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Abstract: Recently, web service recommender systems have attracted much attention due to the 

popularity of Service-Oriented Computing and Cloud Computing. Memory-based collaborative 

filtering approaches which mainly rely on the similarity calculation are widely studied to realize the 

recommendation. In these research works, the similarity between two users is computed based on the 

QoS data of their commonly-invoked services and the similarity between two services is computed 

based on the common users who invoked them. However, most approaches ignore that the similarity 

calculation is not always accurate under a sparse data condition. To address this problem, we propose 

a similarity propagation method to accurately evaluate the similarities between users or services. 

Similarity propagation means that “if A and B are similar, and B and C are similar, then A and C will 

be similar to some extent”. Firstly, the similarity graph of users or services is constructed according 

to the QoS data. Then, the similarity propagation paths between two nodes on the similarity graph 

are discovered. Finally, the similarity along each propagation path is measured and the indirect 

similarity between two users or services is evaluated by aggregating the similarities of different paths 

connecting them. Comprehensive experiments on real-world datasets demonstrate that our similarity 

propagation method can outstandingly improve the QoS prediction accuracy of memory-based 

collaborative filtering approaches. 

Keywords: web service; recommender systems; collaborative filtering; QoS; similarity propagation; 

sparse data 
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1. Introduction 

With the rapid development of Cloud Computing and Service-Oriented Computing technologies, 

a large number of web services appear on the network. When customers need to choose the best 

service to build service-oriented applications, quality of Service (QoS) becomes their primary 

concern to distinguish functionally equivalent services. Due to the influence of objective 

environment like physical location, network conditions and other factors, different users will 

experience different QoS (e.g., reliability, throughput, response time, etc.) on the same web service. 

Therefore, personalized web service QoS prediction and recommendation turn to be a hot issue in 

service computing [1–4]. 

In recent years, Collaborative Filtering (CF) has attracted much attention and becomes the most 

popular technology to realize a web service recommender system [5–10]. In General, the CF based 

approaches can be divided into two categories: Memory-based CF [5–7, 11–14] and Model-based CF 

[8–10] approaches. Memory-based CF methods mainly mine the neighbor relation between users or 

services contained in the historical QoS data contributed by customers and utilize the neighbor 

information to predict the unknown service QoS for active users. Memory-based CF approaches are 

based on the assumption that the users who experienced similar QoS on past commonly-invoked 

services will have similar experience on other services. Obviously, the accuracy of Memory-based 

CF highly relies on the accuracy of similarity calculation. In real-world situation, most recommender 

systems commonly suffer from the problem of lacking of users’ feedback data, which is known as the 

data sparse problem [15]. Data sparse problem highly affects the accuracy of similarities calculation 

and the performance of recommender system. In the web service recommender system, most users 

only invoked a small set of web services, causing to the data sparse problem of the user-service QoS 

matrix [10]. Thus the common set between two users or two services may not be found, and the 

similarity of users or services are failed to be computed. In another case, even the common set with 

few elements are discovered, the similarity may be overestimated or underestimated due to the 

amount of common items is small. Most existing literatures ignore the problem of inaccurate 

similarity calculation and thus fail to obtain high prediction accuracy under a sparse data condition. 

In this paper, we propose two similarity propagation (SP) strategies to overcome the inaccurate 

similarity calculation problem in memory-based CF for web service recommendation. The SP 

strategies are inspired by the idea of trust propagation in Social Network (SN) [16–18]. In a SN, the 

trust of two indirect users who have not direct interaction can be inferred by a third user. We believe 

that the similarities between users or services could also be transitive, which means that “if A and B 

are similar, and B and C are similar, then A and C will be similar to some extent”. Since the neighbor 

set of users or services is hard to find under a sparse user-service QoS data condition, it is crucial to 

discover a set of indirect similar users or services for prediction by similarity propagation. In our 

approach, we firstly propose an extended Pearson Correlation Coefficient (PCC) to compute the 

direct similarity between users or services and then construct an undirected similarity graph based on 

the computed direct similarities. Secondly, the similarity propagation paths are discovered for each 

pair of users or services on the graph. Thirdly, the similarity of each path is evaluated and the indirect 

similarity is computed by aggregating the similarities of different paths. Finally, we integrate the 

direct similarity and indirect similarity to discover a set of similar users or similar services to predict 

the missing QoS value. The main contributions of this research work can be summarized as 

three-fold: 

https://fanyi.baidu.com/#en/zh/Two%20categories
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(1) We study the transitivity of similarity which is generally ignored by the existing literatures 

to our best knowledge. Two similarity propagation strategies are proposed to compute the indirect 

similarity between users or web services: Min-max similarity propagation among shortest paths 

(SPaS) and Min-max similarity propagation among all paths (SPaA). 

(2) We design a Flyod based algorithm to implement the strategies of SPaS and SPaA. The 

proposed algorithm is very simple and effective. 

(3) We conduct several experiments based on real-world dataset to verify the effectiveness of 

our similarity propagation strategies. 

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3 

describes our similarity propagation strategies. Section 4 conducts several experiments to evaluate 

the approach by real-world datasets. Section 5 is the conclusion of this paper. 

