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Abstract: Recently, web service recommender systems have attracted much attention due to the
popularity of Service-Oriented Computing and Cloud Computing. Memory-based collaborative
filtering approaches which mainly rely on the similarity calculation are widely studied to realize the
recommendation. In these research works, the similarity between two users is computed based on the
QoS data of their commonly-invoked services and the similarity between two services is computed
based on the common users who invoked them. However, most approaches ignore that the similarity
calculation is not always accurate under a sparse data condition. To address this problem, we propose
a similarity propagation method to accurately evaluate the similarities between users or services.
Similarity propagation means that “if A and B are similar, and B and C are similar, then A and C will
be similar to some extent”. Firstly, the similarity graph of users or services is constructed according
to the QoS data. Then, the similarity propagation paths between two nodes on the similarity graph
are discovered. Finally, the similarity along each propagation path is measured and the indirect
similarity between two users or services is evaluated by aggregating the similarities of different paths
connecting them. Comprehensive experiments on real-world datasets demonstrate that our similarity
propagation method can outstandingly improve the QoS prediction accuracy of memory-based
collaborative filtering approaches.
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1. Introduction

With the rapid development of Cloud Computing and Service-Oriented Computing technologies,
a large number of web services appear on the network. When customers need to choose the best
service to build service-oriented applications, quality of Service (QoS) becomes their primary
concern to distinguish functionally equivalent services. Due to the influence of objective
environment like physical location, network conditions and other factors, different users will
experience different QoS (e.g., reliability, throughput, response time, etc.) on the same web service.
Therefore, personalized web service QoS prediction and recommendation turn to be a hot issue in
service computing [1-4].

In recent years, Collaborative Filtering (CF) has attracted much attention and becomes the most
popular technology to realize a web service recommender system [5-10]. In General, the CF based
approaches can be divided into two categories: Memory-based CF [5-7, 11-14] and Model-based CF
[8-10] approaches. Memory-based CF methods mainly mine the neighbor relation between users or
services contained in the historical QoS data contributed by customers and utilize the neighbor
information to predict the unknown service QoS for active users. Memory-based CF approaches are
based on the assumption that the users who experienced similar QoS on past commonly-invoked
services will have similar experience on other services. Obviously, the accuracy of Memory-based
CF highly relies on the accuracy of similarity calculation. In real-world situation, most recommender
systems commonly suffer from the problem of lacking of users’ feedback data, which is known as the
data sparse problem [15]. Data sparse problem highly affects the accuracy of similarities calculation
and the performance of recommender system. In the web service recommender system, most users
only invoked a small set of web services, causing to the data sparse problem of the user-service QoS
matrix [10]. Thus the common set between two users or two services may not be found, and the
similarity of users or services are failed to be computed. In another case, even the common set with
few elements are discovered, the similarity may be overestimated or underestimated due to the
amount of common items is small. Most existing literatures ignore the problem of inaccurate
similarity calculation and thus fail to obtain high prediction accuracy under a sparse data condition.

In this paper, we propose two similarity propagation (SP) strategies to overcome the inaccurate
similarity calculation problem in memory-based CF for web service recommendation. The SP
strategies are inspired by the idea of trust propagation in Social Network (SN) [16-18]. In a SN, the
trust of two indirect users who have not direct interaction can be inferred by a third user. We believe
that the similarities between users or services could also be transitive, which means that “if A and B
are similar, and B and C are similar, then A and C will be similar to some extent”. Since the neighbor
set of users or services is hard to find under a sparse user-service QoS data condition, it is crucial to
discover a set of indirect similar users or services for prediction by similarity propagation. In our
approach, we firstly propose an extended Pearson Correlation Coefficient (PCC) to compute the
direct similarity between users or services and then construct an undirected similarity graph based on
the computed direct similarities. Secondly, the similarity propagation paths are discovered for each
pair of users or services on the graph. Thirdly, the similarity of each path is evaluated and the indirect
similarity is computed by aggregating the similarities of different paths. Finally, we integrate the
direct similarity and indirect similarity to discover a set of similar users or similar services to predict
the missing QoS value. The main contributions of this research work can be summarized as
three-fold:
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(1) We study the transitivity of similarity which is generally ignored by the existing literatures
to our best knowledge. Two similarity propagation strategies are proposed to compute the indirect
similarity between users or web services: Min-max similarity propagation among shortest paths
(SPaS) and Min-max similarity propagation among all paths (SPaA).

(2) We design a Flyod based algorithm to implement the strategies of SPaS and SPaA. The
proposed algorithm is very simple and effective.

(3) We conduct several experiments based on real-world dataset to verify the effectiveness of
our similarity propagation strategies.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3
describes our similarity propagation strategies. Section 4 conducts several experiments to evaluate
the approach by real-world datasets. Section 5 is the conclusion of this paper.

