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Abstract: The gait speed affects the gait patterns (biomechanical and spatiotemporal parameters) of 
distinct age populations. Classification of normal, slow and fast walking is fundamental for 
understanding the effects of gait speed on the gait patterns and for proper evaluation of alternations 
associated with it. In this study, we extracted multimodal features such as time domain and 
entropy-based complexity measures from stride interval signals of healthy subjects moving with 
normal, slow and fast speeds. The classification between different gait speeds was performed using 
machine learning classifiers such as classification and regression tree (CART), support vector 
machine linear (SVM-L), Naïve Bayes, neural network, and ensemble classifiers (random forest (RF), 
XG boost, averaged neural network (AVNET)). The performance was evaluated in term of accuracy, 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), p-value, 
area under the receiver operating characteristic curve (AUC). To distinguish the slow and normal gait 
walking, the highest performance was yielded in terms of accuracy (100%), p-value (0.004), and 
AUC (1.00) using RF, XGB-L followed by XGB-Tree with accuracy (88%), p-value (0.04) and AUC 
(1.00). To classify the fast and normal walking, the highest performance was obtained with accuracy 
(88%), p-value (0.04) using XGB-L, XGB-Tree and AVNET. The highest AUC (0.94) was obtained 
using NB. To discriminate the fast and slow gait walking, the highest performance was obtained 
using SVM-R, NNET, RF, AVNET with accuracy (88%), p-value (0.04) and AUC (0.94) using RF 
and AUC (0.96) using XGB-L. 
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PLP: Perceptual lineal prediction; PPV: Positive predictive value; RF: Random forest; ROC: 
Receiver operating characteristic; SI: Stride interval; SVM-L: Support vector machine-linear 

1. Introduction 

Walking independently require a firm control to remain flexible and stable while navigating 
through unpredictable and complex environment [1]. The human gait patterns of a healthy individual 
exhibits regular fluctuations, which are due to different complexities of nonlinear motor controlling 
system made from cognitive, neural and mechanical components. The motor controlling system 
improves the gait to maintain equilibrium, continue progression and remain adaptable [2]. The 
different gait speeds are outcomes of the complex musculoskeletal system controlled by the central 
nervous system (CNS) [3]. The quantification of the biomechanical physiognomies of an individual’s 
gait is an imperative clinical tool for evaluating normal and pathological locomotion patterns with 
effects of walking speed on gait biomechanics [3], and gender differences in gait kinematics [4]. 
These are used for devising therapeutic interventions [5] as well as to evaluate the intervention 
outcomes [6]. 

The locomotor behavior is engendered using the legs by propelling the body over the ground. 
The joints in the body have more degrees of freedom that is necessary for propelling the body, and 
the muscles have comparatively more degrees of freedom than the joints due to multiarticular 
muscles and antagonistic pairs of muscles [7]. The humans use plentiful and redundant degrees of 
freedom for different gait speeds that plays a vital role for adaptive locomotor behavior. It is however 
unclear that how the CNS manipulates a huge number of degrees of freedom. The complicated and 
redundant nature of the musculoskeletal system and differences in the motor outcomes reveal that the 
motor control in the CNS is extremely complex and control strategies differ for different gaits [7]. 