2. Related works 

In recent years, many CF based methods are developed to solve the web service 

recommendation problems, in which the memory-based CF plays a crucial role. The memory-based 

CF approaches mainly use the information of a group of similar users or similar services to predict 

the unknown QoS of target services. Zheng et al. [11] proposed a CF based approach called WSRec 

for predicting QoS values of web services and making web service recommendation by taking 

advantages of past usage experiences of users. In WSRec, the similarities between users or services 

are calculated by PCC method and TopK similar users combined with TopK similar services are 

found to predict the unknown QoS. Chen et al. [12] proposed an improved memory-based CF 

method, in which the physical location of users is integrated in the process of neighbor finding and 

QoS values prediction. They insisted that the closely located users would experience similar QoS and 

then used PCC to compute the similarities between different regions. Fletcher et al. [13] proposed a 

memory-based approach, where the satisfaction of users’ personalized preferences on nonfunctional 

attributes were took into consideration by extending the tradition PCC method. Ma et al. [14] 

proposed a PCC and linear regression based approach HAPA to make highly accurate prediction for 

unknown QoS values. They considered that the similarity derived from the objective QoS data 

should not be directly used to make prediction. Based on the observation that a high similarity will 

hardly fluctuates with the growing items of the common set, they designed a linear regression model 

to make prediction. The above mentioned memory-based approaches commonly utilize the 

traditional or extended PCC to compute the similarities between different users or web services. 

However, they ignore the inaccuracy problem of PCC under a sparse QoS data condition. Idrissi et al. 

[15] reviewed the recent research works on alleviating the sparsity issues in recommender systems 

and analyzed several popular similarity measures. In this paper, the global similarity measures were 

proposed to measure the similarities between users who have not many direct relations. However, the 

authors did not depict how to find the global neighbors and calculate the global similarities between 

them. 

As referred before, the memory-based method mainly relies on the neighbor information, where 

as the model-based method mainly rely on the latent feature information included in the historical 

QoS data. Each method may ignore the valuable information contained in the QoS data. To make 

fully utilization of this two type of information, several integrations of memory-based and 

model-based approaches are recently proposed. Yin et al. [19] proposed a service neighborhood 
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enhanced probabilistic matrix factorization (MF) model where the feature vectors of the similar 

services were integrated into the learning process. Qi et al. [20] made use of the users’ network 

locations to find the network neighbors. Then, the users’ network neighbors and the services’ 

neighbors were both integrated into the MF model for QoS prediction. In reference [21], the authors 

proposed an improved similarity computation method to discover a set of similar users and similar 

services. Then the deep latent features of neighbors were learned by a convolutional neural network 

model and integrated into the learning process of matrix factorization. Ryu et al. [22] argued that 

users located in same region may share similar QoS experiences and web services located in same 

region may have similar QoS. Based on the assumption, they described a location-based MF 

approach where both of the locations of users and web services are considered into similarities 

computation to overcome the cold start problem. Similarly, Zhu et al. [23] proposed a location-aware 

low-rank MF approach to realize a web service recommender system, in which a 

similarity-maintaining privacy preservation strategy was designed to protect the users’ privacy. 

Nevertheless, the similarity computation method of these research works are also vulnerable to the 

sparse QoS data, since the direct common set among users or services are hard to find.  

To address the inaccurate similarity calculation problem, we propose a similarity propagation 

approach to fully mine the neighbor information included in the QoS data. Since the direct 

interactions between users or services are limited, it makes sense to mine the implicit indirect 

relations of users or services. Propagation is recently studied to measure the indirect trust between 

two users who have not direct interactions in the Social Network [16–18]. In our previous work [24], 

we propose an indirect similarity computation approach in which only one intermediate node on the 

transitive path is considered. However, this strategy may ignore much valuable information to obtain 

more accurate similarities. In this paper, we propose two strategies of similarity propagation to 

compute the indirect similarity between users or services who are not directly connected. Then the 

indirect similarity and direct similarity are integrated to find the neighbors to make prediction. The 

extensive experiments conducted in Section 4 demonstrate that the proposed similarity propagation 

strategies can outstandingly improve the accuracy of memory-based CF approaches.  

3. Similarity propagation based service recommendation 

In this section, we will introduce the proposed SP strategies. Firstly, the SP service 

recommendation framework is given. Then, we give a motivating example to interpret why the 

traditional PCC may obtain inaccurate similarities under a sparse data condition. Moreover, the 

details of direct similarity computation and indirect similarity computation based on the similarity 

propagation strategies are introduced. Finally, we analyze the time complexity of our proposed 

approaches. 

3.1. SP service recommendation framework 

In recent years, several web service recommendation frameworks like WSRec [11], NIMF [25] 

are proposed to collect the QoS data submitted by customers and predict the missing QoS values for 

customers. However, most of them ignore the inaccurate similarity computing problem under the 

sparse QoS data condition. To tackle this problem, we propose a SP based service recommendation 

framework as shown in Figure 1, which mainly includes the following procedures.  
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Figure 1. SP service recommendation framework. 

(1) Users invoke the remote web services on the Internet, where the edges between users and 

services indicate the invocation records. Then users could submit the observed QoS data of the 

services to the SP recommendation server. In Figure 1, two users who invoked common services are 

considered as having direct interaction relation. E.g., both of 
1u  and 

2u  invoked 
3s , so they have 

direct interaction with each other. Similarly, two services which were invoked by common users are 

considered as having direct interaction relation. 

(2) The Input Handler module process the QoS feedback data submitted by users and the 

processed data are stored in the QoS Database. The Direct Similarity Computing module compute 

the direct similarity between users or services by an extended PCC method. 

(3) The similarity graph is constructed according to the direct interactions between users or 

services in the Construction of Similarity Graph module. Then, the similarity propagation paths on 

the graph are found by the Propagation Paths Finding module.  

(4) The similarity along each propagation path is measured in the Similarity Aggregating 

module. Then the indirect similarity among users or services are evaluated by aggregating the 

similarities of different paths in the Indirect Similarity Computing module. 