2. Related works

In recent years, many CF based methods are developed to solve the web service
recommendation problems, in which the memory-based CF plays a crucial role. The memory-based
CF approaches mainly use the information of a group of similar users or similar services to predict
the unknown QoS of target services. Zheng et al. [11] proposed a CF based approach called WSRec
for predicting QoS values of web services and making web service recommendation by taking
advantages of past usage experiences of users. In WSRec, the similarities between users or services
are calculated by PCC method and TopK similar users combined with TopK similar services are
found to predict the unknown QoS. Chen et al. [12] proposed an improved memory-based CF
method, in which the physical location of users is integrated in the process of neighbor finding and
QoS values prediction. They insisted that the closely located users would experience similar QoS and
then used PCC to compute the similarities between different regions. Fletcher et al. [13] proposed a
memory-based approach, where the satisfaction of users’ personalized preferences on nonfunctional
attributes were took into consideration by extending the tradition PCC method. Ma et al. [14]
proposed a PCC and linear regression based approach HAPA to make highly accurate prediction for
unknown QoS values. They considered that the similarity derived from the objective QoS data
should not be directly used to make prediction. Based on the observation that a high similarity will
hardly fluctuates with the growing items of the common set, they designed a linear regression model
to make prediction. The above mentioned memory-based approaches commonly utilize the
traditional or extended PCC to compute the similarities between different users or web services.
However, they ignore the inaccuracy problem of PCC under a sparse QoS data condition. Idrissi et al.
[15] reviewed the recent research works on alleviating the sparsity issues in recommender systems
and analyzed several popular similarity measures. In this paper, the global similarity measures were
proposed to measure the similarities between users who have not many direct relations. However, the
authors did not depict how to find the global neighbors and calculate the global similarities between
them.

As referred before, the memory-based method mainly relies on the neighbor information, where
as the model-based method mainly rely on the latent feature information included in the historical
QoS data. Each method may ignore the valuable information contained in the QoS data. To make
fully utilization of this two type of information, several integrations of memory-based and
model-based approaches are recently proposed. Yin et al. [19] proposed a service neighborhood
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enhanced probabilistic matrix factorization (MF) model where the feature vectors of the similar
services were integrated into the learning process. Qi et al. [20] made use of the users’ network
locations to find the network neighbors. Then, the users’ network neighbors and the services’
neighbors were both integrated into the MF model for QoS prediction. In reference [21], the authors
proposed an improved similarity computation method to discover a set of similar users and similar
services. Then the deep latent features of neighbors were learned by a convolutional neural network
model and integrated into the learning process of matrix factorization. Ryu et al. [22] argued that
users located in same region may share similar QoS experiences and web services located in same
region may have similar QoS. Based on the assumption, they described a location-based MF
approach where both of the locations of users and web services are considered into similarities
computation to overcome the cold start problem. Similarly, Zhu et al. [23] proposed a location-aware
low-rank MF approach to realize a web service recommender system, in which a
similarity-maintaining privacy preservation strategy was designed to protect the users’ privacy.
Nevertheless, the similarity computation method of these research works are also vulnerable to the
sparse QoS data, since the direct common set among users or services are hard to find.

To address the inaccurate similarity calculation problem, we propose a similarity propagation
approach to fully mine the neighbor information included in the QoS data. Since the direct
interactions between users or services are limited, it makes sense to mine the implicit indirect
relations of users or services. Propagation is recently studied to measure the indirect trust between
two users who have not direct interactions in the Social Network [16-18]. In our previous work [24],
we propose an indirect similarity computation approach in which only one intermediate node on the
transitive path is considered. However, this strategy may ignore much valuable information to obtain
more accurate similarities. In this paper, we propose two strategies of similarity propagation to
compute the indirect similarity between users or services who are not directly connected. Then the
indirect similarity and direct similarity are integrated to find the neighbors to make prediction. The
extensive experiments conducted in Section 4 demonstrate that the proposed similarity propagation
strategies can outstandingly improve the accuracy of memory-based CF approaches.

3. Similarity propagation based service recommendation

In this section, we will introduce the proposed SP strategies. Firstly, the SP service
recommendation framework is given. Then, we give a motivating example to interpret why the
traditional PCC may obtain inaccurate similarities under a sparse data condition. Moreover, the
details of direct similarity computation and indirect similarity computation based on the similarity
propagation strategies are introduced. Finally, we analyze the time complexity of our proposed
approaches.

3.1. SP service recommendation framework

In recent years, several web service recommendation frameworks like WSRec [11], NIMF [25]
are proposed to collect the QoS data submitted by customers and predict the missing QoS values for
customers. However, most of them ignore the inaccurate similarity computing problem under the
sparse QoS data condition. To tackle this problem, we propose a SP based service recommendation
framework as shown in Figure 1, which mainly includes the following procedures.
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Figure 1. SP service recommendation framework.

(1) Users invoke the remote web services on the Internet, where the edges between users and
services indicate the invocation records. Then users could submit the observed QoS data of the
services to the SP recommendation server. In Figure 1, two users who invoked common services are
considered as having direct interaction relation. E.g., both of u, and u, invoked s, so they have

direct interaction with each other. Similarly, two services which were invoked by common users are
considered as having direct interaction relation.

(2) The Input Handler module process the QoS feedback data submitted by users and the
processed data are stored in the QoS Database. The Direct Similarity Computing module compute
the direct similarity between users or services by an extended PCC method.

(3) The similarity graph is constructed according to the direct interactions between users or
services in the Construction of Similarity Graph module. Then, the similarity propagation paths on
the graph are found by the Propagation Paths Finding module.