During last three decades, it has been clearly demonstrated that the human gait can be 
adequately analyzed using stride interval time series. The stride interval or gait cycle is the time 
interval between two heel-strikes of the same foot [2]. Continuous gait cycles during walking are not 
exactly same. Stride to stride fluctuations are created by small changes from one step to next step 
over a period i.e. known as gait variability. Gait variability not only represents the magnitude of 
fluctuations, by measuring the dispersion around the central tendency i.e. standard deviation, but also 
shows the serial correlation between continuous strides i.e. temporal ordering fluctuations by 
computing long range power law correlation [8], an empirical examination of detrended fluctuation 
analysis (DFA) [9] and re-interpreting DFA [10]. Hausdorff et al. employed detrended fluctuation 
analysis to study human gait variability with aging [11], neurodegenerative diseases [12], and even 
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different walking conditions [13]. They observed that gait dynamics are more random or less 
correlated in elderly people, in neurodegenerative disease subjects and in subjects walking under 
constrained protocols. Costa et al. [14] proposed multiscale sample entropy (MSE) to quantitatively 
measure of complexity of human gait that is large for healthy subjects and correlated stochastic 
processes. Aziz and Arif [15] applied symbolic entropy (SyEn) to characterize gait dynamics of 
control and neurodegenerative signals. Hausdorff et al. [11–13] highlighted that gait dynamics has 
meaning and may be useful for assessing the neural control of locomotion and improving functional 
assessment of aging, chronic disease, and their effect on the human gait. Goshvarpour [16] used 
Poincare plots, Hurst exponents, and the Lyapunov exponents to quantify the dynamics of gait 
signals in healthy subjects who walked at their normal, slow, fast speed. Abbasi and Aziz [17] 
applied symbolic time series analysis to study the gait dynamics of healthy moving under constrained 
and unconstrained conditions. Yu et al. [18] proposed multivariate multiscale symbolic entropy to 
quantitatively measure complexity of normal, slow and fast walking under unconstrained and 
metronomic walking by considering both within- and cross-channel dependencies as well as coupling 
in multiple channels complex signals over a range of scales. Recently, Vasquez-Correa et al. [19] 
proposed Gaussian mixture models - universal background models (GMM-UBM) and i-vectors to 
evaluated different neurological states of Parkinson’s disease (PD) using information from gait, 
speech and handwriting. San-Segundo et al. [20] applied frequency features and GMM-UBM 
approach to identify a gait-based person identification (GPI) system that uses inertial signals from a 
smartphone. They also integrated new feature extraction approach such as mel frequency cepstral 
coefficients (MFCCs) and perceptual lineal prediction (PLP) coefficients to further improve the 
results Moreover, San-Segundo et al. [21] recently employed i-vector approach and compared the 
results with GMM-UBM system. Li et al. [22] applied machine learning based classification methods 
such as a sensory-motor fusion-based manipulation and grasping control strategy has been developed 
for a robotic hand-eye system. MFCCs features were extracted by [23] to increase robustness in the 
detection of freezing of gait in PD, tremor detection in PD [24] and smartphone inertial signals for 
human activity segmentation [25]. 

In the past, researchers developed different techniques such as long power law correlation [8], 
detrended fluctuation analysis (DFA) [9], DFA to study human gait variability with aging [11], 
neurodegenerative diseases [12], and even different walking conditions [13] to study the complex 
dynamics of human gait. However, these measures have limited capability to classify patterns of gait 
during different walking conditions due to the involvement of different cognitive, neural, and 
mechanical components of motor controlling system. Recently, Hussain et al. proposed diagnosis 
framework for the diagnosis of epileptic seizures [20], arrhythmia detection [21] and classification of 
normal sinus rhythm (NSR) and congestive heart failure (CHF) subjects [22] by extracting 
multimodal features. The evaluation metrics revealed improved classification ability of different 
classifiers using multimodal features for distinguishing healthy and pathological subjects. Despite of 
the fundamental dissimilarities in the regulation of heart rate and the regulation of human gait, the 
success of research in the heart rate variability analysis has open window to similarly explore gait 
variability. 

There are several applications of machine learning techniques in medical applications [26], 
Data-driven decision-support system [27], Big data management and analytics in scientific 
Programming [28]. The existing techniques have limitations by not considering the multivariate 
dynamics of gait stride interval time series during normal, slow fast walking. We proposed and 
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extracted multimodal features from gait stride interval time series to capture the temporal dynamics 
(short, medium and long term variations), complex dynamics based on entropy-based information 
theoretic approaches, wavelet based methods and statistical measures in order to provide the 
enhanced detection performance to distinguish the different walking conditions. The specific aim of 
the present study was to explore the applicability of multimodal features feature extraction strategy 
(which includes both linear and nonlinear measures) for classification of normal, slow and fast gait 
speed using stride interval signals. In this study, we extracted multimodal features from stride 
interval signals of healthy subjects walking at different speeds and then used the robust machine 
learning classifiers such as CART, SVM-L, NB, ensemble classifiers (RF, XGB, AVNET) for 
classification. The performance of different classifiers was evaluated using accuracy, sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV), p-value, area under 
receiver operating characteristic (AUC) curve. 

