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Abstract: Glioma is the most common and most serious form of brain tumors that affects adults.
Accurate prediction of survival and phenotyping of low-grade glioma (LGG) patients at high or low
risk are the key to achieving precision diagnosis and treatment. This study is aimed to integrate both
magnetic resonance imaging (MRI) data and gene expression data to develop a new integrated measure
that represents a LGG patient’s disease-specific survival (DSS) and classify subsets of patients at low
and high risk for progression to cancer. We first construct the gene regulatory network by using gene
expression data. We obtain twelve network modules and identify eight image biomarkers by using the
Cox regression model with MRI data. Furthermore, correlation analysis between gene modules and
image features identify four radiomic features. The least absolute shrinkage and selection operator
(Lasso) method is applied to predict these image features with gene expression data when lacking MRI
data or image segmentation technology. Furthermore, the support vector machine (SVM)-based recur-
sive feature elimination method has been established to predict DSS using gene signatures. Finally,
4 image signatures and 43 gene signatures are recognized to be associated with the patient’s prog-
nosis. An integrated measure for combining image and gene signatures is obtained through the PSO
algorithm. The concordance index (C-index) and the time-dependent receiver operating characteris-
tic (ROC) analysis are used to evaluate prediction accuracy. The C-index obtained for this integrated
measure is 0.8071 and the area under the curve (AUC) of the ROC curve is 0.79, which are higher than
any other single features. The 72.1% accuracy of classification of patients is better than the accuracy
associated with the published work. These results demonstrate that integration analysis of radiomic
and genomic data can improve the accuracy of the prediction of survival for lower grade gliomas.
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1. Introduction

Low-grade glioma (LGG) is a uniformly fatal tumor, and the survival from this tumor is approxi-
mately 7 years [1]. Because of the heterogeneity in LGG patients, different LGG subtypes increase the
difficulty of optimizing management of adult low-grade gliomas [2, 3]. Magnetic Resonance Imaging
(MRI) is an imaging technique that can capture tumors of the brain clearly [4]. Clinicians often use
MRI images to diagnose the aggressiveness of the tumor. Therefore, the analysis of MRI data and
feature extraction are becoming more challenging. To address these issues, many studies have used
MRI data to extract prognostic factors for LGG patients. In a study by Pignatti et al. [5], the authors
established a score system that can be used to determine the prognostic score. In adult patients with
LGG, the age of the patients, the astrocytoma histology, the largest diameter of the tumor, the tumor
crossing the midline and the presence of a neurologic deficit before surgery are all important prognostic
factors for survival. These factors can be used to identify low-risk and high-risk patients. In a study
by Chen et al. [6], the authors developed a computer-assisted algorithm for tumor segmentation and
characterization using both kinetic information and morphological features of 3-D DCE-MRI. They
differentiated benign and malignant lesions by analyzing 3-D morphological features including shape
features and texture features of the segmented tumor. In a study by Agravat et al. [7], the authors
implemented the DeepMedic CNN architecture for tumor segmentation and the extracted features are
fed to a random forest classifier to obtain 59% overall survival accuracy. In another study by Shboul
et al. [8], 40 features were extracted from the predicted brain tumor mask and fed to a random forest
regression to predict the overall survival of a glioma patient, with an accuracy of 67% on the training
dataset and 57.9% on the testing dataset. In an attempt at prediction of survival [9], the authors ex-
tracted 26 image-derived geometrical features and used SVM to predict the risk of death and classify
glioma patients into three groups, with an accuracy of 56.8%. In another attempt [10], hundreds of
intensity and texture features were extracted from MR images of glioblastoma multiforme, and princi-
pal component analysis (PCA) was used to reduce dimensionality. Then, these features were fed to an
artificial neural network (ANN). A result with accuracy of 65.1% was obtained based on two classes:
short-overall survivor and long-overall survivor. In another study [11], Chato et al. attempted the use of
support vector machines (SVMs), k-nearest neighbors (KNNs), linear discriminants, tree, ensembles
and logistic regression to classify survivors into two or three classes. The features from segmentations
are used to train the linear discriminant for prediction of survival. The texture features resulted in the
accuracy of 46%, and histogram features achieved an accuracy of 68.5% for the test dataset.

