
MBE, 18(2): 1550–1572. 

DOI: 10.3934/mbe.2021080 

Received: 27 November 2020 

Accepted: 25 January 2021 

Published: 29 January 2021 

http://www.aimspress.com/journal/MBE 

 

Research article 

A comparative study for glioma classification using deep convolutional 

neural networks 

Hakan Özcan1, *, Bülent Gürsel Emiroğlu2, Hakan Sabuncuoğlu3, Selçuk Özdoğan4, Ahmet 

Soyer3 and Tahsin Saygı5 

1 Department of Computer Technology, Amasya University, Amasya, Turkey 
2 Department of Computer Engineering, Kırıkkale University, Kırıkkale, Turkey 
3 Department of Neurosurgery, Ufuk University, Ankara, Turkey 
4 Adatıp Hospital, Neurosurgery Clinic, İstanbul, Turkey 
5 Department of Neurosurgery, Haseki Research and Training Hospital, İstanbul, Turkey 

* Correspondence: Email: hozcan@amasya.edu.tr; Tel: +90-358-211-5005. 

Abstract: Gliomas are a type of central nervous system (CNS) tumor that accounts for the most of 

malignant brain tumors. The World Health Organization (WHO) divides gliomas into four grades 

based on the degree of malignancy. Gliomas of grades I-II are considered low-grade gliomas (LGGs), 

whereas gliomas of grades III-IV are termed high-grade gliomas (HGGs). Accurate classification of 

HGGs and LGGs prior to malignant transformation plays a crucial role in treatment planning. 

Magnetic resonance imaging (MRI) is the cornerstone for glioma diagnosis. However, examination 

of MRI data is a time-consuming process and error prone due to human intervention. In this study we 

introduced a custom convolutional neural network (CNN) based deep learning model trained from 

scratch and compared the performance with pretrained AlexNet, GoogLeNet and SqueezeNet 

through transfer learning for an effective glioma grade prediction. We trained and tested the models 

based on pathology-proven 104 clinical cases with glioma (50 LGGs, 54 HGGs). A combination of 

data augmentation techniques was used to expand the training data. Five-fold cross-validation was 

applied to evaluate the performance of each model. We compared the models in terms of averaged 

values of sensitivity, specificity, F1 score, accuracy, and area under the receiver operating 

characteristic curve (AUC). According to the experimental results, our custom-design deep CNN 

model achieved comparable or even better performance than the pretrained models. Sensitivity, 

specificity, F1 score, accuracy and AUC values of the custom model were 0.980, 0.963, 0.970, 0.971 

and 0.989, respectively. GoogLeNet showed better performance than AlexNet and SqueezeNet in 

terms of accuracy and AUC with a sensitivity, specificity, F1 score, accuracy, and AUC values of 
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0.980, 0.889, 0.933, 0.933, and 0.987, respectively. AlexNet yielded a sensitivity, specificity, F1 

score, accuracy, and AUC values of 0.940, 0.907, 0.922, 0.923 and 0.970, respectively. As for 

SqueezeNet, the sensitivity, specificity, F1 score, accuracy, and AUC values were 0.920, 0.870, 0.893, 

0.894, and 0.975, respectively. The results have shown the effectiveness and robustness of the 

proposed custom model in classifying gliomas into LGG and HGG. The findings suggest that the 

deep CNNs and transfer learning approaches can be very useful to solve classification problems in 

the medical domain. 

Keywords: glioma; clinical scans; retrospective study; magnetic resonance imaging; classification; 

deep convolutional neural networks; transfer learning 

 

1. Introduction  

A glioma is a most common type of central nervous system (CNS) tumor that originates in the 

brain or spinal cord [1]. Gliomas comprise about 80% of all malignant brain tumors and make up 30% 

of all the CNS tumors [2]. Every year in the United States, around 10,000 people are diagnosed with 

malignant glioma, and in about only 25% of the cases, patients survive a year following the diagnosis [3]. 

According to the updated World Health Organization (WHO) classification schema, gliomas are 

grouped into four grades ranging from I to IV, that are based on the type of malignancy analyzed 

through the histological features and genetic characteristics of glioma tissue [4]. Grades I and II 

gliomas are defined as "low grade gliomas" (LGGs), whereas gliomas of grades III and IV are 

considered "high grade gliomas" (HGGs) [5]. HGGs grow rapidly and aggressively in an infiltrative 

manner [6]. Even with current treatment options, such as chemotherapy, radiation and surgery, the 

prognosis of HGGs is still very poor, and patients with HGG are rarely cured completely [7]. The 

median survival time with the most common HGG, termed glioblastoma, is less than 15 months [8]. 

LGGs, on the other hand, grow slower than HGGs and their median survival ranges from 5 to 10 

years. [9]. Although LGGs are often found to have a better prognosis than HGGs, they can show 

anaplastic progression (i.e., malignant transformation) to HGGs over time [10]. Therefore, diagnostic 

accuracy of detecting LGGs before the malignant transformation to HGGs plays a critical role in 

optimal treatment planning. 