(5) The module of Missing Value Prediction and Recommendation make personalized web 

service QoS prediction for users and recommend the best services to users. 

3.2. A motivating example 

Given a web service recommender system containing m  service users and n  services, the 

user invocations data can be denoted as a m n  QoS matrix R , where the entry 
ij

R  in R  

represents the QoS value of web service 
js  experienced by user 

iu . If there is no invocation record 

of service 
js  by user 

iu , then 
ij

R null . A simple instance of user-service QoS matrix is shown in 

Table 1, in which each entry is the value of response time of a service experienced by a user. The 
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goal of the service recommender system is to predict the missing entries in the matrix by using the 

available data. 

Table 1. User-Service QoS Matrix. 

 1s  
2s  

3s  
4s  

5s  

1u   0.5 0.4 0.3  

2u  0.8  0.7  0.7 

3u   0.3  0.8  

4u  0.6  0.2 0.1 0.5 

5u  0.7 0.2  0.6 0.3 

Most existing memory-based approaches [11–14] employ PCC method to compute the 

similarities between users or services. PCC mainly uses the data of the common set between two 

users or services to compute the similarity. E.g., user 
2u  and 

4u  commonly invoked service 
1s , 

3s  

and 
5s , so the common set including 

1s , 
3s  and 

5s  is used to compute the PCC similarity 

between 
2u  and 

4u . However, since the amount of users and services are quite large, most users 

only have invocation records on a small set of services, causing to the data sparse problem. As we 

know, many recommender systems face the challenge of data sparse problem. E.g., the density of 

two famous open datasets of Netflix and Movielens in movie recommender system are both below 

5%. In this case, the similarity may not be accurately calculated as the situation listed below: 

(1) Common set is not existed between two users or services; thus the similarity cannot be 

computed by PCC method. E.g., 
2u  and 

3u
 
have not commonly-invoked services, so their 

similarity cannot be evaluated. 

(2) The common set with few items is found, the similarity may be overestimated. E.g., only 

one service 
3s
 
is commonly invoked by 

1u  and 
2u , the similarity between them is overestimated 

as 1 by PCC method. 

(3) The common set with few items is found, the similarity may be underestimated who are 

actually similar but accidentally have dissimilar QoS experience on several co-invoked Web services. 

E.g, 
1u  and 

3u
 
have commonly invoked 

2s  and
 4s , due to the dissimilar QoS experience on 

service 
4s , their similarity is underestimated as −1. 

To tackle the above problem, we propose a similarity propagation approach to accurately 

compute the similarities. In our approach, not only the direct interaction information between users 

or services is employed, but also the indirect relations inferred by the propagation paths are utilized. 

E.g., the similarity between 
2u  and 

3u  can be inferred from the path of 
2 5 3u u u  , since 

2u  

have direct interaction with 
5u
 
and 

5u  have direct interaction with 
3u  either. To discover the 

indirect relations among users or services is crucial for fully mining the neighbor information in the 

sparse QoS data. The main point of the similarity propagation is how to find the propagation paths 

and how to aggregate the similarities on different paths. The details are presented in the following 

sections. 
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3.3. Similarity computation 

3.3.1. Direct similarity computing 

PCC is usually utilized to compute the similarities between different items in many 

recommender systems, because of its high accuracy and simple calculation [11]. The similarity 

between two users is calculated based on their commonly-invoked services as follows: 

2 2

( )( )

( , )
( ) ( )

uv

uv uv

ui u vi v

i S

ui u vi v

i S i S

R R R R

Sim u v
R R R R



 

 


 



 
                           (1) 

where ( , )Sim u v  is the similarity between user u  and v . 
uv u vS S S  is a collection of web 

services that are invoked by both user u  and user v . 
uiR  is the QoS value of service i  

experienced by user u . 
uR  denote the average QoS values of all the services experienced by user 

u . 
vR  denote the average QoS values of all the services experienced by user v . ( , )Sim u v  is in the 

interval of [−1, 1], where a larger value indicates a higher user similarity. 

The similarity between two services is computed based on the users who invoked both of them: 

2 2

( )( )

( , )
( ) ( )

ij

ij ij

ui i uj j

u U

ui i uj j

u U u U

R R R R

Sim i j
R R R R



 

 


 



 
                        (2) 

where ( , )Sim i j  is the similarity between service i  and j . 
ij i jU U U  is a collection of users 

that invoked both service i  and service j . 
uiR  is the QoS value of web service i  experienced by 

user u . 
iR  represents the average QoS value of service i  experienced by all the users. ( , )Sim i j  is 

also in the interval of [−1, 1], where a larger value means a higher service similarity. 

As referred in section 3.2, PCC may overestimate or underestimate the similarities under a 

sparse data condition. To address this problem, we extend the traditional PCC method by employing 

the sigmoid function as a damping factor related with the amount of common items. The direct 

similarity between two users is computed as follows: 

1
( , ) 2

( , ) 1

0 2

uv
uvS

D

uv

Sim u v S
Sim u v e

S






 
 

                      (3) 

In this equation, the similarity is related to the size of the common set. A larger common set will 

obtain a stronger similarity. This method can overcome the problem of underestimate or overestimate 

caused by the lack of common items to some extent. If only one commonly invoked service is found, 

the traditional PCC will obtain 1 as the similarity which is meaningless. In the extended PCC, the 

similarity between two users who only commonly invoked one service is equal to 0. 