(4) The similarity along each propagation path is measured in the Similarity Aggregating
module. Then the indirect similarity among users or services are evaluated by aggregating the
similarities of different paths in the Indirect Similarity Computing module.

(5) The module of Missing Value Prediction and Recommendation make personalized web
service QoS prediction for users and recommend the best services to users.

3.2. A motivating example

Given a web service recommender system containing m service users and n services, the
user invocations data can be denoted as a mxn QoS matrix R, where the entry R, in R

represents the QoS value of web service s; experienced by user v . If there is no invocation record
of service s; by user u;,then R =null. Asimple instance of user-service QoS matrix is shown in
Table 1, in which each entry is the value of response time of a service experienced by a user. The
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goal of the service recommender system is to predict the missing entries in the matrix by using the
available data.

Table 1. User-Service QoS Matrix.

s, S, S, S, S,
u, 05 0.4 0.3
u, 0.8 0.7 0.7
U, 0.3 0.8
u, 0.6 0.2 0.1 0.5
U 0.7 0.2 0.6 0.3

Most existing memory-based approaches [11-14] employ PCC method to compute the
similarities between users or services. PCC mainly uses the data of the common set between two
users or services to compute the similarity. E.g., user u, and u, commonly invoked service s, s,

and s, so the common set including s, s, and s, is used to compute the PCC similarity
between y, and u,. However, since the amount of users and services are quite large, most users

only have invocation records on a small set of services, causing to the data sparse problem. As we
know, many recommender systems face the challenge of data sparse problem. E.g., the density of
two famous open datasets of Netflix and Movielens in movie recommender system are both below
5%. In this case, the similarity may not be accurately calculated as the situation listed below:

(1) Common set is not existed between two users or services; thus the similarity cannot be
computed by PCC method. E.g.,, u, and u, have not commonly-invoked services, so their

similarity cannot be evaluated.
(2) The common set with few items is found, the similarity may be overestimated. E.g., only
one service s, is commonly invoked by u, and u,, the similarity between them is overestimated

as 1 by PCC method.

(3) The common set with few items is found, the similarity may be underestimated who are
actually similar but accidentally have dissimilar QoS experience on several co-invoked Web services.
E.g, u, and u, have commonly invoked s, and s,, due to the dissimilar QoS experience on

service s,, their similarity is underestimated as —1.

To tackle the above problem, we propose a similarity propagation approach to accurately
compute the similarities. In our approach, not only the direct interaction information between users
or services is employed, but also the indirect relations inferred by the propagation paths are utilized.
E.g., the similarity between u, and u, can be inferred from the path of u, —u, —u,, since u,

have direct interaction with u. and u, have direct interaction with u, either. To discover the

indirect relations among users or services is crucial for fully mining the neighbor information in the
sparse QoS data. The main point of the similarity propagation is how to find the propagation paths
and how to aggregate the similarities on different paths. The details are presented in the following
sections.

Mathematical Biosciences and Engineering Volume 18, Issue 1, 530-550.



536

3.3. Similarity computation
3.3.1.  Direct similarity computing

PCC is usually utilized to compute the similarities between different items in many
recommender systems, because of its high accuracy and simple calculation [11]. The similarity
between two users is calculated based on their commonly-invoked services as follows:

> (R, ~R)(R;~R)
Sim(u, V) = ——w __ 1)
Z(Rui _Ru)2 Z(Rw _R\/)2

ieS,, ieS,,

where sim(u,v) is the similarity between user u and v. S, =S,NS, is a collection of web
services that are invoked by both user u and user v. R, is the QoS value of service i
experienced by user u. R, denote the average QoS values of all the services experienced by user
u. R, denote the average QoS values of all the services experienced by user v. Sim(u,v) is in the

interval of [—1, 1], where a larger value indicates a higher user similarity.
The similarity between two services is computed based on the users who invoked both of them:

> (Ri—R)(R,; -R)
Sim(i, j) = ——2i _ (2)
Z(Rui_Ri)z Z(Ruj_Rj)z

uely ueUj;

where sim(, j) is the similarity between service i and j. U; =U;NU; is a collection of users
that invoked both service i andservice j. R, isthe QoS value of web service i experienced by
user u. R represents the average QoS value of service i experienced by all the users. simg, j) is
also in the interval of [—1, 1], where a larger value means a higher service similarity.

As referred in section 3.2, PCC may overestimate or underestimate the similarities under a
sparse data condition. To address this problem, we extend the traditional PCC method by employing
the sigmoid function as a damping factor related with the amount of common items. The direct
similarity between two users is computed as follows:

| 1 Simuy) [s,]22
Sim, (u,v) =4 1+e %

0 |Su| <2

3)

In this equation, the similarity is related to the size of the common set. A larger common set will
obtain a stronger similarity. This method can overcome the problem of underestimate or overestimate
caused by the lack of common items to some extent. If only one commonly invoked service is found,
the traditional PCC will obtain 1 as the similarity which is meaningless. In the extended PCC, the
similarity between two users who only commonly invoked one service is equal to 0.

In the same way, the direct similarity between two web services can be computed as follows:
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1
Simy i, j)={1+e ™
0 Uy <2

sim(i, j) |U;|>2 @

3.3.2. Indirect similarity computing

As referred in section 3.2, PCC may not achieve accurate similarity under a sparse data
condition. In this section, we present the indirect similarity computing method.