2. Materials and methods 

2.1. Dataset 

Human gait is under voluntary control of the central nervous system (CNS). The spatiotemporal 
variations in different gait speeds are outcome of complex musculoskeletal system, which is 
controlled by the CNS [3]. The variations in different gait speeds may contain are very useful 
information about controlling mechanism of human gait, which can be extracted for clinical decision 
making and devising therapeutic interventions. Based on these characteristics, we proposed to use 
time domain statistical and entropy-based measures to detect the different gait dynamics during 
normal, slow and fast walking protocols. The data used in the study was taken from Physionet, which 
is publicly available “the research resource for complex physiologic signals” [30]. The data 
comprises of long-term recordings of stride interval (SI) time series of ten young healthy men, who 
had no history of any respiratory, neuromuscular or cardiovascular problems and were not using any 
medication. The mean age of the subjects was 21.7 years (range: 18–29 years), height 1.77 ± 0.08 
meters (mean ± standard deviation) and weight was 71.8 ± 10.7 kg. The subjects under three 
different walking protocols, one-hour usual normal walk, one-hour slow pace and one hour at a fast 
pace. The SI was measured by using force-sensitive switches taped inside one shoe. We split the 
dataset into training and testing data with a 70% and 30% ratio by using a stratified sampling method. 
The recordings are not from the same subjects in both sets. 

The Figure 1 reflect the stride interval time during one hour of walking from one of the healthy 
subjects during slow, normal and fast walking rates. We computed the time domain, statistical, 
entropy and wavelet based 16 features from these stride interval time series data. These features are 
then passed as input to the robust machine learning classifiers to classify slow vs normal, fast vs 
normal and fast vs slow stride intervals. 
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Figure 1. Example of time series of stride time during one hour of walking in a healthy 
young adult at slow, normal and fast walking rates. 

2.2. Feature extraction 

Features extraction is one of the most important steps before applying the machine learning and 
neural networks classification techniques for detection and prediction purposes. It requires an 
optimum feature set that should effectively discriminate the subjects. Features extraction is solely 
specific to the problem. We extracted the following features from gait stride interval time series. 

2.2.1. Time domain features 

Given the stride interval time series 𝑆𝐼 𝑆𝐼 , 1 𝑗 𝑁. Different time domain statistical 
parameters SDSD, SDSI, RMSSD and SDASI were computed. 

SDSD: standard deviation of differences between successive stride intervals (SI). 
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𝑆𝐷𝑆𝐷 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑆𝐼 𝑆𝐼 ) 

SDSI: standard deviation of the SI time series data. 

SDSI = ∑  𝑆𝐼 𝑆𝐼                          (2.1) 

RMSSD: Is the square root of the mean squared differences of N successive stride intervals 

RMSSD = ∑  𝑆𝐼 𝑆𝐼                        (2.2) 

SDSI: Standard deviation of the average SI-intervals calculated over short periods (5 minutes) 
segments of the entire Signal. If 𝜇 , 𝜇 , 𝜇 , … , 𝜇   are average values of the segments 
𝑠 , 𝑠 ,  𝑠 , … , 𝑠 ,  then 

𝑆𝐷𝐴𝑆𝐼 ∑ 𝜇                                 (2.3) 

2.2.2. Entropy and wavelet-based features 

Biological systems are composed of multiple interacting components exhibiting the complex 
patterns. This pattern of change contains hidden but very useful information to understand the 
underlying dynamics of these systems. To compute the dynamics, researchers in the past employed 
different methods from information theoretic approaches such as seizure detection based on 
multimodal feature extraction approach [29], symbolic time series analysis to detect seizure [30], 
complex dynamics of electroencephalographic (EEG) motor movement signals [31], dynamics of 
alcoholism using sample entropy based on KD tree algorithm [32], lung cancer dynamics based on 
refined fuzzy entropy [33]. 

In this study, we extracted following entropy based computational methods to detect the 
different gait dynamics during slow, fast and normal walking. 

(1) Approximate entropy 

Approximate entropy (ApEn) developed by [34] is a statistical measure used to quantify the 
regularities in data. It shows the probability that similar observation patterns do not repeat. 

ApEn (m, r. N) = ∅ 𝑟 ∅ 𝑟                          (2.4) 

The 𝐶 𝑟  and 𝐶 𝑟  are being computed as detailed in [32]. Two parameters are set to 
measure the average entropy, i.e. m, which is the length of the window, and r, the criterion of 
similarity. We selected m = 3 and r = 0.15 times the standard deviation of data in this analysis as 
given in [34]. 

(2) Fast sample entropy with KD tree algorithmic approach 

Sample entropy (SampEn) employed by [35] is a modified form of approximate entropy. It is 
used to assess the physiological time series signal. Sample entropy when comparing with approximate 
entropy shows good features like independent data length and trouble-free implementation. It can 
easily be implemented in many programming languages.  