The above methods predicted survival by using only image information or clinical information.
However, the tumor heterogeneity possibly comes from strong phenotypic differences, and it is dif-
ficult to predict prognosis accurately by using only medical imaging analysis (see Figure 1), thus
motivating the need for integrating another kind of data. Along with the rapid development of deep-
sequencing technology, the output of sequencing has made huge progress not only in equality but also
in speed [12]. If radiomic data and genomic data can be integrated, this integration will build a bridge
between micro and macro and increase the accuracy of the precision diagnosis and treatment of the
brain tumor [13]. Grossmann et al. [14] found that prognostic biomarkers performed better in lung
cancer when radiomic, genetic, and clinical information was combined. The C-index was 0.73, while
the result is only 0.66 when lacking genetic information. Xia et al. [15] created a radiogenomic strat-
egy that can obtain significant associations between imaging features and gene expression patterns in
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hepatocellular carcinoma. However, similar work is lacking in LGG. Therefore, in this study we inte-
grated two different types of data, i.e., radiomic features of MRI and gene signatures, to develop a new
integrated survival prediction measure for LGG.

Figure 1. A diagram illustrates why we need to integrate radiomic data and genomic data.
Low-risk and high-risk patients are marked in green and blue colors, respectively. Integration
will increase the accuracy of recognition of high-risk patients. However, only radiomic data
possibly leads to error classification.

Figure 2. The framework of this study. (a) Construction of a gene regulatory network and
identification of modules. (b) Extracting image features associated with patient survival.
(c) Module analysis to select gene modules that have a connection with significant image
features. (d) Establishing a Lasso model to identify gene signatures. (e) Predicting the sig-
nificant image features using Lasso. (f) Identifying gene signatures using the SVM-based
recursive feature elimination method and training the SVM model. (g) Survival prediction
by SVM. The result could be treated as a survival prediction index. (h) A new integrated
measure (IM) for combining image features and gene features is obtained through particle
swarm optimization (PSO). (i) The IM that is obtained is used to predict survival.
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The framework of this study is shown in Figure 2. First, we used gene expression data to construct a
gene regulatory network and identify network modules and then used imaging data to extract significant
radiomic biomarkers that are associated with the survival of the patient (Parts (a) and (b)), respectively.
Then, we calculated the correlation between gene modules and image features to obtain a small number
of gene signatures that are connected with these image features (Part (c)). Furthermore, we established
a Lasso (least absolute shrinkage and selection operator) model to predict the image features with only
gene expression values (Parts (d) and (e)). Based on gene expression data, we used support vector
machines (SVMs) to identify the gene signatures (Parts (f) and (g)). We combined the predicted image
features and the gene signatures to establish an integrated measure that can predict survival of the LGG
patient (Parts (h) and (i)). The results show that the integrated measure performed better on survival
prediction than any other single index.

2. Materials and methods

2.1. Collections of datasets

Computer-aided and manually corrected segmentation labels for the preoperative multi-institutional
scans of 65 LGG patients and 724 radiomic features along with the corresponding skull-stripped and
coregistered multimodal (i.e., T1, T1-Gd, T2, T2-FLAIR) MRI data were collected from the Cancer
Imaging Archive (TCIA) [16–18]. The corresponding RNA-seq data and Disease Free Survival (DSS)
data for these 65 patients were also obtained from The Cancer Genome Atlas (TCGA) database. These
data were used in this study as the training dataset.

The gene expression data and the corresponding DSS data of 455 LGG patients were downloaded
from TCGA and used in this study as the validation dataset.

2.2. Network construction and module identification

A gene coexpression network was constructed using gene expression data in the training dataset.
We deleted genes that express in less than 20% of the patients or have no expression values. Then, we
retained genes that have the highest 25% variance. A pairwise correlation matrix was calculated, and
then we adjusted the matrix by raising it to the power of five using the R package WGCNA [19, 20].
The minimum module size was set to 50, and the minimum height for merging modules was set to
0.25.