Suppose the user similarity matrix derived from the QoS data is denoted as su, where each
entry su, denotes the direct similarity between user u and vobtained from Eq (3). The service

similarity matrix derived from the QoS data is denoted as ss, where each entry SS, denotes the

direct similarity between web service i and web service j obtained from Eq (4). Table 2 give a
simple instance of user similarity matrix, in which su,, =0.5 means that the direct similarity

betweenu, and u, is equal to 0.5, su,, =0 means that u, and u, have not direct experience.

The users similarity matrix can be considered as an adjacent matrix to construct the user similarity
graph, which is shown in Figure 2.

Table 2. User similarity matrix.

U, u, U, u, U U u,
U 0 0.5 0 0.1 0 0.6 0.3
u, 0.5 0 0 0.4 0 0 0

u, 0 0 0 0.2 0.6
u, 0.1 0.4 0 0.4 0 0

Uy 0 0 0.4 0 0.2 0.5
Ug 0.6 0.2 0.2

u, 0.3 0.6 05

Figure 2. User similarity graph.
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The user similarity graph is an undirected weighted graph where the nodes indicate the users
and the edges indicate the direct interactions between users. The weight on each edge represents the
direct similarity of two users who are linked by it. For two users who are not directly connected such
as u, and ug, their indirect similarity can be inferred by other users. E.g., the indirect similarity of

u, and u;, can be inferred from the propagation paths like u, —u, »>u,, u —u, —>u,
u —Uu, >u, U, , U —U,—U,—u, —u, and so on. The key point of indirect similarity

computation includes two step: finding propagation paths and aggregating the similarities on
different paths.

In this paper, we study two strategies to compute the indirect similarity: Min-max similarity
propagation among shortest paths (SPaS) and Min-max similarity propagation among all paths
(SPaA). In SPaS, only the shortest propagation paths among users or services are considered, since
the strength of similarity may damp with the increase of the transitive nodes and the shortest path
could obtain a stronger and more convincing similarity [26]. In SPaA, all the propagation paths
among users or services are took into consideration to avoid ignoring the valuable neighbor
information contained in the QoS data. Both of SPaS and SPaA employ the min-max aggregation
method [27] to measure the similarity of a path and aggregate the similarities of different paths to
obtain the final indirect similarity. The min-max aggregation method selects the minimum similarity
value along the propagation path as the strength of this path. This approach makes sense to some
extent, because the longer the path is, the lower the strength is likely to be. If multiple propagation
paths have been searched out, it is reasonable to select the strongest propagation path as the optimal
path.

Suppose that the user similarity graph G, (U,E,Sim,) is already obtained from the QoS data,
where U denotes all the users, E denotes all the edges among users, Simp denotes the direct
similarities among users. In SPaA, the strength of a propagation path from source user u to target
user v is measured as:

Str(R,(u—>v))= min {Sim,(a,b)} (5)

(a,b)eE(u—v)
where B, (u—v) isthe kth propagation path from user u to v. Str(R (u—>v)) is the strength of

P(u—vV). E(u—v) isasetofedgesalong the path from u to v. (a,b) isanedgein E(u—v).

E.g., if there is a propagation path from wu to v : u—sa—>b—v , then
E(u—v)={(u,a),(ab),(b,v)}.

The indirect similarity between user u and user v is computed by aggregating all the paths
between them as follows:

Sim, (u,v) = rpgpx{Str(Pk u->v)} (6)

where Sim, (u,v) is the indirect similarity between user u and user v. P is a set of paths
between u and v by searching on the user similarity graph G,. The method of SPaS is similar
with SPaA except for their candidate propagation path sets. SPaS only search the shortest path from
source user u to target user v and select the optimal shortest path with maximum similarity to
obtain the final indirect similarity. It is worth noting that the shortest propagation path needs to

include at least one intermediate node.
Similarly, suppose that the service similarity graph G(S,E,Sim,) is already obtained from the
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QoS data, where s denotes all the services, E denotes all the edges among services, Sim,

denotes the direct similarities among services. In SPaA, the strength of a propagation path from
source service i to target service j is measured as:

Str(R.(i— j)= min {Sim,(ab)} (7

(a,b)eE(i—])

where P, (i— j) is the kth propagation path from service i to j. Str(P.(i— j)) is the strength
of R(i—]). E(i—j) is a set of edges along the path from i to j. (ab) iS an edge in
E(i— ).

The indirect similarity between service i and service j is calculated by aggregating all the
paths between them as follows:

Sim, (i, J) = max{Str (R, (1 > J))} (8)

where Sim, (i, j) is the indirect similarity between service i and j. P is a set of paths between
service i and j by searching on the service similarity graph G,. In the same way, the method of

SPaS is similar with SPaA except for their candidate propagation path sets. SPaS only search the
shortest path from source service i to target service j and select the optimal shortest path with

maximum similarity to obtain the final indirect similarity.

Table 3. The algorithm of SPaA and SPasS.