According to current clinical practice, biopsy still matters in a histological glioma diagnosis and 

is considered the definitive standard for glioma grading and treatment planning [11]. However, 

obtaining a biopsy from a brain involves invasive procedures that are not only uncomfortable for 

patients but also comprise potential risk of complications, such as bleeding, infection, stroke, and 

seizures [12]. Besides that, in some cases, especially in occurrence of malignant progression, further 

biopsies can be required to guide treatment decisions [13], hence the potential complications can 

occur each time a follow-up biopsy is taken. Even though primary diagnosis of glioma may still 

require a tissue specimen taken by biopsy, non-invasive approaches help to avoid unnecessary 

biopsies by using various imaging methods, especially Magnetic Resonance Imaging (MRI) [14]. 

MRI is one of the most common non-invasive diagnostic methods and has been shown to be 

very sensitive in evaluating soft tissue masses without exposing radiation and become a valuable tool 

for clinical decision-making prior to or along with biopsy [15]. In fact, MRI is useful for detection 

and classification of glioma grades as it offers a broad range of imaging sequences with relevant 
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protocols, such as T1-weighted (T1W), T2-weighted (T2W) and fluid-attenuated inversion-recovery 

(FLAIR) [16]. However, examination of MRI data with a large series of images is a time-consuming 

process, and interpretations of tissue characteristics and patterns on images are subject to human 

perception and may vary among experts [17]. Such variability in interpretations of MRI images, 

indeed, can potentially result in biases and lead to classification errors of false-positive or 

false-negative diagnosis [18]. 

Many efforts have been made on glioma grade diagnosis using traditional machine learning 

methods [19–24]. In these methods, researchers have used histogram and texture analysis and 

benefited from statistical techniques such as logistic regression, random forest, and support vector 

machines in the classification process. Although these efforts contributed to analysis of glioma 

grades to some extent, they involved complex procedures of extracting hand-crafted features in an 

observer-dependent way. But thanks to recent advances in the field of artificial intelligence, new 

algorithms were provided for addressing this complexity. When these algorithms are basically built 

on multi-layer neural networks, they are characterized as Deep Learning. Deep learning, as a 

promising sub-branch of machine learning, can learn from sample data and provide the ability to 

address the challenges in many classification problems [25]. A convolutional neural network (CNN) [26] 

is a feed-forward neural network used in deep learning. CNNs require less preprocessing of data than 

other algorithms do [27]. This makes them more advantageous than the conventional methods in 

terms of reducing human-intervention and creating more automated learning models.  

When building a typical CNN model, using an optimal optimization algorithm to explore the 

best matching weights and biases for the input and output data is called as training. Two main 

approaches can be used in the development of CNN-based models. The first approach is that the 

network is originally designed and trained from scratch. The second approach, on the other hand, is 

utilizing the pretrained networks and is called Transfer Learning. Designing a network and training 

from scratch require well-labeled data and involve a computationally expensive process. In order to 

alleviate computational burden and mitigate the limitation of small data size, transfer learning 

methods with pre-trained CNNs previously trained on large image datasets can be used [28]. 

In this study we proposed a new custom-design CNN-based deep learning model (Model 1) 

trained from scratch and compared the performance with the pretrained networks of AlexNet (Model 

2), GoogLeNet (Model 3) and SqueezeNet (Model 4) through transfer learning for an effective 

glioma grade prediction. The focus of the study also involves how CNN-based deep learning 

methodologies can be applied in a real-world clinical environment where only limited data are 

available. For this purpose, we conducted a retrospective review of MRI data of 104 patients with the 

diagnosis of glioma between December of 2016 and October 2019. Then, we trained and tested the 

models with the data to facilitate the classification of low- and high-grade glioma. The major 

contributions of this research are listed as follows: 1) A custom-design deep CNN architecture was 

proposed for 2-dimensional (2D) MRI images for an effective glioma grade prediction. 2) To the best 

of our knowledge, this is the first work that compare the glioma grade prediction performance of 

SqueezeNet through transfer learning with a comparison to other commonly applied pretrained 

networks of AlexNet and GoogLeNet. 3) A new glioma dataset was retrospectively curated; learned 

features, morphological patterns were analyzed in the light of the four deep learning models. 

The rest of this paper is organized as follows: Section 2 presents a literature review of the 

machine learning approaches recently applied to glioma diagnosis. Section 3 describes the materials 

and methods that we used to develop the CNN models and transfer learning workflow. Section 4 
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depicts experimental results of the models. Finally, Section 5 summarizes the conclusions and 

discusses the results. 

2. Related work 

Previous studies on glioma analysis have focused on either classical machine learning methods 

or, to a lesser extent, deep learning approaches. For example, Zacharaki et al. [29] proposed a 

machine learning schema based on radiomic features for distinguishing glioma types. They applied 

classification models based on linear discriminant analysis, k-nearest neighbors, and support vector 

machine (SVM) algorithms with the extracted features such as tumor shape, intensity, and texture 

features to quantitatively evaluate gliomas. Their SVM classifier performed better, achieving an 

accuracy of 88%. Kang at al. [19] applied histogram analysis of apparent diffusion coefficient maps 

for differentiating astrocytic tumors from grade II-IV gliomas and achieved an 80% classification 

accuracy. Ditmer et al. [30] implemented texture analysis with a filtration- histogram based approach 

using radiomic features on T1, FLAIR, and diffusion weighted imaging (DWI) MRI sequences to 

differentiate LGGs and HGGs. This work showed that T1-weighted and FLAIR images provided 

better results compared to DWI-generated ADC maps and attained an AUC of 90%. Banerjee et al. [31] 

explored the potential use of deep learning-based approaches in grading gliomas from MR images. 