2.3. A multivariate Cox model for identifying image biomarkers

We identified significant image features that are associated with patient DSS by training a multivari-
ate Cox regression model [21] on the training dataset. Image features were filtered with the standard
that p value must be less than 0.01. Then, these image features were treated as image biomarkers
and survival prediction indexes. For each image feature, we divided patients on the validation dataset
into two groups—high-risk group and low-risk group—by taking the median value of the feature as
the threshold and plotted the Kaplan-Meier curves. The concordance index (C-index) [22] and the
log-rank test were also used to assess the prognostic prediction performance.

The basic formula of the multivariate Cox regression model is described as follows:

h(t, X) = h0(t) · exp(β1X1 + β2X2 + ... + βmXm) (1)
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h(t, X) represents the hazard function and h0(t) is the baseline hazard function. The factor X1, X2,
... , Xm correspond to the image features here and β1, β2, ... , βm are the corresponding regression
coefficients.

2.4. Correlation between gene modules and image features

We calculated Pearson correlation coefficients and their statistical significance to obtain the cor-
relations between gene modules and selected image features. Because there are many genes in each
module, the principal component analysis (PCA) was used to reduce the dimension of gene expression
data of 65 patients in the training dataset. Then, image features were filtered. Features that showed
significant correlation (p value less than 0.05) with at least one gene module were retained, and oth-
ers were removed. Then, gene modules associated with the same image feature were integrated. The
enrichment analysis was performed to identify the significantly enriched molecular pathways on these
modules.

2.5. Lasso model for further evaluating association between gene signatures and image features

We established a radiogenomic map by identifying gene signatures associated with the prognos-
tic imaging features. Lasso (least absolute shrinkage and selection operator) is a regression analysis
method that performs both variable selection and regularization [23,24]. This method can enhance the
prediction accuracy and interpretability of the statistical model it produces.

Q(β) = ‖y − Xβ‖2 + λ‖β‖1 (2)

Among the above formulas, X is the variable and y is the label. β is the coefficient that we want to
optimize. Q(β) is the objective function that we want to minimize. Compared with the method of least
squares, the objective function in the Lasso model has a regularization term λ‖β‖1. With this L1 norm
regularization term, Lasso can control the number of variables used and improve the generalization
ability of the model. For each image feature remaining in the gene module analysis, Lasso was trained
to select gene signatures from related gene modules and make a prediction on image features with MRI
data and gene expression data in the training dataset. We determined the regularization coefficient λ
by minimizing the MSE (mean squared error) of the model.

2.6. SVM model for identifying gene signatures associated with survival

In this step, we obtained a survival prediction index using only gene signatures, without the infor-
mation of image features. SVMs (support vector machines) are supervised learning models that can
be used for classification and regression problems [25–27]. For a classification problem, the optimal
hyperplane is searched to separate data into two classes with the max margin. For new data, the trained
hyperplane is used to predict the label or the probability of each class. Sometimes, data may not be
separated completely, and a soft margin [25] can be used by adding a penalty parameter C and slack
variables ξi to obtain the minimum error. The SVM optimization problem is

min
ω,C

1
2
‖ω‖2 + C

N∑
i=1

ξi (3)
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subject to
yi f (xi) ≥ 1 − ξi, and ξi ≥ 0 (4)

The vector ω is the vector orthogonal to the hyperplane. xi, yi are an observation pair of data points,
and f (xi) is the label of xi predicted by the SVM. SVM-RFE (support vector machine-recursive feature
elimination) [28] is a powerful feature selection algorithm based on SVM that can avoid overfitting
when the number of features is high. In each iteration, features are scored and sorted through model
training and the least important feature is removed. Remaining features are used for a next training,
and the above step is repeated. The score for sorting of the ith feature is defined as

ci = ω2
i (5)

ωi is the ith dimension of the hyperplane orthogonal vector ω in SVM. Finally, the optimal number of
features that have the minimum error is determined.

We use SVM-FRE to select gene signatures and train a classification SVM model with expression
data of these selected gene signatures and DSS data in the training dataset. The patient labels are set
to 0 or 1 based on their prognostic situation—survival or death. Then, the predicted probability is
treated as a survival prediction index. Survival curve and C-index are used to access the prediction
performance.

