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Abstract：The number of mitotic tumor cells detected in each slide is one of the key indicators 

of breast cancer prognosis. However, accurate mitotic cell counts are still a difficult problem for 

pathologists and related experts. Traditional methods use manual design algorithms to extract 

features of mitotic cells, and most methods rely on sliding windows to achieve pixel -level 

classification through deep learning. However, the complex background and high resolution of 

pathological images make the above methods time-consuming and ineffective. In order to solve 

the above problems, we propose a new cascaded convolutional neural network UBCNN 

(cascaded CNN based on UNet), which consists of three parts: semantic segmentation and 

classification to detect mitosis. First, we use an improved UNet ++ segmentation network to 

locate the candidate set of mitotic targets. Secondly, an adequately labeled cell nucleus data set 

is sent to an improved two-dimensional VNet network, and the cell nucleus is located by means 

of semantic segmentation to obtain accurate image blocks of mitotic and non-mitotic cells. 

Finally, the obtained cell image block is used to train a convolutional neural network to achieve 

binary classification, and the candidate set area is screened to retain the final result of mitosis 

cells. This paper verifies the detection effect of the above-mentioned cascade detection algorithm 

on the ICPR 2012 and 2014 mitosis automatic detection competition data sets. The evaluation 

indicators include accuracy, recall and F-score. Our cascade detection algorithm based on 

segmentation and classification reached 0.831 on the ICPR 2012 data set and 0.576 on the ICPR 

2014 data set. Compared with other existing algorithms, the detection effect was improved, 

which was very competitive. 
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1. Introduction 

The most recommended breast cancer grading system by the World Health Organization (WHO) 

is the Nottingham grading system [1]. Clinical pathologists mainly determine the patient's breast 

cancer pathological grade by three indicators in the field of vision: (a) the composition of the adenoid 

tube. (b) the heterogeneous nucleus. (c) cell fissure number. Among them, mitotic activity is one of the 

most powerful prognostic factors for invasive breast cancer, and the number of mitotic cells is the most 

important indicator for evaluating the malignancy of breast cancer. Currently, in clinical diagnosis, 

breast biopsy specimens are fixed with paraffin and stained with hematoxylin and eosin (H & E) 

dyes. After acquiring images of these stained blocks, histological slide images (WSI) are obtained. 

The method commonly adopted is to use a microscope to observe the pathological tissue slice image 

region by region to find the region of interest (ROI), and on the basis of ROI, rate them according to 

these three criteria. However, the biological differences of mitotic cells bring great challenges to 

manual labeling and identification, which is time-consuming and often misdiagnosed. Under different 

collection instruments and conditions, the differences of pathological sections already exist, while the 

shape and configuration of mitotic cells in different growth stages (prophase, metaphase, anaphase and 

telophase) are constantly changing. In addition, many cells (such as lymphocytes, apoptotic cells, 

dense nuclei) are very similar to mitosis in appearance, which makes it difficult to effectively reduce 

the false-positive rate in the test results [2]. Under the circumstances, Computer-aided diagnosis has 

become a hot topic in medical research, which can be roughly divided into two categories: traditional 

feature extraction algorithm and deep learning application. The former requires researchers to 

comprehensively understand the shape, texture and color characteristics of cells, and make a lot of 

experiments to verify the rationality and accuracy of the algorithm. The latter can automatically 

identify any feature of the image, train a model with strong generalization ability to complete the 

diagnosis task in pathological sections. 

2. Related work 

Since 2012, various international competitions have been held in the field of mitotic cell detection 

of breast pathological images, including ICPR2012 [3] and ICPR2014 [4]. Many researchers are 

dedicated to the detection of mitosis cells from H&E staining images. The first type of algorithm is the 

method of manually extracting the features of mitotic cells for subsequent classification [5–9], such as 

in reference [5], the author proposed to use a pixel-based classifier to generate a probabilistic heat-

map for the candidate set. In this step the Ilastik [6] (an open source tool dedicated to biological image 

analysis) was been used to segment mitosis cells by threshold, and then trained a classifier based on 

the texture strength and shape of the existing sample, which can quickly divide the candidate set and 

detects mitotic cells. Reference [7] used Gaussian function to smooth out the nuclear area, selected 

some local maximum values in these areas to join the candidate set, and used a new method called 

exclusive independent component analysis (XICA) on the candidate set to extract the different 

components between the two categories in the training set for classification. As another example, in 

reference [8], according to the different edge distribution of mitotic cells and non-mitotic cells, Gamma-



675 

Mathematical Biosciences and Engineering  Volume 18, Issue 1, 673–695. 
 