Thus, sample entropy can be more precisely computed using following formula: 
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 SampEn m, r lim → ln                                    (2.5) 

Where  𝑃 𝑟  denotes the probability that two sequences will still match for m+1 points and 
𝑄 𝑟  is the probability that two sequences will matches for m points (with tolerance of τ ); where 
self matches are excluded. In this regard Eq (2.5) can be expressed as: 

SampEn m, r, N ln                                    (2.6) 

By setting 𝑄 𝑄 𝑟  and  𝑃 𝑃 𝑟  

We have       and thus sample entropy [36] can be expressed as: 

SampEn m, r, N ln                                      (2.7) 

Where P is the total number of forward matches of length m+1 and Q is the total number of 
templates matches of length m. Here we used sample entropy with KD tree algorithmic base 
approached as implemented by [37] which provide improved performance and is more effective with 
respective to time and space complexity. 

(3) Wavelet entropy 

Wavelet methods are used in many applications for their nonlinear analysis, commonly used 
wavelet packet methods [38] are Shannon, log energy, threshold, sure and norm etc. Shannon 
entropy [38] was employed to measure the complexity of signal to wavelet coefficients generated by 
WPT where larger values show high uncertainty process and therefore higher complexity. Wavelet 
entropy used by [39] which provided the useful information to measure the underlying dynamical 
process associated with the signal. The entropy ‘E’ must be an additive information cost function 
such that E (0) = 0 and E S  ∑ E S . 

(4) Shannon entropy 

The Shannon entropy was proposed by Claude Shannon in 1948 [40]. In addition, it is the 
measurement of the vulnerability associated with a randomness of the data space. Shannon entropy 
precisely estimate the predicted value of the results found in a packet. We can describe the Shannon 
entropy of a random variable S as follows: 

𝐸 𝑆  ∑ 𝑆 𝑙𝑜𝑔 𝑆                                         (2.8) 

Where Si represents coefficients of signal S in an orthonormal basis. If the entropy value is greater 
than one, the component has a potential to reveal more information about the signal and it needs to 
be decomposed further in order to obtain simple frequency component of the signal [41]. By using 
the entropy, it gave a useful criterion for comparing and selection the best basis. 

(5) Wavelet entropy 

This entropy measure was proposed by [44] can mathematically defined such as: 
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E S
∑ | |                                                               (2.9) 

Where p is the power, the terminal node signal must be 1 ≪ p 2 and S  is the terminal 
waveform signal. 

(6) Threshold entropy 

E(Si) = 1 if |Si| > p and 0 elsewhere so E(s) = # {I such that |Si| > p} is the number of time 
instants when the signal is greater than a threshold p. 

The threshold entropy value was determined using a value of 0.2. 

(7) Sure entropy 

The threshold of the parameter P and the values of P ≥ 0 are used. 

𝐸 𝑠 𝑛 # 𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑠𝑖| p ∑ 𝑚𝑖𝑛 ,          (2.10) 

Where, the discrete wavelet entropy E is a real number, s is the terminal node signal and (si) i the 
waveform of terminal node signals. In Sure entropy, p is a positive threshold value and must be p ⩾ 2 [43]. 

The entropy of Sure was measured at threshold 3. 

(8) Norm entropy 

The P is used in Normal Entropy as the power and value of P ≥ 1. The intensity in lp norm 
entropy is: 

𝐸 𝑠𝑖 |𝑠 |                               (2.11) 

𝑠𝑜 𝐸 𝑠 |𝑠 |  ||𝑆||  

The entropy of the norm was estimated at 1.1 with power. 
The wavelet norm entropy represents the ordering of nonstationarity of time series fluctuation. 

(9) Log energy 

𝐻 𝐵 ∑ 𝑙𝑜𝑔  𝑃𝑖 𝐵                     (2.12) 

Where 𝑃𝑖 𝐵  denotes the function of probability distribution and is a logarithmic amount of 
the distribution square of these probabilities. 

2.3. Classification methods 

To classify different gait stride interval time series data, following robust machine learning 
algorithms were used. 

2.3.1. Support vector machine (SVM) 

Based on the empirical error minimization, the traditional methods due to small sample cases 
are prone to generate the overfitting problems, whereas, SVM has a good generalization ability due 
to the structural risk minimization principle [44]. Moreover, SVM is also appropriate [45] and 
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provide good generalization even if the training set has some bias. SVM is also appropriate when the 
dataset has many features [46]. It is successfully used in many applications such as machine learning 
machine learning [47], pattern recognition problems [48], and medical diagnosis area [49,50] etc. 