2.7. An optimization model and algorithm for obtaining an integrated measure for predicting LGG
patient survival

Further, we consider a combination of selected image biomarkers and the index calculated by SVM
with gene signatures. To ensure improvement of the new aggregated index, we transform the calcu-
lation of optimal combination coefficients of all features into an optimization problem. Specifically,
suppose that N image features are considered to be associated with DSS independently—which are
recorded as f1, f2, ..., fN and the gene index value from SVM is recorded as g. The integrated mea-
sure we want to determine is recorded as f . The optimization problem needing to be solved can be
described as follows.

max
f

C f (6)

subject to

f =

N∑
i=1

αi · fi + β · g (7)

N∑
i=1

αi + β = 1 (8)

where C f is the C-index of integrated measure f on the training dataset. Our goal is to search optimal
parameters α1, α2, ..., αN and β in Eq (7) to maximize the C f in (6).

The Particle Swarm Optimization (PSO) algorithm [29] is used to solve the optimization problem
(6) in this study. PSO is an evolutionary computation algorithm inspired by bird activities that can
solve any optimization problem. Initial population with some random particle is created first. For
each particle, the position represents a solution, and the corresponding fitness means a value of target
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function. The object of PSO is to find the optimal particle that has the minimized fitness by updating
the velocity and position of particle as the following formula:

vi = ω · vi + c1 · r1 · (pbesti − xi) + c2 · r2 (9)

xi = xi + vi (10)

xi, vi is the position and velocity of the ith particle. pbesti is the best position of the ith particle in
history and gbest is the best position of all particles currently. r1, r2 are random numbers between 0
and 1. ω is the inertia weight, and c1, c2 are the acceleration constants.

3. Results

3.1. Prognostic image feature identification

We take a log-rank test on 724 image features using DSS data of 65 patients in TCIA and filter these
features with a standard that the p value is less than 0.01. Then, 21 features remain. Features with high
similarity to each other are removed: we calculate the Pearson correlation coefficient between features
and remove the one that has the bigger log-rank p value if the Pearson correlation coefficient between
two image features is greater than 0.8. After this step, 6 features are removed, and 15 features remain.
Based on the above univariable analysis, we first implement the proportional hazard test [21]. Each
image feature meets the proportional hazard assumption (detailed information is shown in Additional
file 1: Table S1). Then, we train a multivariate Cox regression model on these remaining image features
with gene expression data and DSS data in the training dataset. The result is shown in Table 1, and
eight features marked with ∗ are considered to be independently correlated with DSS (p < 0.05).

Table 1. Image features for survival analysis.

Image features exp(coef) exp(coef) lower 95% exp(coef) upper 95% Wald test p value

TEXTURE GLSZM ET T1Gd SZLGE* 0 0 0 −3.12 0.00178

HISTO ED T2 Bin8* 0.7 0.55 0.88 −3.02 0.00254

TEXTURE GLOBAL ET T1Gd Skewness* 3.03E+05 47.29 1.94E+09 2.82 0.00477

TEXTURE GLRLM NET FLAIR LRHGE* 1 0.99 1 −2.66 0.0078

HISTO NET T1 Bin4* 0.89 0.8 0.98 −2.42 0.01559

HISTO ET T1Gd Bin10* 1.19 1.03 1.38 2.35 0.01877

TEXTURE GLSZM NET T1Gd ZSV* 0 0 0 −2.34 0.01906

TEXTURE GLRLM NET T1Gd GLV* 2.00E+42 2230.45 1.79E+81 2.13 0.0333

HISTO ET T1 Bin10 0.81 0.63 1.05 −1.59 0.11219

TEXTURE GLCM ET T2 SumAverage 0 0 9.95E+83 −1.57 0.11569

TEXTURE GLRLM NET T1 LGRE 0 0 2.73E+38 −1.49 0.13526

TEXTURE GLRLM ED T1 RLV inf 0 inf 1.4 0.16185

HISTO ED T2 Bin4 0.96 0.88 1.05 −0.91 0.36241

TEXTURE GLCM ED FLAIR Energy inf 0 inf 0.78 0.43387

TEXTURE GLSZM NET T1 LZLGE 0.99 0.96 1.03 −0.39 0.69976
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3.2. Gene signatures associated with image features