They tested the suitability of transfer learning by applying VGGNet and ResNet architectures, an 

attained accuracy of 84%×90% for 2D images. In another study [32], researchers presented two 

glioma grading methods, which include brain tumor segmentation using a modified U-Net model. 

They used a regional convolutional neural network (R-CNN) for the classification task in each of the 

2D image slices of MRIs. Their proposed 2D Mask R-CNN yielded an accuracy of 96%. The 

classification performance of the 2D model showed that data augmentation improved the results [32]. 

In a recent review [33], it has been stated that machine learning methods give insufficient 

information about how tissues are classified in glioma analysis, however, more explanatory 

information can be presented by using visualization methods within CNN-based deep learning 

models. A report [34] underlining the effect of using deep learning on glioma diagnoses summarizes 

that deep learning algorithms can easily be adopted in clinical practice and different data sets would 

be useful in investigating the factors in the classification of gliomas. 

3. Materials and methods 

3.1. Database 

The study flow included data acquisition, preprocessing, data splitting, data augmentation, 

classification, and evaluation phases as shown in Figure 1. In the data acquisition phase, clinical MRI 

data of 104 cases including 50 with LGG (grade II) and 54 with HGG (grade IV) were 

retrospectively recruited for this study. Data were extracted from anonymized MRI scans, which 

were performed in head-first, supine orientation, using 1.5T Philips Achieva MRI scanner (A-series, 

USA). MRI protocols mainly consisted of T1W, T2W, FLAIR and DWI sequences recorded in The 

Digital Imaging and Communications in Medicine (DICOM) format in the sagittal, coronal, and 

axial planes of the brain. The DICOM images were in nested sequences in gray scale and rendered 

with contrast-based intensities for tumor regions. After our evaluations of the sequences in terms of 

the slice quality and quantity of tissues, only axial T2W/FLAIR (N = 104) cases, on which glioma 
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lesions appear hyperintense with 5–8mm slices from fluid-attenuated MRI, were included in this 

study. The final diagnosis for each case was analyzed based on the pathology reports and each MRI 

sequence was stratified into LGG and HGG in accordance with the WHO criteria by a group of 

experts from neurosurgery and neuroradiology. The retrospective review consisted of the cases 

between December of 2016 and October 2019 as listed in Table 1. 

Table 1. Characteristics and distribution of the glioma cases used in the study across years. 

Year HGG  LGG  T2W/FLAIR 

2016 4 3 7 

2017 12 21 33 

2018 21 10 31 

2019 17 16 33 

Total 54 50 104 

 

Figure 1. The design of the study. 

3.1.1. Ethics approval of research 

Ethical approval (15386878-044/2020) was obtained from the Institutional Ethical Committee 

of Amasya University, and all procedures were performed in line with the tenets of the Declaration of 

Helsinki. 
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3.2. Preprocessing 

In the preprocessing, we applied a user-guided segmentation for the delineation of region of 

interest (ROI) in relation to the glioma tissues being evaluated. ROIs were outlined in the MRI slices 

with the largest tumor cross-section and centered on the corresponding tissues. We performed 

multiple cropping and obtained ~5 images at each set of slices. This helped expand the data, without 

actual introducing new data [35,36]. Then we saved ROI images in BMP format with the dimensions 

of 64×64px. Finally, we obtained 518 images. After that, the raw pixel values in each image were 

normalized to have a mean of zero and a standard deviation of 1. Channel-wise standardization and 

z-score normalization were also applied during the convolution and pooling operations to facilitate 

the training processes. 

3.3. Data splitting 

Cross validation is used especially in studies with small datasets to provide generalizability of 

models in machine learning. In this study, we split the image dataset into train, validate and test sets 

in a nested cross validation manner as shown in Figure 2. K-fold cross validation method was used to 

estimate the out of sample classification accuracy of the models. Balanced random sampling strategy 

was used to ensure each fold has a balanced representation of classes. We divided the dataset into 

five subsets (folds) and evaluated the results by experimenting on each subset. One of the folds (20%) 

is used for testing, the remaining four folds (80%) are used to train the dataset and this process is 

repeated five times for each model. At each cross-validation iteration, the model was trained using a 

training/validation set and evaluated on a separate testing set in a patient-based manner. Finally, 

average performance results were calculated to compare the models. 

 

Figure 2. Data splitting in a five-fold cross validation manner. 
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3.4. Data augmentation 

Data augmentation is a regularization strategy that artificially expands the volume and diversity 

of data. One of the common problems in deep learning-based applications in medical image analysis 

is the lack of representative data [37]. There are many data augmentation techniques available 

addressing this issue such as rigid transformations including flipping, rotating, and translating. We 

applied random combinations of these techniques to increment the dataset. We made use of the 

Augmenter [38] library, which uses a stochastic, pipeline-based approach to expand training dataset. 