In the same way, the direct similarity between two web services can be computed as follows: 
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3.3.2. Indirect similarity computing 

As referred in section 3.2, PCC may not achieve accurate similarity under a sparse data 

condition. In this section, we present the indirect similarity computing method. 

Suppose the user similarity matrix derived from the QoS data is denoted as SU , where each 

entry 
uv

SU  denotes the direct similarity between user u  and v obtained from Eq (3). The service 

similarity matrix derived from the QoS data is denoted as SS , where each entry 
ij

SS  denotes the 

direct similarity between web service i  and web service j  obtained from Eq (4). Table 2 give a 

simple instance of user similarity matrix, in which 
12 0.5SU   means that the direct similarity 

between
1u
 
and 

2u  is equal to 0.5, 
23 0SU   means that 

2u
 
and 

3u  have not direct experience. 

The users similarity matrix can be considered as an adjacent matrix to construct the user similarity 

graph, which is shown in Figure 2. 

Table 2. User similarity matrix. 

 1u  
2u  

3u  
4u  

5u  
6u
 7u

 

1u  0 0.5 0 0.1 0 0.6 0.3 

2u  0.5 0 0 0.4 0 0 0 

3u  0 0 0 0 0 0.2 0.6 

4u  0.1 0.4 0 0 0.4 0 0 

5u  0 0 0 0.4 0 0.2 0.5 

6u
 

0.6 0 0.2 0 0.2 0 0 

7u
 

0.3 0 0.6 0 0.5 0 0 

 

Figure 2. User similarity graph. 
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The user similarity graph is an undirected weighted graph where the nodes indicate the users 

and the edges indicate the direct interactions between users. The weight on each edge represents the 

direct similarity of two users who are linked by it. For two users who are not directly connected such 

as 
1u
 
and 

5u , their indirect similarity can be inferred by other users. E.g., the indirect similarity of 

1u
 
and 

5u
 
can be inferred from the propagation paths like 

1 6 5u u u  , 
1 7 5u u u  , 

1 2 4 5u u u u   , 
1 6 3 7 5u u u u u     and so on. The key point of indirect similarity 

computation includes two step: finding propagation paths and aggregating the similarities on 

different paths.  

In this paper, we study two strategies to compute the indirect similarity: Min-max similarity 

propagation among shortest paths (SPaS) and Min-max similarity propagation among all paths 

(SPaA). In SPaS, only the shortest propagation paths among users or services are considered, since 

the strength of similarity may damp with the increase of the transitive nodes and the shortest path 

could obtain a stronger and more convincing similarity [26]. In SPaA, all the propagation paths 

among users or services are took into consideration to avoid ignoring the valuable neighbor 

information contained in the QoS data. Both of SPaS and SPaA employ the min-max aggregation 

method [27] to measure the similarity of a path and aggregate the similarities of different paths to 

obtain the final indirect similarity. The min-max aggregation method selects the minimum similarity 

value along the propagation path as the strength of this path. This approach makes sense to some 

extent, because the longer the path is, the lower the strength is likely to be. If multiple propagation 

paths have been searched out, it is reasonable to select the strongest propagation path as the optimal 

path. 

Suppose that the user similarity graph ( , , )U DG U E Sim  is already obtained from the QoS data, 

where U denotes all the users, E  denotes all the edges among users, SimD denotes the direct 

similarities among users. In SPaA, the strength of a propagation path from source user u
 
to target 

user
 

v  is measured as: 

( , ) ( )
( ( )) min { ( , )}k D

a b E u v
Str P u v Sim a b

 
                         (5) 

where ( )kP u v  is the k th propagation path from user u
 
to v . ( ( ))kStr P u v  is the strength of 

( )kP u v . ( )E u v  is a set of edges along the path from u  to
 

v . ( , )a b  is an edge in ( )E u v . 

E.g., if there is a propagation path from u  to
 

v  : u a b v   , then 

( ) {( , ),( , ),( , )}E u v u a a b b v  . 

The indirect similarity between user u  and user
 

v  is computed by aggregating all the paths 

between them as follows: 

( , ) max{ ( ( ))}I k
k P

Sim u v Str P u v


                             (6) 

where ( , )ISim u v  is the indirect similarity between user u  and user
 

v . P  is a set of paths 

between u  and
 

v
 
by searching on the user similarity graph 

UG . The method of SPaS is similar 

with SPaA except for their candidate propagation path sets. SPaS only search the shortest path from 

source user u
 
to target user

 
v  and select the optimal shortest path with maximum similarity to 

obtain the final indirect similarity. It is worth noting that the shortest propagation path needs to 

include at least one intermediate node. 

Similarly, suppose that the service similarity graph ( , , )S DG S E Sim  is already obtained from the 
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QoS data, where S  denotes all the services, E  denotes all the edges among services, 
DSim  

denotes the direct similarities among services. In SPaA, the strength of a propagation path from 

source service i
 
to target service

 j  is measured as:  

( , ) ( )
( ( )) min { ( , )}k D

a b E i j
Str P i j Sim a b

 
                           (7) 

where ( )kP i j  is the k th propagation path from service i
 
to j . ( ( ))kStr P i j  is the strength 

of ( )kP i j . ( )E i j  is a set of edges along the path from i
 

to j . ( , )a b  is an edge in 

( )E i j . 

The indirect similarity between service i
 
and service j  is calculated by aggregating all the 

paths between them as follows: 

( , ) max{ ( ( ))}I k
k P

Sim i j Str P i j


                             (8) 

where ( , )ISim i j  is the indirect similarity between service i
 
and j . P  is a set of paths between 

service i
 
and j

 
by searching on the service similarity graph 

SG . In the same way, the method of 

SPaS is similar with SPaA except for their candidate propagation path sets. SPaS only search the 

shortest path from source service i
 
to target service

 
j  and select the optimal shortest path with 

maximum similarity to obtain the final indirect similarity. 