A gene coexpression network is constructed using gene expression data of 65 patients in the training
dataset. We delete genes that express in less than 20% of the patients or have no expression values (n
= 1875). Then, we retain genes that have the highest 25% variance (n = 4663). A pairwise correlation
matrix is calculated, and then we adjust the matrix by raising it to the power of five using the R pack-
age WGCNA [19, 20]. The minimum module size is set to 50 and the minimum height for merging
modules is set to 0.25. Then, we get 12 gene modules. Detailed information on the modules is shown
in Additional file 2: Table S2.

The Pearson correlation coefficient and their statistical significance were calculated between
the 12 gene modules and the 8 image features. The result is shown in Figure 3. Four im-
age features that show significant correlation (p < 0.05) with at least one gene module were
obtained. HISTO ED T2 Bin8 is the 8-bin histogram feature of the peritumoral edema in T2-
weighted precontrast, TEXTURE GLSZM NET T1Gd ZSV is the zone size variance of gray level
size zone matrix (GLSZM) of the nonenhancing part of the tumor core in T1-weighted postcontrast,
TEXTURE GLRLM NET FLAIR LRHGE is the long run high gray level emphasis of gray level run
length matrix (GLRLM) of the nonenhancing part of the tumor core in T2 Fluid-Attenuated Inver-
sion Recovery, and TEXTURE GLRLM NET T1Gd GLV is the gray level variance of GLRLM of
the nonenhancing part of the tumor core in T1-weighted postcontrast. Then, their corresponding gene
modules were integrated. The statistical results are shown in Table 2 and the detailed list of genes is
shown in Additional file 3: Table S3.

A further KEGG enrichment analysis was performed on integrated gene modules using the Metas-
cape website [30], which is shown in Figure 4. The complete list of biological annotations is shown
in Additional file 4: Table S4. Among these, the neuroactive ligand-receptor interaction pathway is
mostly enriched in all integrated gene modules with the minimum p value of 1.259 × 10−41, which is
reported to be associated with glioma [31, 32].

Figure 3. The heatmap of correlation between the image features and the gene modules.
Colored checks marked with * means significant Pearson correlation.
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Table 2. The statistical results of image features and their corresponding gene modules with
significant association.

Image features Associated gene modules Number of associated genes
HISTO ED T2 Bin8 module2, module4, module5, module7 2794

TEXTURE GLSZM NET T1Gd ZSV module6 506
TEXTURE GLRLM NET FLAIR LRHGE module6 506

TEXTURE GLRLM NET T1Gd GLV module2, module4, module6, module8, module10 1421

Figure 4. Results of KEGG enrichment analysis: a. Enrichment of mod-
ules associated with HISTO ED T2 Bin8. b. Enrichment of modules associated
with TEXTURE GLSZM NET T1Gd ZSV. c. Enrichment of modules associated with
TEXTURE GLRLM NET T1Gd GLV. d. Enrichment of modules associated with
TEXTURE GLRLM NET FLAIR LRHGE.

Then, the Lasso method described in section 2.5 was used to select gene signatures from the related
gene modules and establish a map from genes to image features. We determined the regularization
coefficient λ by minimizing the MSE (mean squared error) of the model. The process is shown in
Figure 6. The optimal coefficient λ and the corresponding RMSE (root mean squared error) of 65
patients are shown in Table 3. The number of selected gene signatures is also shown. The detailed list
of gene signatures is shown in Additional file 5: Table S5.
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Figure 5. The chart of the neuroactive ligand-receptor interaction pathway. Genes appearing
in associated modules are marked in green.

Table 3. The optimal parameters of Lasso and number of selected gene signatures for four
image features.