Gaussian mixed model was used to detect and classify different cells [8]. Similarly, the 143-dimensional 

collection of statistical and morphological feature structures in multi-color channels proposed in 

reference [9], CLBP and GLCM texture features and LBP texture information in [10] and [11] are 

all semi-automatic detection algorithms designed by manual feature extraction methods to assist 

subsequent classification [10,11]. However, due to the different shape and texture, the definition of such 

characteristics is difficult to fully cover the characteristics of mitotic cells. 

With the rapid development and wide application of deep learning, many representative mitotic 

automatic detection algorithms based on deep learning have emerged [12–15]. Reference [12] 

proposed the strategy of integrating CNN extracted features with artificially labeled features, which 

not only takes advantage of the neural network's self-training features, but also reduces the sensitivity 

of manual sample selection. MFF-CNN [13] designed a multiscale fusion CNN to extract mitotic 

and non-mitotic block images from blue ratio images and train them to detect directly in 40 × 

pathological images with a Fully Convolutional Network (FCN) model. Given the complexity of 

the pathological picture background, the improvement of the one-step detection model cannot meet 

the accuracy requirements of mitotic cell detection. In this case, the application of the cascade method 

has become widespread. Ciresan [14] built a 13-layer DNN to train classifier on the ICPR2012 datasets 

which used sliding windows to sample on the original image, and then sent samples to classifier to 

achieve pixel classification, which won the first prize in the ICPR2012 mitotic detection competition. 

Hao Chen et al. proposed a two-stage technique [15], in which the cells are segmented using a FCN in 

the first stage, and in the second stage, all detected targets are further refined by an additional CNN. 

MSSN [16] also adopted a two-step deep learning framework for mitosis detection. Firstly, four 

different sub-networks were used to collect the candidate set of mitosis, and then the same model was 

used to search for false positive cells for screening.  

Recently, numerous excellent algorithms have emerged [17–19]. Maroof [17] et al. proposed a 

method of mixing feature spaces. First, they used the hybrid feature space to combine color features 

with morphological and texture features, and then changed the color channel to calculate normalized 

and cumulative histograms in the wavelet domain to better distinguish between mitotic and non-mitotic 

nuclei. The direct identification of mitotic cell nuclear characteristics also provides a new way for 

future mitotic cell identification. The widely used region-based CNN has performed well in many 

computer vision applications [20–31]. This kind of algorithm is also widely used in the detection of 

mitotic cells. Li et al. presented a method [20] based on Faster region convolutional neural network 

(Faster R-CNN) [21] and residual network ResNet-50 [22], in which Faster R-CNN is responsible for 

locating and frame selection of mitotic cells, and ResNet-50 constitutes a classifier to judge the result 

again. On this basis, Reference [23] proposed an improved RCNN mitosis detection model. It used a 

CNN to extract deep and shallow features of different layers, which are combined and input into the 

Regional Proposal Network (RPN) to generate mitotic candidates. These candidate signals were then 

classified by an improved RCNN to produce the final detection results. In addition to the object 

bounding box regression, the improved RCNN also uses two classification sub-networks and uses 

different feature selection methods to predict object categories. This method achieved the most 

advanced performance on the 2012 ICPR mitosis dataset, with an F-score of 0.851. They further 

proposed improved solutions to the problems of small data sets and large parameters, such as the use 

of lightweight backbone [24] and concentric circle algorithm [25] to solve the problem of weak 

labeling of data sets. Similarly, the Mask R-CNN [26] algorithm also has good performance in mitosis 

detection. For example, Dodballapur [27] proposed a detection scheme based on Mask RCNN, in 
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which ResNet-50 is used as the feature extraction network. On the ICPR2014 data set, this method 

obtained a very high recall rate result, making its F-score reach 0.68, which is also the method to get 

the best score at this stage. Talking about the problem of data set labeling, the latest mitosis detection 

algorithm has begun to consider the strong and weak labeling problems of the ICPR2012 and 

ICPR2014 data sets. PartMitosis [32] proposed by Meriem used a semantic segmentation framework 

of a two-way fully convolutional network to segment breast cancer stained slides. The first branch of 

the model was trained with weak tags, while the second branch was trained with strong tags and two 

FCN prediction score charts were fused to obtain more accurate detection results. This method 

obtained 0.788 and 0.575 f-scores on ICPR12 and ICPR14 data sets respectively. In addition, their 

team also proposed Mask Mitosis [33], an algorithm based on the Mask RCNN instance segmentation 

network. On the one hand, mitotic cells were located and classified according to the strong label data 

set; on the other hand, the model trained with the strong label provides training samples and labels for 

the weak label data set. It finally achieved scores of 0.863 and 0.475. 

However, the above methods have two common problems. One is that the more accurate methods 

are too time-consuming, and the other is that the positioning results of candidate sets are too rough in 

cascade method. Therefore, we propose an improved cascade detection method UBCNN. 