Table 3. The algorithm of SPaA and SPaS. 

Algorithm: SPaA (min-max similarity propagation 

among all paths ) 

Algorithm: SPaS (min-max similarity propagation 

among shortest paths ) 

Input: user direct similarity matrix SimD , the number of users 

m ,distance matrix L , where each entry 
ijL  denotes the 

distance between node i  and j  

Output: user indirect similarity matrix SimI , where 
ijSimI  

denotes the indirect similarity between user i  and j  

1    SimI SimD ; 

2    For each entry 
ijL  in L  do 

3      If 0ijSimI   then 0ijL  , else 1ijL  ; 

4    End for 

5    For ( 1; ;k k m k   ) do 

6      For ( 1;i ;ii m   ) do 

7        For ( 1; ;j j m j   ) do 

8           If ( && &&k i k j i j   ) then 

9             If ( ( ) 6ik kjL L  ) then 

10              If ( min{ , }ij ik kjSimI SimI SimI ) then 

11                 min{ , }ij ik kjSimI SimI SimI ; 

12                 
ij ik kjL L L  ; 

13              End if 

14            End if 

15          End if 

16       End for 

17     End for 

18   End for 

19   Return SimI  

Input: user direct similarity matrix SimD , the number of users 

m , distance matrix L , where each entry 
ijL  denotes the 

distance between node i  and j  

Output: user indirect similarity matrix SimI , where 
ijSimI   

denotes the indirect similarity between user i  and j  

1  Each entry 
ijSimI  in SimI  is initialized with the indirect 

similarity propagated from only one intermediate node;  

2    For each entry 
ijL  in L  do 

3      If 0ijSimI   then 0ijL  , else 2ijL  ; 

4    End for 

5    For ( 1; ;k k m k   ) do 

6      For ( 1;i ;ii m   ) do 

7        For ( 1; ;j j m j   ) do 

8          If ( && &&k i k j i j   ) then 

9            If ( min{ , }ij ik kjSimI SimI SimI ) then 

10             If ( ( ) 0ik kj ij ijL L L L   ) then 

11               min{ , }ij ik kjSimI SimI SimI ; 

12               
ij ik kjL L L  ; 

13             End if 

14           End if               

15         End if   

16       End for 

17     End for 

18   End for 

19   Return SimI  
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In this paper, we design a Flyod based algorithm to implement the strategies of SPaS and SPaA. 

Floyd algorithm is a well-known dynamic programming based method to solve the multi-source 

shortest path searching problem [28]. Table 3 shows the details of our algorithm.  

In the 9th step in SPaA, the distance between two nodes can’t be more than 6 to avoid too long 

walks on the similarity graph, according to the principle of “six degrees of separation” in Social 

Network [29]. In the 1st step in SPaS, the indirect similarity matrix SimI  is initialized with the 

indirect similarity propagated from one intermediate node since the shortest path needs to include at 

least one intermediate node. The indirect similarities among services can also be computed by 

replacing the input parameter “user direct similarity matrix” with “service direct similarity matrix”. 

3.3.3. Integration of direct and indirect similarity 

Since the natures of different datasets may be different, a similarity weight (0 1)    is 

designed to integrate the direct similarity and indirect similarity in evaluating the similarities among 

users or services. 

The integrated similarity between user u  and user v  is defined as: 

'( , ) ( , ) (1 ) ( , )
Iuv D uvsim u v sim u v sim u v                            (9) 

where the similarity weight 
uv  is computed as: 

u v

uv

u v

S S

S S
                                        (10) 

where 
u vS S  is the number of services that both u  and v  have invoked. 

u vS S  is the number 

of services that have been invoked by either u  or v . Formula (10) means that if u  and v  rarely 

invoked same services, the similarity weight 
uv  will reduce the proportion of direct similarity and 

increase the proportion of indirect similarity. Since the value of 
uv  is between [0, 1], and both 

( , )
D

sim u v  and ( , )
I

sim u v  are between [−1, 1], the value of '( , )sim u v  is within the range of [−1, 1]. 

Similarly, the integrated similarity between service i  and j  is defined as: 

'( , ) ( , ) (1 ) ( , )
Iij D ijsim i j sim i j sim i j                                (11) 

where the weight 
ij  is computed as: 

i j

ij

i j

U U

U U
                                    (12) 

where 
i jU U  denotes the number of users who have invoked both service i  and service j , 

i jU U  denotes the number of users who have either invoked service i  or j . The value of 

'( , )sim i j  is also within the range of [−1, 1]. 

javascript:;
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3.4. Missing QoS value prediction 

After similarity computation, a set of TopK similar users or a set of similar services can be 

found to predict the missing QoS values. 

In user-based PCC methods (UPCC), TopK similar users are found to make QoS value 

prediction. To distinguish with the traditional method, UPCC with similarity propagation by SPaS 

and SPaA are named UPCC-SPaS and UPCC-SPaA, respectively.  

( )

( )

'( , )( )

'( , )

vi v

v T u

ui u

v T u

Sim u v R R

R R
Sim u v







 




                          (13) 

where 
ui

R  is the predicted QoS value, '( , )Sim u v  is the integrated similarity between user u  and 

user v , User v  is the neighbor of user u , ( )T u  is a set of the TopK similar users of user u , 
viR  

is the QoS value of service i  experienced by user v . 