Image feature Number of genes in associated modules Optimal λ RMSE Number of genes selected by Lasso

HISTO ED T2 Bin8 2794 1.6627 6.0847 12

TEXTURE GLSZM NET T1Gd ZSV 506 7.81E-06 2.0195E-5 3

TEXTURE GLRLM NET FLAIR LRHGE 506 163.9677 528.16 6

TEXTURE GLRLM NET T1Gd GLV 1421 3.01E-03 0.0120 18
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Figure 6. The value and 95% confidence interval of MSE for each regularization coeffi-
cient λ. The dotted line marks λ with the minimal MSE. All Lasso models were trained
on 65 patients in the training dataset. a. λ and corresponding MSE of the Lasso model,
mapping from gene signatures to HISTO ED T2 Bin8. b. λ and corresponding MSE
of Lasso model, mapping from gene signatures to TEXTURE GLSZM NET T1Gd ZSV.
c. λ and corresponding MSE of Lasso model, mapping from gene signatures to
TEXTURE GLRLM NET FLAIR LRHGE. d. λ and corresponding MSE of Lasso model,
mapping from gene signatures to TEXTURE GLRLM NET T1Gd GLV.

3.3. Survival analysis with image signatures

We made a prediction on the 4 image features using Lasso with gene expression data of 455 patients
in TCGA as the validation dataset. We then took the value of each image feature as a survival prediction
index. We calculated the C-index and plotted the Kaplan-Meier curves on the validation dataset. The
result is shown in Figure 7. The C-index of these four survival prediction indexes are 0.6945, 0.7321,
0.7926, and 0.7985. These results indicate that these four image features perform well in survival
prediction.
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Figure 7. Kaplan-Meier curves of DSS and C-index. a. HISTO ED T2 Bin8. b.
TEXTURE GLSZM NET T1Gd ZSV. c. TEXTURE GLRLM NET FLAIR LRHGE. d.
TEXTURE GLRLM NET T1Gd GLV.

Figure 8. Kaplan-Meier curve of DSS and C-index of the index from SVM.
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3.4. Survival analysis with gene signatures

From the selected 4663 genes with high variance, we fed gene expression data and DSS data of
65 patients in TCIA to SVM-FRE and obtained 43 gene signatures (shown in Additional file 6: Table
S6). Then, we trained a classification SVM model with these selected genes. The variables were
gene expression data of 65 patients, and the labels were set to 0 or 1 based on the patient prognostic
situation—survival or death. Penalty parameter C was set to 2 and 5-fold cross-validation was used to
evaluate the error in the recursive feature elimination process. We trained the SVM model and took the
predicted probability of survival as a survival prediction index. C-index and survival curve are shown
in Figure 8. The C-index is 0.7627.

3.5. Integration of different features

We took a linear combination of four significant image features and the index calculated by SVM
with gene signatures. A better integrated measure was obtained that represents patient survival situa-
tion. Set N = 4 in formula (7). Four normalized image feature values were recorded as f1, f2, f3, and
f4, and the index value from SVM was recorded as g. The integrated measure is recorded as f . Then,
we get

f =

4∑
i=1

αi · fi + β · g (11)

We used PSO algorithm to calculate the optimal coefficient to maximize the C-index of 65 patients
in the training dataset, with parameters ω, C1 and C2 of 0.8, 0.5 and 0.5. The initial population size
was set to 20, 25, 30, 35 and 40, and the corresponding iteration number was set to 30 to ensure the
convergence of PSO. We repeated numerical experiments 10 times and recorded the average result for
different parameters. Detailed results of each experiment are shown in Additional file 7: Table S7.
For each population size, we then brought the coefficients into formula (11) and obtained integrated
measure f with different forms. C-index was calculated using gene expression data on the validation
dataset. The validation result is shown in Table 4.

Table 4. The mean result of combination coefficients calculated by PSO and C-index with
different parameters.