2.3.2. Naïve Bayes (NB) 

The NB [51] algorithm is based on Bayesian theorem [52] and it is suitable for higher 
dimensionality problems. NB relate with a family of probabilistic classifier and established on Bayes 
theorem containing compact hypothesis of independence among several features. NB techniques were 
greatly biased because its probability computation errors are large. Due to the better performance [53], 
NB is presently used in variety of applications in present advance developments [54–57]. 

2.3.3. Decision tree (DT) 

DT is proposed by Breiman in 1984 [58], are decision support tools of machine learning and 
data mining for the large size of input data, which predict the target value or class label based on 
several input variables. In DT, the classifier compares and check the similarities in the dataset and 
ranked it into distinct classes. Wang et al. [59] used DT algorithm for classifying the data based on 
choice of an attribute which maximizes and fix the data division. Until the conclusion criteria and 
condition are met, the attributes of datasets are split into several classes. 

2.3.4. Ensemble classifiers 

The ensemble classifiers contain a set of individually trained classifiers, their estimates are then 
combined when classifying the different instances using different methods [60]. These classifiers are 
constructed by several learning algorithms and then predict new data points by adding the weight of 
their predictions. Following ensemble classifiers were used in this study: 

(1) Random forest (RF) 
Random forest (RF) is another type of machine learning classifier which is operated by 

constructing an assembly of decision trees. The result is achieved by averaging the output founded 
from all DTs. [61]. Breiman in 2001 developed RF model by taking an extra layer with bagging 
strategies. It has important applications in regression, classification and in multi selections. [62]. It is 
a best classifier for categorization, prediction and regression purposes [63]. 

(2) XGBoost classifier 
Chen and Guestrin proposed XGBoost a gradable machine learning system in 2016 [64]. This 

system was the most popular and standard system when it was employed in the field of machine 
learning Kaggle in 2015 however it was employed in 17 solutions out of a total of 29 solutions. 
Based on the good performance, the XGBoost machine learning classifier was used to train and 
detect the wind turbine fault. The Gradient boosting is original model of XGBoost, which combines 
and relate the weak base with stronger learning models by an iterative manner [65]. 

(3) Averaged neural network (AVNET) model 
The AVNET contain multiple neural network models applying the same dataset and predicts 

using the average of the predictions outcome from all of the constituent model [66]. Due to models 
initialization on either by fitting the models or different random number seeds on bootstrap data 
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samples of the original training set (i.e. bagging [67] the neural network) the models may be 
dissimilar to each other. When multiple neural networks are fit at different random number seeds, all 
the resultant models are used for prediction, by averaging model scores are first Ripley 1996. In 
classification problems, the average class probabilities or prior probabilities are produced the final 
class prediction as opposed by voting from the individual class predictions [68]. 

2.4. Performance evaluation measures 

There is variety of measures that are generally employed to compute the proposed system 
performance. For the detection of breast cancer, using machine learning classifiers performance can 
be measured by computing PPV, NPV, specificity, sensitivity, and total accuracy. 

TN: correct classification of normal. 
FN: incorrect classification of normal. 
TP: correct classification of abnormal. 
FP: incorrect classification of abnormal. 

2.4.1. Accuracy 

Measure of usefulness or effectiveness of the classification scheme is called Accuracy. 
Following equation can be employed for the computation of accuracy reflected below: 

Total Accuracy                          (2.13) 

2.4.2. Sensitivity 

Measure of the classifier’s ability for identifying the positive class patterns is called sensitivity. 
It is the probability of positive test given that patient suffering from disease. Also known as True 
Positive Rate (TPR). The following equation is used to compute the sensitivity represented by: 

Sensitivity                                (2.14) 

2.4.3. Specificity 

Specificity is used to calculate the classifier’s ability for identifying negative class patterns. It 
measures the proportion of negatives that are identified correctly. Also known as False Positive Rate 
(FPR). It can be obtained by using the following equation represented by: 

Speci icity                                (2.15) 

2.4.4. Positive predictive value (PPV) 

Mathematically PPV can be expressed as below: 
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𝑃𝑃𝑉                                 (2.16) 

where TP denote that the test makes a positive prediction and subject has positive result under gold 
standard while FP is the event that test make a positive prediction and subject make negative result. 

2.4.5. Negative predictive value (NPV) 

Mathematically NPV can be expressed using below equation: 

𝑁𝑃𝑉                                 (2.17) 

where TN represents that test make negative prediction and subject has also negative results, while 
FN represents that test make negative prediction and subject has positive result. 