3. Methods 

3.1. Overall algorithm process 

 

 

Figure 1. The overall process of mitosis detection. 
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3.2. Description of datasets 

(a) ICPR 2012 mitosis dataset 

The ICPR 2012 Dataset [3] comprises 5 slides of breast cancer biopsies slides, stained with 

hematoxylin and eosin (H & E). In each slide, the pathologist selected 10 high power views (HPF) at 

40 power magnification, which of size is 2084 × 2084 pixels. Each image represents a 512 × 512 µm2 

HPF generated by an AperioXT scanner with a resolution of 0.2456 µm per pixel. These 50 HPFs 

contain more than 300 mitoses in total, of which 35 HPFs and 226 mitotic cells are used for training 

and 15 HPFs and 101 mitotic cells are used for evaluation. It is labeled as the coordinates of each 

mitotic pixel and belongs to the data set of strong annotation type. 

(b) ICPR 2014 mitosis dataset 

The ICPR 2014 dataset [4] includes 1200 HPF for training and 496 HPF for testing. Each HPF 

image had 1539 × 1376 pixels, 0.2455 µm per pixel, and there were 749 mitotic cells in the training 

data. For this data set, the pathologist provided only the centroid pixel annotation of mitosis. The area 

centered on mitosis and with a radius of 15 pixels was mitosis point, which was a weakly labeled data 

set. 

(c) MoNuSeg dataset 

The MoNuSeg dataset [34] contains 40 × magnification captured H&E staining pathological 

images across multiple organs and patients, including 120 512 × 512 resolution images and about 

22,000 nuclear boundary annotation training data. It is suitable for the training of general nuclear 

segmentation model, with great generalization. 

3.3. Model building 

3.3.1. Locating candidate set–based on UNet ++ 

The first step of the cascade detection of mitosis is to obtain all the candidate sets of mitotic cells 

directly based on the label. The resolution of the 40 × HPF image in the data set is as high as one million 

pixels. It is too time-consuming to classify images pixel by pixel using a sliding window with a set step 

size. The semantic segmentation network was selected for pixel classification to realize the positioning of 

mitotic cells. Among the numerous semantic segmentation networks, UNet [35] has gained excellent 

performances on medical imaging. Its low-resolution information after multiple down-sampling provides 

the contextual semantic information of the segmentation target in the entire image. At the same time, 

through concatenate operation, the high resolution information is directly transferred from encoder to 

decoder on the same height, providing finer features for segmentation.  

On this basis, Z. W. Zhou [36] proposed the UNet ++ network architecture in 2018. Compared 

with UNet, it overlays more features at different levels, obtains the receptive field of different sizes, 

and is highly sensitive to targets of different sizes. The addition of deep supervision allows the middle 

layer to feel the gradient of transmission and participate in the output together. UNet ++ performs up-

sampling after each down-sampling, and bridges the semantic gap between feature maps using skip 

links and dense convolution blocks on the skip path, combining shallow and deep features in depth [36]. 

The improved structure calculation method is shown in Figure 2. 
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Figure 2. UNet ++ top-level propagation diagram [36].  

As can be seen from Figure 2, let xi,j represent the output of Xi,j，and the stack calculation 

formula of the represented feature mapping is shown as Eq 2.1： 
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The function H (·) is a convolution operation, followed by an activation function, U (·) 

represents an up-sampling layer, and (·) represents a connection layer [36]. When it is used to 

provide candidate sets for mitotic cell segmentation, the rich intermediate information allows 

extremely similar features of mitotic cells and complex backgrounds to be collected and considered, 

which is more accurate than the results of UNet segmentation.  

However, the following problems still exist: (a) The positive and negative samples are 

unbalanced. (b) The size of the mitotic target is extremely small, and the network model is not 

sensitive enough to small targets. (c) The candidate sets require a higher recall rate, and the higher 

depth of this model may lose some mitotic targets. The above points make it difficult to combine 

the accuracy and integrity of the mitotic cell candidate sets. In this regard, two changes have been 

made to UNet ++ in this paper. One thing to note here, since UNet ++ can be pruned, for the 

convenience of definition, we named each of the remaining subnetworks according to their depth 

as UNet ++ L1, L2, L3, L4, or L1–L4 for short. So one of our changes is to add deep supervision 

to the output results L2 and L4, and the final result takes the average value of L2 and L4 as the 

output. In this change, the concrete implementation operation of deep supervision is to add a 

convolution kernel of 1x1 after X0, 1, X0, 2, X0, 3, X0, 4 in the Figure 2, which is equivalent to 

supervising the output of each level or each branch. The other change is to improve the model's 

loss function based on dice function and cross entropy function. The frame structure is shown in 

Figure 3. 
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Figure 3. UNet ++ structure for small goals. 