By using this library, we chained several augmentation techniques together as listed in Table 2. We 

applied probability-based random rotation, zooming, shearing, and flipping to our training set. 

Additionally, we used random elastic gaussian transforms, which enabled grid-based distortions on 

ROIs. We preserved the ROI focus area not to lose the largest part of the lesion. Finally, the training 

data were increased to 20-fold larger in size. A set of augmented images are shown in Figure 3. 

Table 2. Data augmentation techniques with the probabilities. 

Augmentation techniques Probability 

Rotating and zooming 0.20 

Distortion and skewing 0.30 

Shearing and flipping 0.50 

 

Figure 3. Representative examples of augmented images: The image located at top-left is 

the original image. 

3.5. The CNN architecture 

We proposed a custom deep CNN architecture to train from scratch. The architecture consists of 

7 linearly structured convolutional layers. Each convolutional layer applies a set of filters (kernels) to 
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its preceding layer with a stride of 1 to extract feature maps (activation maps), such as edges, lines, 

corners, and gradients. The first two convolutions begin with 3×3 filters to obtain high-level features, 

such as texture and shapes. After that, a 5×5 filter is applied to the next three layers. For the sixth and 

seventh convolutions, filters with sizes of 7×7 and 3×3 are implemented, respectively. All the 

features obtained from each convolutional layer are flattened and fed into a fully connected layer. 

Finally, the classification is performed through the fully connected layer using the SoftMax 

activation as a two-class output with the cross-entropy loss function. Figure 4 depicts the overall 

architecture of the CNN model. 

 

Figure 4. Proposed CNN architecture. 

Feature maps are formed as a product of inputs and kernels. Both kernels, which hold the 

learned weights, and inputs fed into a convolutional layer are multidimensional arrays. So, the 

convolution operation can be expressed as a pair-wise product of two 2-dimensional matrices, given 

by 

𝐹[𝑖, 𝑗] = 𝐾[𝑖, 𝑗] ⊗ 𝐼[𝑖, 𝑗] =  ∑ ∑ 𝐼[𝑚, 𝑛] • 𝐾[𝑖 − 𝑚, 𝑗 − 𝑛]

𝑘

𝑛=−𝑘

𝑘

𝑚=−𝑘

 (1)  

where F represents the calculated feature map, K is the kernel, and I is the input values. After 

applying convolution to input I with the kernel K of width 2k, each feature map forms a 

2-dimensional matrix of features. 

We preferred odd number kernel sizes with zero-padding strategy [39] to maintain spatial 

dimensionality of input images. To facilitate the convergence of the network especially for a high 

learning rate, we applied batch normalization method [40] to each convolution layer. In this way, we 

aimed to stabilize distribution of inputs before each activation. 

𝐵𝑁(𝑥𝑖) =  γ𝑖�̅�𝑖 + β𝑖 (2)  

In Eq 2, gamma (γ) indicates the scaling factor, and beta (β) is the shifting parameter for the 

normalized weights. Both β and γ are learnable parameters within the network. �̅�𝑖 represents a 

normalized output value of the previous layer. Batch normalization multiplies the normalized values 

by the standard deviation and adds the mean value. This procedure helps increase the stability of the 

model and reduces the overfitting problem [41].  
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After each batch normalization procedure, rectified linear unit (ReLU) [42] is used in 

convolutional layers. The contribution of ReLU to accelerating the converging speed of CNNs has 

been empirically proven and it is widely used as the activation function in deep models [43,44]. 

ReLU is a piecewise linear function that normalizes the output of each neuron. This activation 

function assigns zero to values below zero or directly outputs input value if it is greater than or equal 

to zero as shown in Figure 5. 

𝜎 = max(0, 𝑥𝑖) ∈ [0, ∞] (3)  

 

Figure 5. ReLU activation. 

We used the max-pooling process [45] after each ReLU activation layer except the last one. This 

process reduces the spatial size of inputs as it downsamples the features to detect contours, sharp 

edges, and corners etc. All the max-pooling operations are applied symmetrically using a stride of 2 

with zero padding to distribute the pooling procedure over the whole input image. Max polling can 

be given by 

ℎ𝑚𝑛
𝑎 = 𝑚𝑎𝑥𝑖=0,…,𝑠,𝑗=0,…,𝑠ℎ(𝑚+𝑖)(𝑛+𝑗)

𝑎−1  (4)  

where s is the shift size of the pooling window over the pixels, and h represents pooling output 

as the activation of the layer. A pooling window moves over the input with directions in the nth row 

and mth column by the iteration indices i and j. At each point where the pooling window is located, 

the maximum value is calculated and recorded on the pooling region. This process divides the input 

into sub regions and yields a type of discretization of inputs. 

Before combining the features maps, a dropout regularization [46] is added to the architecture (p 

= 0.5). This method randomly sets activation values to zero with a given rate to reduce overfitting of 

the model. Recall that, the activation function in Eq 1. obtains the sum of input values multiplied by 

weights in the kernel matrix. The application of dropout to this summation with a certain probability 

can be formulated as follows: 

𝑦𝑖 = 𝑤𝑖 ∗ δ +  𝑏𝑖 (5)  
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where lambda (δ) is either 1 with the probability of p, or 0 otherwise. So, the weights are 

removed at each step during the element-wise multiplication if lambda is 0 or preserved if lambda is 

1. 𝑏 represents the bias value for the ith feature map. 