Algorithm: SPaA (min-max similarity propagation
among all paths )

Algorithm: SPaS (min-max similarity propagation
among shortest paths )

Input: user direct similarity matrix SimD, the number of users
m ,distance matrix L, where each entry L denotes the

distance between node i and j
OQutput: user indirect similarity matrix Siml , where Siml,

denotes the indirect similarity between user i and j

1 Siml =SimD ;

2 For each entry L; in L do

3 If Siml; =0 then L, =0 else L =1
4 End for

5  For(k=Lk<mk++)do

6 For (i =%i<m;i++) do

7 For(j=Lj<m;j++)do

8 If(k#i&&K# j&&i = j)then
9 If((|_ik+|_kj)36)then

10 If (Siml,; < min{Siml,, Siml,;}) then
11 Simly; = min{Siml;, Siml,;}:
12 Lij = Lik + ij ;

13 End if

14 End if

15 End if

16 End for

17 End for

18  End for

19  Return Siml

Input: user direct similarity matrix SimD, the number of users
m, distance matrix L, where each entry L denotes the
distance between node i and |

Output: user indirect similarity matrix Siml , where sim|,

denotes the indirect similarity between user i and j

1 Each entry Siml; in Siml is initialized with the indirect

similarity propagated from only one intermediate node;

2 For each entry L, in L do

3 If Simlij=0 then Lijzo,else |_ij22;

4 End for

5 For (k=Lk<m;k++)do

6 For (i =1i <m;i++)do

7 For(j=1 j<m;j++)do

8 If (k#i &&k = j&&i # j)then

9 If (siml; <min{Siml,,, Siml,;}) then

10 If((Lik+ij)§Lij Ly —0) then

1 Siml; = min{Siml,,, Siml,};

12 Lij =L+ ij ;

13 End if

14 End if

15 End if

16 End for

17 End for

18 End for
19 Return Siml

Mathematical Biosciences and Engineering

Volume 18, Issue 1, 530-550.




540

In this paper, we design a Flyod based algorithm to implement the strategies of SPaS and SPaA.
Floyd algorithm is a well-known dynamic programming based method to solve the multi-source
shortest path searching problem [28]. Table 3 shows the details of our algorithm.

In the 9™ step in SPaA, the distance between two nodes can’t be more than 6 to avoid too long
walks on the similarity graph, according to the principle of “six degrees of separation” in Social
Network [29]. In the 1% step in SPaS, the indirect similarity matrix Simi is initialized with the
indirect similarity propagated from one intermediate node since the shortest path needs to include at
least one intermediate node. The indirect similarities among services can also be computed by
replacing the input parameter “user direct similarity matrix” with “service direct similarity matrix”.

3.3.3. Integration of direct and indirect similarity

Since the natures of different datasets may be different, a similarity weight «(0<a <1) is

designed to integrate the direct similarity and indirect similarity in evaluating the similarities among
USErsS Or Services.
The integrated similarity between user u and user v is defined as:

sim'(u,v) =, simp (U, V) + (1 — ez, )sim, (u, v) 9)

where the similarity weight ¢, is computed as:

a, = |S (10)

c
(-
w

=

where S, S, is the number of services that both u and v have invoked. S,US, is the number

of services that have been invoked by either u or v. Formula (10) means that if u and v rarely
invoked same services, the similarity weight «,, will reduce the proportion of direct similarity and

increase the proportion of indirect similarity. Since the value of ¢, is between [0, 1], and both
sim,(u,v) and sim (u,v) are between [—1, 1], the value of sim'(u,v) is within the range of [-1, 1].
Similarly, the integrated similarity between service i and j is defined as:

sim'(i, j) = agsimp (i, J) + (L— ;. )sim, (i, j) (12)
where the weight ¢, is computed as:

_pinyy

aij _‘UiUUj‘ (12)

where U; (U, denotes the number of users who have invoked both service i and service j,
U;UU; denotes the number of users who have either invoked service i or j. The value of

sim'(i, j) 1s also within the range of [—1, 1].
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3.4. Missing QoS value prediction

After similarity computation, a set of TopK similar users or a set of similar services can be
found to predict the missing QoS values.

In user-based PCC methods (UPCC), TopK similar users are found to make QoS value
prediction. To distinguish with the traditional method, UPCC with similarity propagation by SPaS
and SPaA are named UPCC-SPaS and UPCC-SPaA, respectively.

Y sim(u, (R, -R,)

R _ :R_+ veT (u)
e D sim'(u,v)

veT (u)

(13)

where R, is the predicted QoS value, Sim'(u,v) is the integrated similarity between user u and
user v, User v is the neighbor of user u, T(u) is a set of the TopK similar users of user u, R
Is the QoS value of service i experienced by user v.

In item-based PCC methods (IPCC), TopK similar services are found to make QoS value
prediction. Similarly, to distinguish with the traditional method, IPCC with similarity propagation by
SPaS and SPaA are named IPCC-SPaS and IPCC-SPaA, respectively.

vi

Y sim'(i, j)(R, —R,)

R, = R, +110
.o D sim'(i, j)

JeT (i)

(14)

where R, is the predicted QoS value, Sim'(i, j) is the integrated similarity between service i
and j, Service i is the neighbor of service j, T(i) is a set of the TopK similar services of
service i, R, isthe QoS of service j observed by user u.

After the missing QoS values be predicted, the optimal services with the highest QoS value can
be recommended to the active users.

3.5. Complexity analysis

The time complexity of our approach includes three parts: direct similarity computation, indirect
similarity computation based on similarity propagation and QoS value prediction based on the TopK
nearest neighbors.