Different from the original UNet ++, we conduct deep supervision [37] on L2 and L4. L2 is 

obtained through 2 down-sampling, 3 up-sampling, and the inter-layer connection in the middle. It 

combines the information returned from the deep network, which makes it focus on the sensitivity of 

the segmentation target with a certain degree of accuracy guaranteed. Although the real target and the 

false positive target cannot be accurately discriminated by L2, the information such as the location and 

shape of the lower layer gives it sufficient ability to include the entire candidate set to prevent the 

omission of the target.  

L4 is obtained through 4 down-sampling, 10 up-sampling and intermediate cross-layer 

connections. With extremely deep high-level information, it can fully extract the unique and deep 

characteristics of mitotic cells in the pathological image with complex background, and can accurately 

locate and identify the target. We choose the model that performs best on the validation set, and 

averages the output results of L2 and L4. The output results are as in Eq 2.2. 
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In this way, there are low-level information to ensure the sensitivity of the model, and high-level 

information to correctly identify mitotic cells, which provides accurate and complete information about 

the position and diameter of the candidate set for subsequent screening. 

The positive and negative samples (1 or 0) in the normal natural image (binary classification) 

labels are relatively balanced, while the mitotic and non-mitotic pixels in the mitotic data sets of 

ICPR2012 and ICPR2014 are very unbalanced. Unbalanced datasets have a certain probability causing 

the network to converge in the wrong direction when using the binary cross-entropy loss function to 

train UNet ++. Therefore, Dice loss [38] is introduced and summed with Binary cross-entropy loss to 

make the model converge towards the improvement of accuracy. The original UNet ++ used the 

balanced binary cross-entropy loss function shown in Eq 2.3. 
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Where 𝑌𝑏  and 𝑌
^

𝑏  represent the pixel level prediction of label and the real value, N 

represents batch size, and b represents the b th picture. In order to avoid ignoring tiny mitotic pixels 

in pursuit of high Dice loss and make detection more sensitive, the Loss function is improved as 

shown in Eq 2.4: 
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As many candidate sets of mitotic pixels as possible can be found as the basis of subsequent 

cascade classification. 

3.3.2. Nuclear segmentation–based on VNet2D 

In the process of semantic segmentation, the non-mitotic region of the image block contains 

calcium salt mucus, cytoplasm and other background impurities. The complex features extracted make 

the distinction between non-mitotic cells and mitotic cells not emphasized by the neural network, 

which probably cause part of normal cells with similar morphology to be misdiagnosed as mitotic cells. 

Precise binary classification has a significant effect on screening out false positive cells and 

improving accuracy. While Training an accurate binary classifier requires sufficient mitotic cell image 

blocks and non-mitotic cell image blocks to collect cell-level features, and nuclear localization is the 

key to collecting cell block data sets. 

In the pre-slicing process, the H&E staining method changes the chromatin in the nucleus and the 

nucleic acid in the cytoplasm to purple-blue and mainly makes the components in the cytoplasm and 

extracellular matrix red [39]. Traditionally, the blue ratio threshold method can assign higher weight 

to the blue channel with higher strength, so that the RGB image can be transformed into the BR image 

and the nucleus can be prominent [40]. Then a reasonable threshold can be set to locate the nucleus. 

Although this method is simple and fast, it is difficult to determine the threshold value in HPF images 

with extremely complex background, and there are situations of adhesion and blurring with the 

background, so the segmentation effect is extremely poor. Therefore, the semantic segmentation 

method was selected to locate the nucleus. Since there was no nucleus annotation in the ICPR2012 and 

ICPR2014 data sets, we selected one from each group (A00–A04 in ICPR2012, A03–A18 in 

ICPR2014) for manual annotation. In addition, the MoNuSeg data set with good robustness is used to 

assist training. Same as ICPR data, HPF pictures are all at 40 × magnification. After dyeing and 

normalization, all of them are cut into 512 × 512 size slices and input to the segmentation network.  

UNet performs well in medical segmentation, however, the semantic segmentation of cell 

contours requires high accuracy and a good sense of position. Cell-level image processing requires 

more complex spatial feature information, and higher requirements for lower-level position information. 

Traditional UNet cannot meet the needs of the two with only one jump connection. VNet [41] was 

proposed by the Fausto Milletari team in 2016, it was mainly proposed for three-dimensional medical 

imaging, and has more special designs to fuse more information than UNet. The main force naturally 
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has a better ability to extract information, and the improvement of low-level information fusion makes 

it meet the needs of this stage. Here, the magic modification UNet is selected to achieve segmentation. 