Feature maps are flattened and connected to a fully connected layer at the end of the architecture. 

The fully connected layer is then followed by a 2-class output layer, where we appended the Softmax 

activation function to calculate the probabilities of each class. So, the output layer returns the class 

having the highest probability. The Softmax function can be formulated as follows: 

𝑓𝑖(𝑥) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑘𝑛
𝑘=1

 (6)  

where 𝑥 is the given input vector, transformed into the standard exponential function 𝑒𝑥𝑖, then 

normalized across all the values so that the sum becomes 1. In other words, while the initial values 

that the model outputs are in non-normalized form, Softmax converts them into normalized 

probabilities as an output vector, i.e., probability distribution for 𝑛 number of classes. 

In the experiments, we used stochastic gradient descent (SGD) optimization algorithm [47] with 

the cross-entropy (CE) loss function. SGD gives a way of effectively minimizing the loss function. 

As we have a classification problem with two classes LGG and HGG, we used binary cross-entropy 

as the loss function. The loss function (also known as cost function) calculates how well the CNN 

algorithm performs over new data by providing a difference between our prediction and the actual 

observation (ground truth). The binary cross-entropy loss function is formulated as follows: 

𝐿(𝑓(𝑥), 𝑦) =  −
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖

log(𝑓𝑖(𝑥)) + (1 − 𝑦𝑖) ∙  log(1 − 𝑓𝑖(𝑥)) (7)  

where the 𝐿 function expects two parameters to compute the cross entropy. The first parameter 

is the output of 𝑓(𝑥), which is the Softmax output, i.e., probability distribution of the predicted 

values as detailed in Eq 6. The second parameter is 𝑦, which represents the true class label in the 

target vector with 𝑛 samples. 

3.6. Transfer learning 

Deep CNNs pretrained on a large amount of real-world images offer the possibility of transfer 

learning implementations tailored to other domain-specific problems [25]. There are many 

state-of-the-art CNN architectures that have proven their potential in the medical domain [27]. These 

architectures are typically pre-trained and benchmarked based on the ImageNet [48], a large-scale 

dataset, which consists of millions of images divided into thousands of object categories. In our study, 

adaptation of pre-trained CNN architectures involved changing the weights in initial layers and 

fine-tuning (retraining) some of the last layers with our dataset and optimizing the models’ 

hyper-parameters such as learning rate, mini-bath sizes, and number of training epochs. We 

implemented transfer learning by using the deep CNNs including AlexNet, GoogLeNet and 

SqueezeNet, as shown in Figure 6. Then, we compared the performance of the models in predicting 

LGGs and HGGs. 

AlexNet [49] is the first deep CNN architecture that achieved great classification accuracy on 

ImageNet database in 2012. The structure basically contains eight consecutive layers, which consists 

of five convolutions followed by three fully connected layers. The model combines three 
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convolutional layers with max-pooling techniques for the feature maps. ReLU is used as the 

activation function after each convolution. Dropout regularization is applied to the first two fully 

connected layers. The input to the AlexNet is with a fixed size of 227×227 RGB image (i.e., 227× 

227×3). The output is generated through a 1000-class Softmax classifier built in the last fully 

connected layer. AlexNet is trained on the ImageNet database and it holds nearly 61 million trainable 

parameters [49]. On the other hand, GoogLeNet [50], also known as Inception v1, introduced a new 

way of stacking structure with a unique component to the deep CNN architectures, named, 

“inception module”. The model has 22 layers and is based on the hierarchical combination of 

inception modules. Each inception module represents a separate block with its own six convolutional 

layers as well as a pooling layer. In the network architecture, a 1×1 convolution is used to reduce 

dimensionality of feature vectors (i.e., dimensionality reduction) for faster computations. Inception 

layers in each block can use multiple kernels of different sizes, particularly of 1×1, 3×3, and 5×5. 

The architecture uses global average pooling for the purpose of fully connected layers and accepts 

224×224×3 images, as an input by default. GoogLeNet is also trained on the ImageNet database and 

it contains roughly 7 million trainable parameters [50]. As for SqueezeNet [51], it was introduced as 

a simplified computer vision model in 2016. The model has an 18-layer deep architecture, which is 

initialized with a standalone convolutional layer and ends with a Softmax output via global average 

pooling technique. The architecture includes three max pooling layers and four pairs of building 

blocks, namely fire modules 2–9. A fire module consists of a squeeze layer with two branching 

expand layers using kernel sizes of 1x1 and 3x3 as shown in Figure 6. These modules are essential 

parts of the architecture and their main purpose is to reduce the number of parameters within the 

network. SqueezeNet holds about 1.2 million parameters and expects input size of 227×227×3 [51]. 

The comparison of the deep CNNs used in this study is summarized in Table 3. 

Table 3. Comparison of AlexNet, GoogLeNet and SqueezeNet. 