In UPCC-SPaA or UPCC-SPaS, the complexity of direct similarity computation for one user
pair is O(n). Since we need to compute the similarities of m(m-1)/2 user pairs for all the users, the

complexity of direct similarity computation is O(m?n). In indirect similarity computation, the
complexity of similarity propagation based on Floyd algorithm is o(m?®). To choose the TopK similar
users of the active user, O(mlogm) is need to sort the similarities between the active user and the
other users. In addition, we need o(ropk *n) to make TopK prediction for one active user. Hence,
the complexity of predicting the missing values for one active user is o(mlogm+TopK *n). The
complexity of predicting the missing values for all the users is thus o(m?logm+TopK *mn). Therefore,
the total complexity of UPCC-SPaA or UPCC-SPaS is

O(m*n+m?® +m? logm+TopK *mn) =O(m’n+m?).
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Similarly, in IPCC-SPaA or IPCC-SPasS, the complexity of direct similarity computation for one
service pair is O(m). Since we need to compute the similarities of n(n-1)/2 service pairs for all
the services, the complexity of direct similarity computation is O(mn?). In indirect similarity
computation, the complexity of similarity propagation based on Floyd algorithm is o(n?). To choose
the TopK neighbors of the target service, O(nlogn) is need to sort the similarities between the target
service and the other services. In addition, we need o(Topk*m) to make TopK prediction for one
target service. Hence, the complexity of predicting the missing values of one target service is
O(nlogn+TopK *m). The complexity of predicting the missing values of all the services is thus
O(n’logn+TopK*mn) . Therefore, the total complexity of IPCC-SPaA or IPCC-SPaS is
O(mn? +n?®+n?logn+TopK *mn) =O(mn® +n?) .

In real-world, direct or indirect similarities can be calculated offline and stored in a database.
The real-time prediction performance is only relevant to the online time complexity, which is
O(m? logm+TopK *mn) i user based approach and O(n? logn+TopK *mn) in service based approach,

respectively.
4. Experiments

In this section, we use WSDream [11], a well-known web service QoS dataset, to conduct
several real-world experiments to investigate the performance of our method. The performance
studies include three aspects: the prediction accuracy, time efficiency and the impact of the parameter
TopK. WSDream mainly contains two matrices: response time matrix (rt-Matrix) and throughput
matrix (tp-Matrix), wherein the QoS data of 5825 web services invoked by 339 users are recorded.
These experiments were all conducted on a ThinkPad T490 machine with Intel Core 15-8265U
processor and 8 GB RAM. To simulate the real-world environment, the entries of the QoS matrix are
randomly removed to a certain density. Then we compare the values of these removed entries with
the predicted values to study the prediction accuracy of our approach. Each experiment is conducted
for ten times, where different entries are randomly removed in each time. Finally, the mean values
are recorded as the experimental results.

4.1. Metrics

In many recommender systems, mean absolute error (MAE) is often used to measure the
prediction accuracy [30]. MAE denotes the average absolute deviation between the actual value and
the predicted value. The MAE value is calculated by the following formula:

MAE # (15)

where W is the number of missing items in the matrix, R, is the actual QoS value of web service

i experienced by user u, R, is the predicted QoS value of our approach. Since the value ranges of

different QoS attributes are different, we utilize the Normalized Mean Absolute Error (NMAE)
metric to evaluate the accuracy of the prediction results. The NMAE value is calculated by the
following formula:
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NMAE = _MAE (16)
R, /W

In the above equation, a larger NMAE value indicates worse prediction accuracy. Therefore, the
target of a web service recommender system is to achieve a lower NMAE value.

4.2. Evaluation of prediction accuracy

In this section, we evaluate the prediction accuracy of our approach by comparing with other
approaches. In order to study whether our approach is effective in improving the accuracy of
similarity computation, traditional memory-based approach such as IPCC and UPCC are compared
with IPCC-SPaS and UPCC-SPaS, respectively. We also study the accuracy our approach by
comparing with other state-of-the-arts approaches. The approaches evaluated in this section are listed
as following:

UPCC (user-based CF method using PCC): UPCC employs the data of similar users for the QoS
value prediction [31].

UPCC-SPaS: UPCC-SPaS employs SPaS user similarity propagation strategy to extend the
UPCC approach to make prediction.

IPCC (item-based CF method using PCC): IPCC employs the data of similar web services
(items) for the QoS value prediction [32].

IPCC-SPaS: IPCC-SPaS employs SPaS service similarity propagation strategy to extend the
IPCC approach to make prediction.

WSRec: WSRec [11] is an improved hybrid CF approach, in which both the similar users and
the similar services are found to make prediction.

IPCC-ST: IPCC-ST [24] is an IPCC based approach where the indirect similarity is considered
and computed by one intermediate service on the similarity transitive path. The similarities of
different transitive path are aggregated by weighted mean method.

IPCC-SPaA: IPCC-SPaA employs SPaA service similarity propagation strategy to extend the
IPCC approach to make prediction.