Given that the research object in our paper two-dimensional pathological image, the structure is 

maintained on the basis of VNet, and several changes have been made, which have the following 

advantages. 

(a) Use 2D convolution kernel to build VNet2D according to VNet network. 

(b) From the perspective of structure, it inherits the residual block of VNet to include the 

underlying information and improve the convergence speed; Elementwise sum replaces the 

concatenation in skip layers to reduce parameters; convolution replaces pooling to realize the lower 

sampling step and integrates more information to prevent the perception field from being too small. 

(c) From the perspective of loss function, the target function of Dice coefficient enables iteration 

to be proceeded in the correct direction and has a good segmentation effect on small targets. 

(d) An additional branch input is concatenated before the output of each down-sampling. The 

original image is down-sampled to the same size as the output image of each down-sampling, 

integrated into the encoder for training to better combine the features of the high and low layers. 

The topological structure of the improved multi-scale VNet model is shown in Figure 4. 

 

Figure 4. Improved multi-scale Vnet2D model. 

After the semantic segmentation, the post-processing of erosion and dilation is performed, and 

the edges are outlined using the Canny operator to show the cells in the original image. The 

segmentation results provide accurate cell locations for the subsequent collection of cell data sets. 
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3.3.3. Cell classifier-based on ResNet50 

After nuclear localization, the normal cell image block is extracted according to the nucleus 

segmentation result, and the mitotic cell image block is extracted according to the center coordinates 

of the mitotic pixel provided by the label of the dataset. These two kinds of image blocks are used as 

data sets to train the classifier to avoid the interference of invalid information from the background 

features to the classification network. The size of the cells in a 40 × HPF image of a breast cancer slice 

is about 30 × 30 pixel–34 × 34 pixel. Then, positive and negative examples should be used to train the 

precision classifier to screen false positive targets in the candidate set. 

In this paper, the method of fine screening is to select 8 points on the circle centered on the center 

of the connected region of the candidate set, and send them into the classifier for judgment as the 

center-cut image blocks. Considering that the maximum radius of the circumference of 8 points is the 

cell radius, that is, 30–34 pixel. When these 8 points are used as the center of the image block, in order 

to include the whole cell, the length of the image block should be 60–68 pixel. So it is appropriate to 

set the size of the image block sent into the classification network to 64 × 64pixel. 

The classification network selection is based on ResNet50 [42]. When the input is 64 × 64, direct 

training will cause the dimension of feature map to drop to 1 before reaching the full connection layer, 

and the following convolution cannot be carried out, resulting in training failure. Zero padding 

operation to enlarge the size will make the image information lose too much in training, so we modified 

the stride of the conv4_x (Named according to the original ResNet-50) residual block so that the 

dimension of the feature map remained unchanged after passing through the conv4_x residual block. 

Softmax classifier is a commonly used regression classifier, which can transform classification 

problems into probability problems [43]. The model parameters were shown in Table 1.  

Table 1. ResNet-50 model parameters. 

Layer Input ResNet-50 Output 

Conv1 101 × 101 [7 × 7,64]，stride 2 51 × 51 

Conv2_x 

51 × 51 3 × 3 kernel，stride 2 25 × 25 

25 × 25 

1 × 1，4 

3 × 3，64   × 3 

1 × 1，256 

25 × 25 

Conv3_x 25 × 25 

1 × 1，128 

3 × 3，128   × 4 

1 × 1，512 

13 × 13 

Conv4_x 13 × 13 

1 × 1，256 

3 × 3，256   × 6 

1 × 1，1024 

13× 13 

Conv5_x 13 × 13 

1 × 1，512 

3 × 3，512   × 3 

1 × 1，2048 

7 × 7 

Pool, 2-d FC, Softmax 7 × 7 7 × 7 kernel 1 × 1 
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4. Experiment and results 

4.1. Experimental design details 

The entire cascade detection experiment is completed under the Tensorflow framework built 

under Windows. The experimental platform configuration is as follows: the processor is Inter ® 

Xeon E5-2620 v4 CPU 2.4GHz, and the whole experiment is run over a NVIDIA RTX2080 GPU 

with 8G GPU memory. 

4.1.1 Segmentation of mitotic cell candidate set 

In the stage of candidate set segmentation, the 40 × HPF images provided by ICPR2012 and 

ICPR2014 data sets are firstly preprocessed, then cropped into patches and sent to improve UNet ++. 

The specific steps are as follows: (a) Color normalization [44]. (b) Generating binary mask. (c) 

Cropping images and masks into 256 × 256 patches, considering video memory and down-sampling 

to the level of cells. After processing, ICPR2012 mitosis datasets obtained 2240 image blocks, of which 

75 contained mitotic pixels, and ICPR 2014 mitosis datasets obtained approximately 35120 image 

blocks, of which about 714 contained mitotic pixels. 