Name Year Input size Depth Modules Parameters  Output class 

AlexNet 2012 227×227×3 8 N/A 61M 1000 

GoogLeNet 2014 224×224×3 22 Inception 7M 1000 

SqueezeNet 2016 227×227×3 18 Fire 1.2M 1000 

 We followed three main steps to apply transfer learning workflow to the pretrained networks. 

First, we loaded and analyzed each network architecture. Then we replaced the last few layers with 

custom layers to match the number of classes in our classification problem. Finally, we retrained the 

networks on our dataset. For all the pretrained networks, we increased the learning rate of the new 

layers by a constant factor (20%) for the weights and biases. This provided more frequent updates for 

learning features during the training. As for the initial layers, we preserved the defined learning rate, 

so they used global learning rate given in Table 4. Weights of the initial layers were updated during 

the training process. Figure 6 shows the layers of the architectures based on the transfer learning 

workflow. More specifically, for the AlexNet, we removed the last three layers. We added a new fully 

connected layer (activations: 1×1×2, weights: 2×4096, bias: 2×1) in place of the layer, named “fc8” 

(1×1×1000 activations, 1000×4096 weights, 1000×1 bias). Then we appended a Softmax layer 

(1x1x2) and a classification layer using cross entropy loss function with classes “LGG” and “HGG” 

at the end of the architecture. For the GoogLeNet, after extracting the layer graph, we replaced the 

fully connected layer (1×1000 activations, 1000×1024 weights, 1000×1 bias), named 
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"loss3-classifier", with a new fully connected layer (1×1×2 activations, 2×1024 weights, 2×1 bias). 

Then the Softmax layer, named “prob” and the classification layer, named “output”, were replaced 

with a two-class SoftMax classifier and an output with a cross-entropy loss, respectively. As for the 

SqueezeNet, a convolution layer with stride (1,1) was inserted in place of the convolution layer 

named "conv 10". Therefore, the ReLU layer (“relu_conv10”) activations were changed from 

14×14×1000 to 14×14×2 and the global average pooling layer (“pool10”) activations were set as 

1×1×2. The Softmax layer (“prob”) and classification output layer ("classification layer predictions") 

were replaced in the same way as we did in the AlexNet and GoogLeNet. 

 

Figure 6. AlexNet, GoogLeNet and SqueezeNet architectures, where the 

modified/replaced layers based on the transfer learning workflow are enclosed by the 

dashed black lines; the initial layers, whose weights are updated during the retraining 

process, are enclosed by the dashed blue lines; and the input layers, according to which 

the input images are resized during the retraining and testing phases, are enclosed by the 

dashed green lines. 
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3.7. Experimental setup 

The classification algorithms were developed and tested in MATLAB 2020a on Dell Precision 

T7810 Tower with the specifications of 64 GB RAM and Intel Xeon E5-2637 quad-core processor. 

In the experiments, we used the SGD optimizer with an initial learning rate of 0.001. As our images 

in the dataset were 2D arrays, we converted them to 3-dimensional matrices by repeating the original 

image array three times on a new dimension to suit the needs of pretrained networks. Then we 

resized images to 224×224×3 for GoogLeNet and 227×227×3 for AlexNet and SqueezeNet. During 

the training process of all models, we optimized hyper parameters. After several pre-experimental 

training phases, the hyper-parameters were set according to optimal performance found for each 

model. We used a mini batch size of 128, with which we had optimal learning rates. We performed 

random shuffling of the data for each epoch. During the training of the models, early stopping 

technique [52,53] was used as it provided the ability to stop the training after a specific number of 

epochs (defined by "validation patience" in Table 4) when the validation error starts increasing, and 

the ridge regression was set with a 0.0001 L2 regularization factor. The hyper-parameters used in 

training are summarized in Table 4. 

Table 4. Hyper-parameters. 

Parameter Value 

Initial learning rate 1.00e-03 

Validation frequency 10 

Mini batch size 128 

Gradient threshold method L2 norm 

Gradient threshold Inf 

Validation patience 8 

Maximum number of epochs 40 

Shuffle Every epoch 

L2 regularization factor 1.00e-04 

Momentum 0.9 

3.8. Evaluation metrics 

To measure and compare classification performance of the models, we used the confusion 

matrix-based metrics, such as sensitivity, specificity, precision, F1 score and accuracy. 

A confusion matrix is a table that reports the number of correct and incorrect estimates of the 

classification model over a given dataset. In our study, the classification problem is binary in nature, 

so we have two classes, i.e., LGG and HGG. Positive classes are referred to the LGG cases, whereas 

negative classes are characterized as the HGG cases. True positives (TP) is the number of LGG cases 

that the model correctly predicted. True negatives (TN) represents the number of HGG cases that are 

correctly identified by the model. False Positives (FP) is the number of cases that are incorrectly 

predicted as LGG, although they are HGG. False negatives (FN) is the number of LGG cases that are 

falsely identified as HGG. We summarize the performance of each algorithm using a 2×2 confusion 

matrix that illustrates TP, TN, FP, and FN values, where each row of the confusion matrix represents 

an actual class, and each column corresponds to the predictions made by the models. 
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Sensitivity, also called true positive rate (TPR) or recall, is the ratio of true positives to the sum 

of all positive assessments. In our study, sensitivity measure gives the proportion of correctly 

predicted LGGs. The mathematical definition of sensitivity measure is given by:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  (8)  

Specificity, also known as true negative rate (TNR), gives the ratio of true negatives to the total 

number of negative assessments. This measure gives the proportion of correctly predicted HGG 

cases and is defined as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅 =  𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄  (9)  

False positive rate (FPR) gives the proportion of false positives out of all negative assessments. 