Due to the sparse QoS data in reality, we gradually increase the QoS matrix density from 5 to 14%
with the step size of 1%. Then the prediction accuracy of these methods are evaluated by using these
matrices with different sparsity. In all the approaches, the parameter TopK is set to 10, meaning that
10 most similar neighbors will be chosen to predict the missing QoS values. Table 4 shows the
NMAE values of all the above mentioned methods under different QoS data sparsity conditions. In
order to observe the experimental results more intuitively, Figure 3 presents the results in Table 4 in
the form of graphs.
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Table 4. The NMAE values comparison of different methods.

. Density of Matrix
Matrices Methods
5% 6% 7% 8% 9% 10% 11% 12% 13% 14%
UPCC 0.9116 | 0.8650 | 0.8154 | 0.7859 | 0.7594 | 0.7245 | 0.7035 | 0.6556 | 0.6309 | 0.6020
UPCC-SPaS | 0.8915 | 0.8343 | 0.7733 | 0.7492 | 0.7135 | 0.6864 | 0.6576 | 0.6371 | 0.6220 | 0.5950
IPCC 0.6384 | 0.6327 | 0.6223 | 0.6266 | 0.6310 | 0.6222 | 0.6208 | 0.6117 | 0.5970 | 0.5821
rt-Matrix IPCC-SPaS | 0.5823 | 0.5781 | 0.5653 | 0.5638 | 0.5664 | 0.5540 | 0.5479 | 0.5412 | 0.5360 | 0.5311
WSRec 0.6440 | 0.6329 | 0.6110 | 0.6041 | 0.6038 | 0.5828 | 0.5717 | 0.5591 | 0.5494 | 0.5388
IPCC-ST 0.6124 | 0.5994 | 0.5815 | 0.5818 | 0.5836 | 0.5677 | 0.5639 | 0.5507 | 0.5437 | 0.5341
IPCC-SPaA | 0.5884 | 0.5807 | 0.5697 | 0.5712 | 0.5753 | 0.5613 | 0.5550 | 0.5504 | 0.5424 | 0.5309
Impro. of UPCC-SPaS vs UPCC | 2.2% 3.5% 5.2% 4.7% 6% 5.3% 6.5% 2.8% 1.4% 1.2%
Impro. of IPCC-SPaS vs IPCC 8.8% 8.6% 9.2% 10% | 10.2% | 11% | 11.7% | 11.5% | 10.2% | 8.8%
Impro. of IPCC-SPaS vs
4.9% 3.6% 2.8% 3.1% 2.9% 2.4% 2.8% 1.7% 1.4% 0.6%
IPCC-ST
UPCC 0.7178 | 0.7030 | 0.6779 | 0.6762 | 0.6620 | 0.6414 | 0.6219 | 0.5973 | 0.5884 | 0.5705
UPCC-SPaS | 0.6611 | 0.6568 | 0.6351 | 0.6106 | 0.6008 | 0.5790 | 0.5661 | 0.5522 | 0.5538 | 0.5407
IPCC 0.6353 | 0.6416 | 0.6395 | 0.6454 | 0.6392 | 0.6341 | 0.6211 | 0.6278 | 0.6253 | 0.6176
tp-Matrix IPCC-SPaS | 0.5732 | 0.5751 | 0.5655 | 0.5609 | 0.5535 | 0.5433 | 0.5394 | 0.5366 | 0.5344 | 0.5290
WSRec 0.6063 | 0.6159 | 0.6147 | 0.6094 | 0.5997 | 0.5946 | 0.5920 | 0.5848 | 0.5811 | 0.5803
IPCC-ST 0.6097 | 0.6164 | 0.6092 | 0.6076 | 0.6015 | 0.5985 | 0.5932 | 0.5913 | 0.5913 | 0.5871
IPCC-SPaA | 0.5733 | 0.5774 | 0.5669 | 0.5610 | 0.5555 | 0.5457 | 0.5400 | 0.5376 | 0.5344 | 0.5296
Impro. of UPCC-SPaS vs UPCC | 7.9% 6.6% 6.3% 9.7% 9.2% 9.7% 9% 7.6% 5.9% 5.2%
Impro. of IPCC-SPaS vs IPCC 9.8% | 10.4% | 11.6% | 13.1% | 13.4% | 14.3% | 13.1% | 145% | 145% | 14.3%
Impro. of IPCC-SPaS vs
6% 6.7% 7.2% 7.7% 8% 9.2% 9.1% 9.3% 9.6% 9.9%
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Figure 3. The NMAE values comparison of different methods.
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The experimental results demonstrate that:

(1) All methods can achieve smaller NMAE value when the density of QoS matrix increase,
which means that we can improve the prediction accuracy of web service recommender systems by
obtaining more historical QoS data. Under all matrix density conditions, the methods with similarity
propagation can achieve smaller NMAE values than the corresponding methods without similarity
propagation. Concretely, compared with UPCC, UPCC-SPAS improves the prediction accuracy of
response time values by 4% on average and throughput values by 7% on average, respectively.
Compared with IPCC, IPCC-SPAS improves the prediction accuracy of response time values by 10%
on average and throughput values by 13% on average, respectively.