In item-based PCC methods (IPCC), TopK similar services are found to make QoS value 

prediction. Similarly, to distinguish with the traditional method, IPCC with similarity propagation by 

SPaS and SPaA are named IPCC-SPaS and IPCC-SPaA, respectively. 

( )

( )

'( , )( )

'( , )

uj j

j T i

ui i

j T i

Sim i j R R

R R
Sim i j







 




                              (14) 

where 
ui

R  is the predicted  QoS value, '( , )Sim i j  is the integrated similarity between service i  

and j , Service i  is the neighbor of service j , ( )T i  is a set of the TopK similar services of 

service i , 
ujR  is the QoS of service j  observed by user u . 

After the missing QoS values be predicted, the optimal services with the highest QoS value can 

be recommended to the active users. 

3.5. Complexity analysis 

The time complexity of our approach includes three parts: direct similarity computation, indirect 

similarity computation based on similarity propagation and QoS value prediction based on the TopK 

nearest neighbors. 

In UPCC-SPaA or UPCC-SPaS, the complexity of direct similarity computation for one user 

pair is ( )O n . Since we need to compute the similarities of ( 1) / 2m m  user pairs for all the users, the 

complexity of direct similarity computation is 2( )O m n . In indirect similarity computation, the 

complexity of similarity propagation based on Floyd algorithm is 3( )O m . To choose the TopK similar 

users of the active user, ( log )O m m  is need to sort the similarities between the active user and the 

other users. In addition, we need ( * )O TopK n  to make TopK prediction for one active user. Hence, 

the complexity of predicting the missing values for one active user is ( log * )O m m TopK n . The 

complexity of predicting the missing values for all the users is thus 2( log * )O m m TopK mn . Therefore, 

the total complexity of UPCC-SPaA or UPCC-SPaS is 
2 3 2 2 3( log * ) ( )O m n m m m TopK mn O m n m     . 
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Similarly, in IPCC-SPaA or IPCC-SPaS, the complexity of direct similarity computation for one 

service pair is ( )O m . Since we need to compute the similarities of ( 1) / 2n n  service pairs for all 

the services, the complexity of direct similarity computation is 2( )O mn . In indirect similarity 

computation, the complexity of similarity propagation based on Floyd algorithm is 3( )O n . To choose 

the TopK neighbors of the target service, ( log )O n n  is need to sort the similarities between the target 

service and the other services. In addition, we need ( * )O TopK m  to make TopK prediction for one 

target service. Hence, the complexity of predicting the missing values of one target service is 

( log * )O n n TopK m . The complexity of predicting the missing values of all the services is thus 
2( log * )O n n TopK mn . Therefore, the total complexity of IPCC-SPaA or IPCC-SPaS is 

2 3 2 2 3( log * ) ( )O mn n n n TopK mn O mn n     . 

In real-world, direct or indirect similarities can be calculated offline and stored in a database. 

The real-time prediction performance is only relevant to the online time complexity, which is 
2( log * )O m m TopK mn  in user based approach and 2( log * )O n n TopK mn  in service based approach, 

respectively. 

4. Experiments 

In this section, we use WSDream [11], a well-known web service QoS dataset, to conduct 

several real-world experiments to investigate the performance of our method. The performance 

studies include three aspects: the prediction accuracy, time efficiency and the impact of the parameter 

TopK. WSDream mainly contains two matrices: response time matrix (rt-Matrix) and throughput 

matrix (tp-Matrix), wherein the QoS data of 5825 web services invoked by 339 users are recorded. 

These experiments were all conducted on a ThinkPad T490 machine with Intel Core i5-8265U 

processor and 8 GB RAM. To simulate the real-world environment, the entries of the QoS matrix are 

randomly removed to a certain density. Then we compare the values of these removed entries with 

the predicted values to study the prediction accuracy of our approach. Each experiment is conducted 

for ten times, where different entries are randomly removed in each time. Finally, the mean values 

are recorded as the experimental results. 

4.1. Metrics 

In many recommender systems, mean absolute error (MAE) is often used to measure the 

prediction accuracy [30]. MAE denotes the average absolute deviation between the actual value and 

the predicted value. The MAE value is calculated by the following formula: 

,

ˆ( )
ui uiu i

R R
MAE

W





                               (15) 

where W  is the number of missing items in the matrix, 
ui

R  is the actual QoS value of web service 

i  experienced by user u , ˆ
uiR  is the predicted QoS value of our approach. Since the value ranges of 

different QoS attributes are different, we utilize the Normalized Mean Absolute Error (NMAE) 

metric to evaluate the accuracy of the prediction results. The NMAE value is calculated by the 

following formula: 
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,
/

uiu i

MAE
NMAE

R W



                                 (16) 

In the above equation, a larger NMAE value indicates worse prediction accuracy. Therefore, the 

target of a web service recommender system is to achieve a lower NMAE value. 

4.2. Evaluation of prediction accuracy 

In this section, we evaluate the prediction accuracy of our approach by comparing with other 

approaches. In order to study whether our approach is effective in improving the accuracy of 

similarity computation, traditional memory-based approach such as IPCC and UPCC are compared 

with IPCC-SPaS and UPCC-SPaS, respectively. We also study the accuracy our approach by 

comparing with other state-of-the-arts approaches. The approaches evaluated in this section are listed 

as following: 

UPCC (user-based CF method using PCC): UPCC employs the data of similar users for the QoS 

value prediction [31]. 

UPCC-SPaS: UPCC-SPaS employs SPaS user similarity propagation strategy to extend the 

UPCC approach to make prediction. 