In order to prevent model overfitting, positive image block data were augmented by rotation angle 

of -10°–10°, 10 pixels of shift on width and height, horizontal and vertical flip, scale of shear and zoom 

from 0.9 to 1.1, while negative image block was randomly selected.  

Training UNet ++ uses the Adam optimizer, the learning rate is 1e-4, the pooling layer is followed 

by Dropout (coefficient 0.5), and the batch size is set to 4. All convolutional layers of UNet ++ along 

the layer jump path Xi, j use k convolution kernels of size 3 × 3, where k = 32 × 2i. Deep supervision 

attaches a 1 × 1 convolutional layer on L2 and L4 target nodes, and the average segmentation output 

is the candidate set for subsequent processing. 

4.1.2. Nuclear segmentation 

In this step, 5 images from ICPR2012 and 10 images from ICPR2014 are manually labeled 

and cropped into 180 pieces of 512 × 512 blocks and 120 images are provided by MoNuSeg 

datasets. Images are first processed through color normalization, and then are augmented by 

rotation angle of -10°–10°, the shift scale of 0.05, scale of shear and zoom from 0.95–1.05, 

horizontal and vertical flip and the random fluctuation 

Training UNet ++ uses the Adam optimizer, the learning rate is 2e-5, decay is 1e-6 to prevent 

outfitting and batch size is set to 2. The model is a fully convolutional structure. Ordinary convolution 

uses a 5 × 5 convolution kernel, the number of which is 16 × 2(s-1), where s represents the number of 

layers (the default is 3 when s < 3). Down-sampling uses a 2 × 2 convolution kernel and uses 

convolution instead of pooling. And add a 1 × 1 convolution kernel to the output result and use the 

sigmoid function to output the score to achieve the semantic segmentation result. In the cell nucleus 

segmentation result, locate the nuclear centroid through the centroid function, and cut out a 64 × 64 

image block centered on it, and hand it over to the subsequent classification network training and 

screening. 
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4.1.3. Precise binary classification 

In the image block data set obtained in the previous step, the mitotic cell image block is taken 

as a positive example according to the ground truth, and the non-mitotic cell image block is taken 

as a negative example to train the classifier. ResNet50 is used to train an accurate classifier, and 

the con4_x residual block's convolution step is adjusted. To speed up the convergence, the weights 

of ResNet50 trained on ImageNet [45] for transfer learning are fine-tuned. 

On the result of candidate set, centroid coordinates of connected region are obtained by 

OpenCV centroid function. Then take the centroid as the center of the circle and take a point every 

45° on the circumference with a radius of 15 pixels, a total of 8 points. And then 8 image blocks 

whose size are 64 × 64 are cut off from the center of 8 pixels and sent into the trained classifier. If 

the proportion of the 8 image blocks belonging to the mitotic category exceeds 75% of the set 

threshold, the connected area is retained, otherwise it is determined as a false positive area for 

screening. 

4.2. Results analysis 

4.2.1. Analysis of segmentation results of mitotic candidate set 

In the detection stage of candidate sets, the evaluation criteria for the candidate set semantic 

segmentation effect are mean dice coefficient, True positive rate, which are defined as follows. 

 
1 1

1 2 | | 1 2
   

| | | | 2

N N

i i

X Y TP
mean dice

N X Y N TP FN FP= =

   
= =   

+ + +  
     (3.1) 

 
TP

TPR
TP FN

=
+

  (3.2) 

Where TP (True Positive) represents correctly detected mitotic pixels; FP (False Positive) 

represents falsely detected mitotic pixels; FN (False Negative) represents undetected mitotic pixels, 

and N is the number of test pictures. The average Dice coefficient can accurately determine the 

similarity between the segmentation result and the label mask and TPR (sensitivity) is also an 

important indicator of the proportion of true mitotic cells that would ideally be detected by the 

model. 

The comparison between the average dice coefficient, precision rate and recall rate of the 

improved classical UNet, UNet ++ and the improved deep supervision and loss function was conducted. 

The comparison of segmentation results is shown in Figure 5, and the evaluation index is shown in 

Table 2. 
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Figure 5. The segmentation result display diagram of different models. 

Table 2. Segmentation results of mitotic candidate set. 

Model TPR (Sensitivity) Mean Dice Coefficient 

UNet 0.706 0.631 

UNet ++ 0.815 0.729 

Improved UNet ++ 0.871 0.710 

4.2.2. Nuclei segmentation 

Nucleus segmentation was performed in Ostu [46], UNet, and Improved VNet2D with the same 

HPF image, as shown in Figure 6. 