This provides the proportion of incorrectly labeled HGG cases and is given by: 

𝐹𝑃𝑅 =  𝐹𝑃 (𝐹𝑃 + 𝑇𝑁)⁄  (10)  

Accuracy is measured by the ratio of total number of correct assessments to the number of all 

assessments. This measure provides overall classification accuracy which corresponds to the 

proportion of correctly identified LGG and HGG cases and is formulated by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 +  𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄  (11)  

Precision, also known as positive predictive value (PPV), is the proportion of true positives, i.e., 

ratio of correctly identified LGG cases, out of all the cases that the model classified as positive and is 

defined by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 (𝑇𝑃 +  𝐹𝑃)⁄  (12)  

F1 score, also known as F measure, gives another insight into the classification accuracy by 

considering both precision and recall values and can be defined as weighted average of the precision 

and recall, is given by: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=  

𝑇𝑃

𝑇𝑃 + (𝐹𝑃 + 𝐹𝑁)/2
 (13)  

We also report the proportion of false positives against the true positives for each model by 

plotting the receiver operating characteristics (ROC) curves [54] of the cross validation runs. ROC 

curves help us roughly illustrate the diagnostic ability of each algorithm for each cross-validation run. 

So, we use ROC curves and the area under the curve (AUC) estimates as evaluation metrics as well. 

4. Results 

In this study, we focused on the classification of gliomas using deep CNN algorithms. A total of 

104 pathology-proved cases (50 LGG and 54 HGG) were retrospectively acquired through T2W/ 

FLAIR MRI sequences and used for analysis. A group of stochastic, pipeline-based data 

augmentation techniques, such as flipping, rotating, translating, zooming, shifting and elastic 

transforms, were used to expand the training dataset to 20-fold larger in size. We applied a 5-fold 

cross validation procedure to our dataset. In the training process, at each fold, a random validation 

set, including 20% proportion from the training set, was used to tune the parameters of the models. A 
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separate test-set (20%) was used to evaluate the performance of the algorithms. The evaluation 

metrics were computed for each model by taking the average of the performance values measured at 

each cross validation run. The results show an overall high performance of both our custom model 

and the pretrained deep CNNs. The models correctly classified gliomas into LGG and HGG with an 

average AUC value of over 0.97. A comparison of classification accuracy for each model was listed 

in Table 5. According to the results, the custom-design deep CNN architecture achieved competitive 

or even better test performance measures than the pretrained CNN models explored in this study. The 

average sensitivity, specificity, precision, F1 score, accuracy, and AUC of the custom model amount 

to 0.980, 0.963, 0.961, 0.970, 0.971 and 0.989, respectively. GoogLeNet showed better performance 

than the other pretrained models and yielded a sensitivity, specificity, precision, F1 score, accuracy, 

and AUC values of 0.980, 0.889, 0.891, 0.933, 0.933 and 0.987, respectively. AlexNet demonstrated 

a sensitivity, specificity, precision, F1 score, accuracy, and AUC of 0.940, 0.907, 0.904, 0.922, 0.923 

and 0.970, respectively. As for SqueezeNet, its performance was found to be similar to AlexNet in 

terms of the AUC value. The sensitivity, specificity, precision, F1 score, accuracy, and AUC values 

of SqueezeNet were 0.920, 0.870, 0.868, 0.893, 0.894, and 0.975, respectively. Figure 7 presents the 

resulting ROC curves with AUC values of the models.  

Table 5. Performance of the models in classifying low and high-grade gliomas in terms 

of validation loss, sensitivity, specificity, precision, F1 score, test accuracy, and area 

under the receiver operating characteristics curves values. 

Models Loss Sensitivity Specificity Precision F1 score Accuracy AUC 

Custom 0.300 0.980 0.963 0.961 0.970 0.971 0.989 

AlexNet 0.364 0.940 0.907 0.904 0.922 0.923 0.970 

GoogLeNet 0.328 0.980 0.889 0.891 0.933 0.933 0.987 

SqueezeNet 0.345 0.920 0.870 0.868 0.893 0.894 0.975 

 

The proposed model correctly predicted 49 out of 50 LGGs with two false positives and 52 out 

of 54 HGGs with one false negative. The numbers of correctly classified LGG cases for GoogLeNet, 

AlexNet and SqueezeNet were 49, 47 and 46, respectively. As for the HGGs, AlexNet, GoogLeNet 

and SqueezeNet correctly predicted 49, 48 and 47 cases, respectively. Cumulative confusion matrices 

of the classification results are given in Figure 8. 