(2) Compared with IPCC-ST, IPCC-SPaS can achieve better accuracy both in response time
values prediction and throughput values prediction. Concretely, compared with IPCC-ST,
IPCC-SPAS improves the prediction accuracy of response time values by 2.6% on average and
throughput values by 8.3% on average, respectively. This result indicate that the indirect similarity
computation method used in IPCC-ST, which only consider one intermediate service on the
similarity transitive path, may ignore much valuable neighbor information. According to find more
propagation paths, the similarity can be more precisely calculated. In addition, IPCC-SPaS achieve
better accuracy than IPCC-SPaA under all the data conditions, which indicate that the shortest
propagation paths can obtain a stronger and more convincing similarity than the long chain paths.

(3) Under all matrix density conditions, the IPCC-SPaS method is superior to other methods in
both response time values prediction and throughput values prediction. The advantage is very
obvious when the QoS data is extremely sparse, e.g., under 5% matrix density condition. This
observation indicates that the similarity propagation strategy is important for discovering more
implicit neighbor information in memory-based approaches, especially in the real environment where
QoS data is very sparse.

4.3. Evaluation of time efficiency

In this section, the time efficiency of different methods is studied by using QoS matrices of
different scales. Firstly, the number of users is set to 300 and the number of services is increased
from 100 to 500 with the step size of 50. Then, the number of services is set to 300 and the number
of users is increased from 100 to 300 with the step size of 20. Therefore, the time efficiency of these
methods may be evaluated by the QoS matrices with different scale. In all the approaches, the
parameter TopK is set to 10 and the density of QoS matrix is set to 10%.

Figure 4 shows that the computation time of all approaches increase with the amount of QoS
data. Our proposed similarity propagation approaches are more efficient than WSRec but more time
consuming than the corresponding traditional memory-based approaches. Figure 4 also shows that
the computation time of IPCC-SPaS is near to IPCC-SPaA. This result indicates that the time
performance of the similarity propagation strategy based on shortest paths is approximate to the
strategy based on all paths.
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4.4. Impact of TopK

NMAE
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The parameter TopK determines how many similar neighbors should be selected in the QoS
prediction algorithm. In order to evaluate the impact of parameter TopK on the accuracy of QoS
prediction, we increase the value of TopK from 3 to 30 with the step size of 3. Figures 5 and 6 show
the NMAE values of IPCC-SPaS and IPCC-SPaA in response time and throughput values prediction,
under three different matrix densities of 5, 10 and 15%.
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Figure 5. Impact of TopK on the prediction accuracy of IPCC-SPaS.
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Figure 6. Impact of TopK on the prediction accuracy of IPCC-SPaA.

The experimental results demonstrate that with the increase of TopK, the NMAE value will
gradually decrease at the beginning and then become stable or worse after TopK reaching to an
optimal value. E.g., the NMAE value become worse when the TopK is larger than 12 in the response
time prediction by IPCC-SPaS under 15% matrix density condition. This observation indicates that
an appropriate value of TopK is crucial for ensuring the prediction accuracy. This result is
interpretable, since too small TopK may cause too few neighbors be selected to make prediction
which may ignore the valuable neighbor information, whereas too large TopK may cause many
dissimilar neighbors be selected. As shown in Figures 5 and 6, all curves achieve the best results
when TopK is between 10 to 15, which means that the optimal value of TopK is stable to some extent
and not easily affected by the natures of QoS dataset or the density of matrix both in SPaS and SPaA
strategies.

5. Conclusions

With the rapid growth of web services on the network, web service recommendation becomes
essential for customers to select appropriate services to build service-oriented applications. Recently,
memory-based CF approaches have been widely studied to realize the web service recommender
systems. In these approaches, similarity calculation plays an important role. However, the similarity
calculation in most existing approaches are vulnerable to the data sparse problem. In this paper, we
propose a similarity propagation approach to evaluate the indirect similarities between users or
services. Firstly, the similarity graph of users or services is constructed by using the QoS data.
Secondly, the similarity propagation paths among users or services on the similarity graph are found.
Moreover, the indirect similarities among users or services are aggregated by two different strategies
and the Flyod based algorithm are designed to implement the similarity propagation strategies.
Finally, we integrate the direct similarity and indirect similarity to precisely compute the similarity
and make accurate prediction. Extensive real-world experimental evaluations show that our approach
can outstandingly improve the prediction accuracy of memory-based CF approaches and not
susceptible to the parameters.
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It is worth to mention that our similarity propagation strategies are also applicable to other
recommender systems, e.g., E-commerce or movie recommender systems. In the future work, we
will optimize the similarity propagation strategies in aspect of time performance and prediction
accuracy. We also plan to study the applicability of similarity propagation to other memory-based
approaches.
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Appendix
Table Al. Glossary of terms.

Term Meaning of term
SOC Service-Oriented Computing
QoS Quiality of Service
CF Collaborative Filtering
SP Similarity Propagation
SN Social Network
PCC Pearson Correlation Coefficient
SPaS Min-max similarity propagation among shortest paths
SPaA Min-max similarity propagation among all paths
MF Matrix Factorization
UPCC User based method using Pearson Correlation Coefficient
IPCC Item based method using Pearson Correlation Coefficient
UPCC-SPaS UPCC with similarity propagation by SPaS
UPCC-SPaA UPCC with similarity propagation by SPaA
IPCC-SPaS IPCC with similarity propagation by SPaS
IPCC-SPaA IPCC with similarity propagation by SPaA
MAE mean absolute error
NMAE Normalized Mean Absolute Error
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