    

     

      

Figure 6. The nuclei segmentation result display diagram of different segmentation models. 

(a)Original images 

(c) Unet ++ 

segmentation maps 

(a) Original images (with label) 

(ICPR2012A00_00 

ICPR2014A15_05d) 

(c) UNet 

 

(b) Unet  

segmentation maps 

(d) Improved Unet ++ 

segmentation maps 

(b) Ostu (d) Improved VNet2D 
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This step is to cut out enough cell data sets for the next classification, so the accuracy of nuclear 

segmentation needs to be evaluated. We set epoch as 600, each epoch 300 steps, if accuracy and loss 

no longer change in the right direction, early stopping will occur. The model training results are shown 

in Figure 7.  

 

Figure 7. Improved VNet2D training results. 

And the comparison with the traditional blue ratio threshold segmentation method and the UNet 

model segmentation results is shown in Table 3. 

Table 3. Segmentation results of nuclei segmentation. 

 Accuracy Mean Dice Cofficient 

OSTU -- 0.616 

UNet 0.726 0.715 

Our VNet2D 0.903 0.861 

After the segmentation result is obtained and after the erosion and expansion operations, the edge 

of the cell nucleus is extracted with the Canny operator and displayed in the original image result of 

cascade method, as shown in Figure 8. 

    

    

Figure 8. Canny operator edge segmentation. 
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4.2.3. Precise classification and screening 

After obtaining the nuclear center coordinates, the 64 × 64 image block was sent to ResNet50. 

Mitotic cell image patches as positive patches are extremely rare, so they were augmented by rotation, 

horizontal and vertical flipping, scaling and translation in all directions. Negative patches were not 

processed, and the training curve is shown in Figure 9. 

 

Figure 9. Training results of binary classifier based on ResNet50. 

Then start to take the image block from the circle centered on the center of the mitotic candidate 

set and send it to the classifier for scoring, and the candidate regions whose number exceeds the set 

threshold are retained. An example of the ICPR2014 test set is shown in Figure 10. 

 

Figure 10. An example of classifier filtering. 

4.3. Evaluation on ICPR datasets 

4.3.1. Evaluation criterion 

Various international competitions on mitosis detection have adopted the same set of evaluation 

indicators, so the same evaluation criteria are used in the experiments in this paper. The distance 

between the center point of the correctly detected mitotic cells and the center point of the ground truth 
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should be less than 5μm (about 20 pixels) on the 2012 data set, and less than 8μm (about 32 pixels) on 

the 2014 data set, and the detection fell on the ground truth coordinate point cells outside the range are 

all false positive cells. 

The evaluation criteria are Precise rate, recall rate and F-sore, as shown in Eq 3.3–3.5. 

 
TP

 Precision =
TP+ FP

    (3.3) 

 
TP

Recall =
TP+ FN

    (3.4) 

 
×

×
 Precision  Recall 

F - score = 2
 Precision + Recall 

   (3.5) 

Where TP (true positive) is the number of mitotic cells correctly detected; FP (false positive) 

represents the number of mitotic cells wrongly detected (actually normal cells); FN (false negative) 

represents the number of undetected mitotic cells. F-score shows the final detection effect. 

4.3.2. Evaluation on 2012 ICPR MITOSIS dataset 

Figure 11 shows a cascade detection result in the ICPR 2012 test set for representation. 

  

     (a) label        (b) segmentation result 

  

   (c) filtered result   (d) final detection result 

Figure 11. A detection result on samples from the ICPR2012 test set. 
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The circles in the figure are the final test results. The green circle represents TP, the yellow circle 

represents FP, the blue circle represents FN and the black circle represents the FP correctly filtered out. 

Calculate the TP, FP and FN of 15 images in the statistical test set, and obtain three detection indexes. 

Table 4 and Figure 12 shows the performance of the proposed UBCNN and some other classic 

methods and the latest research methods in the detection of mitotic cells on ICPR2012 data set. As can 

be seen, compared with several classic methods, our cascade method improves the prediction rate and 

significantly improves the recall rate. Compared with the latest algorithms such as regional network, 

the accuracy rate is slightly poor, but the most significant feature of regional network is that it is 

extremely time-consuming and has a large number of parameters. Therefore, our method is more 

competitive when the F-score is in normal time consumption. Finally, the F-score reaches 0.836. 

Table 4. Comparison of detection effect of UBCNN and other methods on ICPR2012 test sets. 