Populations sizes 20 25 30 35 40
α1 0.2926 0.3187 0.2792 0.3303 0.276
α2 0.0663 0.0394 0.0739 0.0505 0.068
α3 0.2171 0.2329 0.2076 0.2214 0.2102
α4 0.0091 0.019 0.0107 0.0298 0.0159
β 0.4149 0.39 0.4288 0.368 0.4298

C-index 0.8065 0.807 0.8061 0.807 0.8057

From Table 4, we observe that β is more or less than 0.4 with different parameters. Therefore,
the proportion of gene signatures in integration is approximately 40%. α1 is approximately 0.3, α2 is
approximately 0.06 and α3 is approximately 0.24. α4 is nearly 0, indicating that the gray level variance
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of GLRLM of the nonenhancing part of the tumor core in T1-weighted postcontrast can be removed in
the integration. We then set parameters α1, α2, α3, α4 and β to 0.3, 0.06, 0.24, 0 and 0.4. We brought
these coefficients into formula (11) and calculated the integrated measure f on the validation dataset.
The Kaplan-Meier curve is shown in Figure 9. The C-index of the four independent image features,
gene signatures and integrated measures are shown in Table 5.

Figure 9. Kaplan-Meier curve of DSS and C-index of integrated measure f .

Table 5. C-index of image features and gene signatures.

Image features f1 f2 f3 f4 g f

C-index 0.6945 0.7321 0.7926 0.7985 0.7627 0.8071

The C-index of the integrated measure f is 0.8071 and is higher than any other measure based on
image signatures or gene signature. This result indicates that the integrated measure can improve the
prediction accuracy. The integrated measure is recorded as follows.

f = 0.3 f1 + 0.06 f2 + 0.24 f3 + 0.4g (12)

Furthermore, we use the time dependent Receiver Operating Characteristic (ROC) [33] to further
assess the predictive power and compare different prediction models. Time-dependent ROC analysis
showed that the integrated measure improved our ability to predict prognosis [AUC, 0.79; and 95%
confidence intervals (CI), 0.71 to 0.87] (see Figure 10), when compared with other measures based on
image signatures or gene signatures.
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Figure 10. ROC and corresponding AUCs for 5-year survival predicted by f1, f2, f3, f4, g
and f on the 455 patients in validation dataset.

Figure 11. Image features used for final survival prediction. a The 8-bin histogram feature
of the peritumoral edema. b The zone size variance of gray level size zone matrix (GLSZM)
of the nonenhancing part of the tumor core. c The long run high gray level emphasis of gray
level run length matrix (GLRLM) of the nonenhancing part of the tumor core.

Patients are defined into two groups—high-risk group and low-risk group, based on their progno-
sis—DSS value in this study, by taking the median value of DSS of 65 patients in the training dataset
as a threshold. Then, classification is conducted on 455 patients in the validation dataset by taking a
threshold of the median value of the integrated measure in the training dataset. The accuracy is 72.1%,
which is higher than the accuracy of the published studies [7–11].
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4. Conclusions

The primary goal of phenotyping and classifying a human tumor is to capture tumor heterogeneity
and realize personalized precision diagnosis and therapy. In clinical practice, the massive and multiple
types of big medical data are available with the rapid development of biomedical engineering and
computer application technology. However, one of the biggest challenges in clinical applications is
how to integrate these different types of data to extract accuracy information.

In this study, we attempted to integrate both MRI data and gene expression data to propose a new
feature measure that could be used to identify subsets of LGG patients at low and high risk for pro-
gression to DSS. Based on gene expression data, we first used the WGCNA method to construct the
network and identify twelve network modules. With MRI data, eight image biomarkers were obtained
by using the Cox regression model. Furthermore, through correlation analysis between gene modules
and image features, four radiomic biomarkers were identified. Because MRI data are not available in
our test dataset, the Lasso method was applied to build a map from gene expression data to these image
features. In addition, we also independently used gene expression data to predict image biomarkers
through the SVM method. Finally, an integrated measure (IM) for combining image and gene signa-
tures was obtained through the PSO algorithm. We validated IM with gene expression data and DSS
data on 455 patients in the validation dataset. The C-index of IM is 0.8071 and its Area Under Curve
(AUC) of the ROC curve is 0.79, higher than any other single measure. The accuracy of classification
of patients is 72.1%, which is higher than the accuracy of the published work using only radiomic
data [7–11]. The results demonstrate that the proposed IM enhances the prediction accuracy for lower
grade gliomas.

In summary, the accuracy of DSS prediction of LGG patients is successfully improved by integrat-
ing radiomic features in Macro with the gene expression data in Micro. The proposed method in this
study can also be extended to analyze different data sources of other tumors.
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