There were 16 cases (G1-G16) misclassified by at least one model as shown in Figure 9. Of 

those cases, G15 was not accurately identified by any of the four models. G1 and G12 were only 

correctly classified by one model. The findings suggest that some cases, especially associated with 

heterogeneous lesions containing cystic morphological formations, as found in G1, G12 and G15, are 

inclined to impair the classification performance of the models. Figure 9 shows the ground truth test 

cases where at least one of the models failed to correctly classify lesions. 

The results showed that the models can effectively learn the feature representations and 

activations for HGGs and LGGs. The feature visualization on the classification layers of the models 

shows that the algorithms were able to create complex textures and patterns for each class. The 

visualization of LGG and HGG features learned by the models are presented in Figure 10–11. 

Additionally, the visualization of a set of learned activations on LGG and HGG inputs are illustrated 

for each model in Figure 12. 
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Figure 7. The classification performance of the custom model, AlexNet, GoogLeNet and 

SqueezeNet in terms of the area under the receiver operating characteristics curves with 

the pooled (mean) performance over 5-fold cross-validation runs. This figure indicates 

how the classification performance is affected by each training process, which is shown 

by colored lines. 

 

Figure 8. Cumulative confusion matrices of the classification results of a 5-fold 

cross-validation using the custom model, AlexNet, GoogLeNet and SqueezeNet. 
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Figure 9. Ground truth test cases (G1-16) where at least one of the models misclassified 

lesions. Predicted classes are shown in percentages for each model. Models which 

correctly classified lesions are in green color. Models which failed to correctly classify 

lesions are shown in red color. Cystic formations in G1, G12 and G15 are roughly 

outlined by the dashed yellow rectangular boxes. 
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Figure 10. Visualization of LGG and HGG features learned by the models. 

 

Figure 11. A set of features learned by the last ReLU layer of the custom model. 
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Figure 12. Visualization of the activations for each model on low-grade glioma (G4 in 

Figure 9) and high-grade glioma (G1 in Figure 9) inputs. This figure illustrates the first 

16 activations learned by the convolutional layers "conv 3", "conv 2", "inception 3a 3x3", 

and "fire 4 squeeze 1x1" of the custom model, AlexNet, GoogLeNet and SqueezeNet, 

respectively. 

The total running time of the program for training the models was 41.7 hours. Table 6 presents 

the computational complexity of the trained models in terms of memory size, training time, number 

of epochs and iterations. All the reported values were averaged over 5-fold cross validation runs. The 

size of the custom model, AlexNet, GoogLeNet and SqueezeNet are 3.00MB, 217.02MB, 23.12MB 

and 2.91MB, respectively. The custom model, AlexNet, GoogLeNet and SqueezeNet were trained 

with 1556.40, 658.40, 484.00, 578.20 iterations, within 39.20, 16.60, 12.80 and 15.00 epochs, 

respectively. The average training time spent (in minutes) for the custom model, AlexNet, 

GoogLeNet and SqueezeNet were 19.58, 123.32, 237.74, and 120.30, respectively. 

Table 6. Computational complexity of training the custom model, AlexNet, GoogLeNet 

and SqueezeNet over the dataset. 

Model Memory size (MB) Elapsed time (minutes) Epoch Iteration  

Custom 3.00 19.58 ± 0.92 39.20 ± 1.10 1556.40 ± 60.12  

AlexNet 217.02 123.32 ± 14.89 16.60 ± 2.19 658.40 ± 96.76  

GoogLeNet 23.12 237.74 ± 64.48 12.80 ± 3.27 484.00 ± 130.36  

SqueezeNet 2.91 120.30 ± 33.02 15.00 ± 3.39 578.20 ± 146.51  

*Note. For the pretrained models, memory size represents the size after fine-tuning. Elapsed time and 

iteration values were averaged over 5-fold cross validation runs. 

5. Conclusions 

In this study, a new convolutional neural network (CNN) based deep learning model was 
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proposed and its performance compared with the implementation of pretrained AlexNet, GoogLeNet 

and SqueezeNet through transfer learning for the glioma grade analysis. A group of 

pathology-proven 104 clinical cases with glioma were used as a dataset. Data augmentation 

techniques were used to expand the training data. Five-fold cross-validation was applied to evaluate 

the classification ability of each model. Results showed that a robust CNN model can be developed 

and trained on a clinical MRI dataset, even with a small size. The proposed deep CNN model 

achieved comparable or even better performance than the pretrained models in terms of sensitivity, 

specificity, F1 score, accuracy, and AUC values. The training of the proposed model took place ~6 

times faster than SqueezeNet, which was trained in the shortest time compared to the other pretrained 

networks used in the study. The experimental results revealed that the proposed model was 

lightweight, yet advantageous in terms of both accuracy and computational complexity. 

Although this study provided additional insight into CNN-based applications for glioma 

analysis through clinical MRI images, several limitations must be noted, including its retrospective 

design and a small dataset. More studies are needed to further assess our findings. Future studies may 

use different MRI protocols with multimodal designs and explore protocol-specific factors influential 

on the classification.  New models can be built to accept multi-scanner outputs and further 

evaluation of the methods on publicly available datasets can be investigated. The findings can be 

used to assist the development of clinical decision support systems. 
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