 Precision Recall F-score 

UTRECHT [47] 0.510 0.680 0.583 

NEC [48] 0.740 0.590 0.659 

IPAL [9] 0.698 0.740 0.718 

IDSIA [49] 0.886 0.700 0.782 

DRN [50] 0.779 0.802 0.790 

DeepMitosis [51] 0.854 0.812 0.832 

MSSN 0.776 0.787 0.781 

CasNN 0.804 0.772 0.788 

FRCNN + R-net [22] 0.769 0.792 0.780 

Mask RCNN + R-net [26] 0.931 0.870 0.840 

PartMitosis [32] 0.766 0.811 0.788 

MaskMitosis [33] 0.921 0.811 0.863 

UBCNN (our) 0.810 0.864 0.836 

 

Figure 12. UBCNN performance on ICPR2012. 

4.3.3. Evaluation on 2014 ICPR MITOSIS dataset 

We use random 20% of each set of A3–A18 as the validation sets, and the remaining 80% for training. 

Therefore, the training set contains 489 mitotic cells and 145 validation sets. Figure 13 shows two HPF 
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detection results in A14 on the validation set, which show the division of mitotic cells in different locations. 

As can be seen, because the cells on the image boundary are incomplete，there are certain FP samples, but 

there is no missing check. The effect of boundary contour segmentation is acceptable. 

  

(a1) label    (b1) segmentation map 

  

(c1) filtered results  (d1) final detection result 

  

(a2) label      (b2) segmentation map 

  

(c2) filtered results  (d2) final detection result 

Figure 13. Two detection results on samples from the ICPR2014 validation set. 
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We applied the trained model to the 2014 MITOSIS test set and submitted the mitotic detection 

results to the challenge organizer. The experimental results of our method and some other previously 

proposed methods in the ICPR2014 test set are compared. The F-score of our cascading method is 

0.571, which is competitive. Table 5 shows the comparison between UBCNN and MFF-CNN, 

DeepMitosis, MSSN, CasNN , RCNN series，PartMitosis and MaskMitosis on the three detection 

indicators. Similarly, except that the F-score is slightly less than that of the extremely time-consuming 

RCNN method, the recall rate and F-score is greatly improved compared with other methods. 

Table 5. Comparison of detection effect of UBCNN and other methods on ICPR2014 test sets. 

Methods Precision Recall F-score 

MFF-CNN 0.405 0.453 0.428 

DeepMitosis 0.431 0.443 0.437 

MSSN 0.379 0.617 0.470 

CasNN 0.460 0.507 0.482 

FRCNN + R-Net 0.689 0.586 0.633 

Mask RCNN + R-Net 0.580 0.820 0.680 

MaskMitosis 0.500 0.453 0.475 

PartMitosis 0.664 0.507 0.575 

UBCNN (our) 0.485 0.694 0.571 

Figure 14 shows more visually the performance comparison between UBCNN model and other 

latest methods on the ICPR2014 MITOSIS test set. 

 

Figure 14. UBCNN performance on ICPR2014. 

5. Conclusions 

Automatic detection of mitotic cells is of great significance for the diagnosis of breast cancer, which 

provides information of breast cancer grade and prognosis. In this paper, a cascade detection algorithm 

based on deep convolutional neural network has been proposed to solve the problems of low detection 

sensitivity and large number of false positives in traditional mitotic cell detection algorithms and 
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innovatively proposed: (Ⅰ) In the rough semantics of mitotic cells: (a) introduce the deep supervision of the 

most significant segmentation output layer for breast cell detection, taking into account the high and low 

level information; (b) improved the loss function based on Dice coefficient, which is more suitable for 

small targets, improves model sensitivity, and prevents missed detection；(Ⅱ) used a segmentation network 

to segment cell nuclei to extract normal cell blocks, which solves the dilemma of locating the nucleus of 

normal cells under complex cell background, and the significance of this step is to provide a pure cell image 

block data set for the subsequent training of the accurate classifier, free from the interference of background 

(Ⅲ) In this step of semantic segmentation of the nucleus, we proposed a VNet2D segmentation model after 

dimensionality reduction from the three-dimensional convolutional neural network VNet and each layer 

concatenates the subsampled information of the original image to achieve a multi-scale effect. After a 

number of comparative experiments, the performance of the proposed improved algorithm exceeds that of 

the traditional algorithm, achieving an 0.836 F-score on the ICPR2012Mitosis dataset, a good performance 

on both precision and recall, and a 0.571 score on the ICPR2014 Mitosis datasets. It also has good 

competitiveness among many latest methods. The algorithm framework proposed in this paper has strong 

transferability. In theory, the algorithm in this paper can also be applied to other image data sets and more 

medical images. The idea of cascade is the core and can be used in more complicated medical tasks. In the 

future, we aim to integrate other mitotic cell data sets to remove better generalized network models. In 

addition to the detection of mitosis, we are committed to the related medical tasks of nuclear anisotropy 

and glandular duct, considering all three in a comprehensive rating method. 
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