IPCC (item-based CF method using PCC): IPCC employs the data of similar web services 

(items) for the QoS value prediction [32]. 

IPCC-SPaS: IPCC-SPaS employs SPaS service similarity propagation strategy to extend the 

IPCC approach to make prediction. 

WSRec: WSRec [11] is an improved hybrid CF approach, in which both the similar users and 

the similar services are found to make prediction.  

IPCC-ST: IPCC-ST [24] is an IPCC based approach where the indirect similarity is considered 

and computed by one intermediate service on the similarity transitive path. The similarities of 

different transitive path are aggregated by weighted mean method. 

IPCC-SPaA: IPCC-SPaA employs SPaA service similarity propagation strategy to extend the 

IPCC approach to make prediction. 

Due to the sparse QoS data in reality, we gradually increase the QoS matrix density from 5 to 14% 

with the step size of 1%. Then the prediction accuracy of these methods are evaluated by using these 

matrices with different sparsity. In all the approaches, the parameter TopK is set to 10, meaning that 

10 most similar neighbors will be chosen to predict the missing QoS values. Table 4 shows the 

NMAE values of all the above mentioned methods under different QoS data sparsity conditions. In 

order to observe the experimental results more intuitively, Figure 3 presents the results in Table 4 in 

the form of graphs. 
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Table 4. The NMAE values comparison of different methods. 

Matrices Methods 
Density of Matrix  

5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 

rt-Matrix 

UPCC 0.9116 0.8650 0.8154 0.7859 0.7594 0.7245 0.7035 0.6556 0.6309 0.6020 

UPCC-SPaS 0.8915 0.8343 0.7733 0.7492 0.7135 0.6864 0.6576 0.6371 0.6220 0.5950 

IPCC 0.6384 0.6327 0.6223 0.6266 0.6310 0.6222 0.6208 0.6117 0.5970 0.5821 

IPCC-SPaS 0.5823 0.5781 0.5653 0.5638 0.5664 0.5540 0.5479 0.5412 0.5360 0.5311 

WSRec 0.6440 0.6329 0.6110 0.6041 0.6038 0.5828 0.5717 0.5591 0.5494 0.5388 

IPCC-ST 0.6124 0.5994 0.5815 0.5818 0.5836 0.5677 0.5639 0.5507 0.5437 0.5341 

IPCC-SPaA 0.5884 0.5807 0.5697 0.5712 0.5753 0.5613 0.5550 0.5504 0.5424 0.5309 

Impro. of UPCC-SPaS vs UPCC  2.2% 3.5% 5.2% 4.7% 6% 5.3% 6.5% 2.8% 1.4% 1.2% 

Impro. of IPCC-SPaS vs IPCC  8.8% 8.6% 9.2% 10% 10.2% 11% 11.7% 11.5% 10.2% 8.8% 

Impro. of IPCC-SPaS vs 

IPCC-ST 
4.9% 3.6% 2.8% 3.1% 2.9% 2.4% 2.8% 1.7% 1.4% 0.6% 

tp-Matrix 

UPCC 0.7178 0.7030 0.6779 0.6762 0.6620 0.6414 0.6219 0.5973 0.5884 0.5705 

UPCC-SPaS 0.6611 0.6568 0.6351 0.6106 0.6008 0.5790 0.5661 0.5522 0.5538 0.5407 

IPCC 0.6353 0.6416 0.6395 0.6454 0.6392 0.6341 0.6211 0.6278 0.6253 0.6176 

IPCC-SPaS 0.5732 0.5751 0.5655 0.5609 0.5535 0.5433 0.5394 0.5366 0.5344 0.5290 

WSRec 0.6063 0.6159 0.6147 0.6094 0.5997 0.5946 0.5920 0.5848 0.5811 0.5803 

IPCC-ST 0.6097 0.6164 0.6092 0.6076 0.6015 0.5985 0.5932 0.5913 0.5913 0.5871 

IPCC-SPaA 0.5733 0.5774 0.5669 0.5610 0.5555 0.5457 0.5400 0.5376 0.5344 0.5296 

Impro. of UPCC-SPaS vs UPCC  7.9% 6.6% 6.3% 9.7% 9.2% 9.7% 9% 7.6% 5.9% 5.2% 

Impro. of IPCC-SPaS vs IPCC  9.8% 10.4% 11.6% 13.1% 13.4% 14.3% 13.1% 14.5% 14.5% 14.3% 

Impro. of IPCC-SPaS vs 

IPCC-ST 
6% 6.7% 7.2% 7.7% 8% 9.2% 9.1% 9.3% 9.6% 9.9% 

 

Figure 3. The NMAE values comparison of different methods. 
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The experimental results demonstrate that: 

(1) All methods can achieve smaller NMAE value when the density of QoS matrix increase, 

which means that we can improve the prediction accuracy of web service recommender systems by 

obtaining more historical QoS data. Under all matrix density conditions, the methods with similarity 

propagation can achieve smaller NMAE values than the corresponding methods without similarity 

propagation. Concretely, compared with UPCC, UPCC-SPAS improves the prediction accuracy of 

response time values by 4% on average and throughput values by 7% on average, respectively. 

Compared with IPCC, IPCC-SPAS improves the prediction accuracy of response time values by 10% 

on average and throughput values by 13% on average, respectively. 

