

1
lim inf ¢1(z) = lim inf 5 [¥1(2) + Ei(¢1(2), $2(z — cT))]

1
> liminf ¢,(z) + —E (liminf ¢,(z), lim sup ¢»(z)).
7—00 ’}/ 700 7—00
That is,
E;(liminf ¢(z), limsup ¢»(z)) < 0.
7—00

700

This implies that E(u;(6"), n) < 0 with v, (8") < n < v, (8"), which yields a contradiction to (C3) of
Theorem 3.6. The other three cases can be proceeded in an analogous manner. O

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1629-1652.



1647

4. Existence of traveling wave solution for ¢ = ¢*
Let z € Ry, with N € R. We define
€ (75 7) = {9102 € Cly ¢ lim 1@ = gi(—c0), Tim 2(2) = ha(—0)}.

It is not difficult to see that C; (RI‘V,RZ) is isomorphic to C ([%,1],1&2). Indeed, if x(s) €

C([:5.1].R?). then y(1) = x(s) for t = =7, s € [ 5. 1), and y(1) € C; (R, R?). That is, C; (Ry, R?) is

N-1° N-T°
a Banach space equipped with the superemum norm.

Theorem 4.1. When c = c¢*, system (1.3) has a positive traveling wave solution satisfying (1.4).

Proof. Let{c,}be adecreasing sequence with ¢, < ¢*+1 and lim ¢, = ¢*. Then for each ¢, system (1.3)

—00

has a positive traveling wave solution (¢y, (z) , ¢2, (2)) satisfr}l/ing (1.4) and

b-1 1-
(1—61)7 SP@ < 1-q, 0<¢y(2) < Tq

Since a traveling wave solution is invariant in the sense of phase shift, we can assume that
$12(0) = (1 = 1, $1a(z) > (1 = @)y for z < 0 and ¢2,(0) = 12, ¢24(2) <12 forz <0,

with l%l <py<landO< < %. From (1.4), we know that the above expressions are admissible.
For n € N, it is evident that (¢,(2), ¢,,(z)) are equipcontinuous, bounded and equipconver-
gent in C; (R;,,Rz). According to Lemma 3.3, {(¢1,(2), ¢2.(z))} has a subsequence, still denoted by

{(01(2), }2.(z))}, such that
$1,(2) = $1(2), P2.(2) = ¢2(2), asn — o0

and

lim ¢(z2) =1 -¢, lim ¢y(z) = 0.
7——00 i—o—x

Here, (¢1(2), ¢2(2)) € C; (RI‘V,RZ) is continuous and the above limits converge uniformly on R},. It
follows from Lebesgue’s dominated convergence theorem that

lim J = ¢;,(2) = ¢i(z), i=1,2
on z € Ry,. Thus, (¢(z), ¢2(z)) is a solution to system (1.3) which satisfies

$1(0) = (1 =1, $1(z) > (1 = q)y for z < 0 and ¢2(0) = 1, ¢a(2) <12 forz <0,

and b1 {—
(I-¢9) b <¢i(x)<1-gq, 0§¢2(Z)ST-

From ¢,(0) = 1, > 0, liminf ¢,(z) > 0 holds. By virtue of Theorem 3.7, we obtain
Z——00

lim ¢i(z) = u*, lim ¢o(z) =V".
7—+0o0 Z—+0o0

O
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5. Nonexistence of traveling wave solutions

Consider the Cauchy problem:

ot (5.1

WD) T eue ) —utr D)+ (1 ru(x, 1),
ulx, 0)=u(x), xeR,

where J satisfies condition (G1), r > 0 is constant and the initial value u, (x) is uniformly continuous
and bounded for x € R.

Lemma 5.1. [32] Assume that 0 < uy(x) < % Then system (5.1) admits a solution for x € R and
t > 0. If w(x, 0) is uniformly continuous and bounded, and w (x, 0) satisfies

{6(0((9):, ) > (Q)d(J*wx, ) —w D))+ o ) -rox, 1),
w(x, 0) > (Lug(x), x€R,

then we have
wx, > Qulx, ), xeR, t>0.

Lemma 5.2. [32] Assume that uy(x) > 0. Then for any 0 < ¢ < c¢* there holds

1
lim inf |ilnf u(x, t, up(x)) = limsup sup u (x, £, uy(x)) = —.
I—oeo |xj<ct t—o0  |x|<ct r

Theorem 5.3. For any speed 0 < ¢ < c*, there is no nontrivial positive solution (¢, (z), ¢>(2)) of
system (1.3) satisfying condition (1.4).

Proof. Suppose on the contrary that there exists some 0 < ¢; < ¢*, such that system (1.3) has a positive
solution (¢1(z), $2(z)) satisfying condition (1.4). Then ¢;(z) is bounded on R and we can find a positive
constant K such that ¥(x, t) = ¢>(x + ct) satisfies

{awéj, )] >dy (Jxy(x, 1) = (x,0) +ay(x, 1) (1 — Ky (x,1)),
Y (x,0) = ¢ (x) > 0.

Let x(¢) = —C‘—JZ“"*I. From Lemmas 5.1 and 5.2 it follows that

1
liminf inf 1) > —.
I?—luzon 2|x|=1(121+c*)tlp(x ) K

ci—c*

2

Meanwhile, in view of x(7) + ¢t = t, we see z = x(t) + ¢t > —oo0 as t — +oo, and

lim sup ¢ (x(¢),1) = lir_n $2(2) = 0.

t—00

This yields a contradiction. O
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6. Conclusions

In this paper, we have studied the existence and nonexistence of traveling wave solution of a non-
local delayed predator-prey model with the B-D functional response and harvesting. As we see,
model (1.3) is nonmonotone or not quasimonotone. We employed Schauder’s fixed point theorem
and the upper-lower solutions method to discuss the existence of traveling wave solution for the speed
¢ > ¢*. Then, we investigated the asymptotic behavior of traveling wave solution by construction of
the upper-lower solutions at —co and by developing the contacting rectangles technique at +oco. For the
special case of ¢ = ¢*, one usually can not establish the existence of traveling wave solution directly
by constructing a pair of upper-lower solutions. One of available methods is the limiting argument
together with the Arzela-Ascoli Theorem [33,36,39]. In this study we have presented not only the
existence of traveling wave solution but also the asymptotic behavior of traveling wave solution at —co
by Corduneanu’s theorem. The nonexistence of traveling wave solution of system (1.3) with condi-
tion (1.4) was investigated by applying the comparison principle of nonlocal dispersal equations.

It is remarkable that for the parameters of system (1.3), we only need » > 1 and 0 < ba < S to
prove Theorem 3.5. These conditions were used to construct a pair of suitable upper-lower solutions of
system (1.3). Fora > 1 and 0 < aa < 8, we could also construct the appropriate upper-lower solutions
of system (1.3) in a similar way. To obtain the asymptotic behavior of traveling wave solution as
7 — oo, we additionally needed a > é.

When ¢ = 0 in model (1.3), it means that there does not have any prey harvesting. By assuming
b>1,0< ba < Band a > %’, we can derive the same results as Theorems 3.5 and 3.7 in an
analogous manner.
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