(2) Compared with IPCC-ST, IPCC-SPaS can achieve better accuracy both in response time 

values prediction and throughput values prediction. Concretely, compared with IPCC-ST, 

IPCC-SPAS improves the prediction accuracy of response time values by 2.6% on average and 

throughput values by 8.3% on average, respectively. This result indicate that the indirect similarity 

computation method used in IPCC-ST, which only consider one intermediate service on the 

similarity transitive path, may ignore much valuable neighbor information. According to find more 

propagation paths, the similarity can be more precisely calculated. In addition, IPCC-SPaS achieve 

better accuracy than IPCC-SPaA under all the data conditions, which indicate that the shortest 

propagation paths can obtain a stronger and more convincing similarity than the long chain paths. 

(3) Under all matrix density conditions, the IPCC-SPaS method is superior to other methods in 

both response time values prediction and throughput values prediction. The advantage is very 

obvious when the QoS data is extremely sparse, e.g., under 5% matrix density condition. This 

observation indicates that the similarity propagation strategy is important for discovering more 

implicit neighbor information in memory-based approaches, especially in the real environment where 

QoS data is very sparse. 

4.3.  Evaluation of time efficiency 

In this section, the time efficiency of different methods is studied by using QoS matrices of 

different scales. Firstly, the number of users is set to 300 and the number of services is increased 

from 100 to 500 with the step size of 50. Then, the number of services is set to 300 and the number 

of users is increased from 100 to 300 with the step size of 20. Therefore, the time efficiency of these 

methods may be evaluated by the QoS matrices with different scale. In all the approaches, the 

parameter TopK is set to 10 and the density of QoS matrix is set to 10%. 

Figure 4 shows that the computation time of all approaches increase with the amount of QoS 

data. Our proposed similarity propagation approaches are more efficient than WSRec but more time 

consuming than the corresponding traditional memory-based approaches. Figure 4 also shows that 

the computation time of IPCC-SPaS is near to IPCC-SPaA. This result indicates that the time 

performance of the similarity propagation strategy based on shortest paths is approximate to the 

strategy based on all paths. 
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Figure 4. Time efficiency comparison. 

4.4. Impact of TopK 

The parameter TopK determines how many similar neighbors should be selected in the QoS 

prediction algorithm. In order to evaluate the impact of parameter TopK on the accuracy of QoS 

prediction, we increase the value of TopK from 3 to 30 with the step size of 3. Figures 5 and 6 show 

the NMAE values of IPCC-SPaS and IPCC-SPaA in response time and throughput values prediction, 

under three different matrix densities of 5, 10 and 15%. 

 

Figure 5. Impact of TopK on the prediction accuracy of IPCC-SPaS. 
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Figure 6. Impact of TopK on the prediction accuracy of IPCC-SPaA. 

The experimental results demonstrate that with the increase of TopK, the NMAE value will 

gradually decrease at the beginning and then become stable or worse after TopK reaching to an 

optimal value. E.g., the NMAE value become worse when the TopK is larger than 12 in the response 

time prediction by IPCC-SPaS under 15% matrix density condition. This observation indicates that 

an appropriate value of TopK is crucial for ensuring the prediction accuracy. This result is 

interpretable, since too small TopK may cause too few neighbors be selected to make prediction 

which may ignore the valuable neighbor information, whereas too large TopK may cause many 

dissimilar neighbors be selected. As shown in Figures 5 and 6, all curves achieve the best results 

when TopK is between 10 to 15, which means that the optimal value of TopK is stable to some extent 

and not easily affected by the natures of QoS dataset or the density of matrix both in SPaS and SPaA 

strategies. 

5. Conclusions 

With the rapid growth of web services on the network, web service recommendation becomes 

essential for customers to select appropriate services to build service-oriented applications. Recently, 

memory-based CF approaches have been widely studied to realize the web service recommender 

systems. In these approaches, similarity calculation plays an important role. However, the similarity 

calculation in most existing approaches are vulnerable to the data sparse problem. In this paper, we 

propose a similarity propagation approach to evaluate the indirect similarities between users or 

services. Firstly, the similarity graph of users or services is constructed by using the QoS data. 

Secondly, the similarity propagation paths among users or services on the similarity graph are found. 

Moreover, the indirect similarities among users or services are aggregated by two different strategies 

and the Flyod based algorithm are designed to implement the similarity propagation strategies. 

Finally, we integrate the direct similarity and indirect similarity to precisely compute the similarity 

and make accurate prediction. Extensive real-world experimental evaluations show that our approach 

can outstandingly improve the prediction accuracy of memory-based CF approaches and not 

susceptible to the parameters. 
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It is worth to mention that our similarity propagation strategies are also applicable to other 

recommender systems, e.g., E-commerce or movie recommender systems. In the future work, we 

will optimize the similarity propagation strategies in aspect of time performance and prediction 

accuracy. We also plan to study the applicability of similarity propagation to other memory-based 

approaches. 
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Appendix 

Table A1. Glossary of terms. 

Term Meaning of term 

SOC Service-Oriented Computing 

QoS Quality of Service 

CF Collaborative Filtering 

SP Similarity Propagation 

SN Social Network 

PCC Pearson Correlation Coefficient 

SPaS Min-max similarity propagation among shortest paths 

SPaA Min-max similarity propagation among all paths 

MF Matrix Factorization 

UPCC User based method using Pearson Correlation Coefficient 

IPCC Item based method using Pearson Correlation Coefficient 

UPCC-SPaS UPCC with similarity propagation by SPaS 

UPCC-SPaA UPCC with similarity propagation by SPaA 

IPCC-SPaS IPCC with similarity propagation by SPaS 

IPCC-SPaA IPCC with similarity propagation by SPaA 

MAE mean absolute error 

NMAE Normalized Mean Absolute Error 
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