2.5. Area under the receiver operating characteristic (ROC) curve 

The ROC is graphed against the true positive rate (TPR), i.e. sensitivity and false positive rate 
(FPR), i.e. the slow & fast, slow & normal and fast & normal subjects' specificity values. The mean 
values of features for slow & fast subjects are graded as 1 and 0 respectively, the same was repeated 
for other combinations. The ROC function is then transferred to this vector, which plots each sample 
value against the values of specificity and sensitivity. ROC is one of the popular methods of 
calculating success in order to diagnose and interpret the efficacy of a classifier [69]. The sensitivity 
is graphed against the y-axis, and the x-axis is graphed against the 1-Specificity. The portion of a 
square unit is represented by the area under the receiver operating characteristic (AUC) curve. Its 
value varies from 0 to 1. The distinction is shown by AUC > 0.5. The superior diagnostic tool is 
shown by the greater AUC. Sensitivity represents right positive cases calculated by dividing the total 
positive cases, while Specificity represents negative cases expected as positive, calculated by 
dividing the total number of negative cases. 

3. Results 

In this study, we extracted the multimodal features extracting approach to compute the 
dynamics of gait data with normal, slow and fast walking. Based on the spatiotemporal and complex 
dynamics, we computed time domain, statistical and entropy-based complexity methods and wavelet 
packet based on gait dynamics with normal, slow and fast walking. We applied machine learning 
classifiers such as CART, SVM linear, Naïve Bayes, Neural Network and ensemble classifiers such 
as random forest, XGBoost, AVNET. 

The performance to distinguish the fast and slow gait walking based on different classifiers was 
computed in terms of accuracy, sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), p-value and area under the receiver operator characteristic (AUC) curve. The 
classifiers ability to identify the positive class patterns is measured using sensitivity while negative 
class patterns was measured using specificity. In most of the classifiers, either sensitivity and PPV 
are higher or specificity and NPV are higher, so merely relying on these measures is not appropriate 
to judge the overall classifiers performance. So, AUC which is computed in combination of 
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sensitivity and specificity was measured – a more reliable measure to measure the classification 
performance alongwith P-value and accuracy. The sensitivity, specificity, PPV and NPV values of the 
ensemble classifiers are higher as reflected in Table 1, which resulted in higher AUC. The highest 
performance in terms of accuracy and p-value to classify fast vs slow gait walking was obtained 
using SVM-R, NNET, RF and AVNET accuracy (88.0%), p-value (0.04) followed by SVM-L, NV, 
XGB-L and XGB-Tree with accuracy (75%) and p-value (0.14). Moreover, the highest performance 
in terms of AUC was obtained using RF with AUC (0.94) followed by XGB AUC (0.94), XGB-Tree 
and AVNET AUC (0.91), NNET with AUC (0.88), NB with AUC (0.81) as reflected in Table 1. A 
highest sensitivity and NPV of 100% was obtained using SVM-R, NB, NNET, RF and AVNET. 
Moreover, the highest PPV (100%) was obtained using XGB-L followed by PPV (80%) using 
SVM-R, NNET, RF and AVNET. 

Table 1. Classification accuracy of fast and slow gait walking based on different 
classifiers. 

Classifier accuracy sensitivity specificity PPV NPV P-Value AUC 

CART 0.50 1.00 0.00 0.50 0.00 0.64 0.50 

SVM-L 0.75 0.75 0.75 0.75 0.75 0.14 0.68 

SVM-R 0.88 1.00 0.75 0.80 1.00 0.04 0.81 

NB 0.75 1.00 0.50 0.67 1.00 0.14 0.81 

NNET 0.88 1.00 0.75 0.80 1.00 0.04 0.88 

RF 0.88 1.00 0.75 0.80 1.00 0.04 0.94 

XGB-L 0.75 0.50 1.00 1.00 0.67 0.14 0.94 

XGB-Tree 0.75 0.75 0.75 0.75 0.75 0.14 0.91 

AVNET 0.88 1.00 0.75 0.80 1.00 0.04 0.91 

Table 2. Classification accuracy of fast and normal gait walking based on different 
classifiers. 

Classifier accuracy sensitivity specificity PPV NPV P-Value AUC 

CART 0.50 1.00 0.00 0.50 NA 0.64 0.50 

SVM-L 0.63 0.50 0.75 0.67 0.60 0.36 0.87 

SVM-R 0.88 0.75 1.00 1.00 0.80 0.04 0.93 

NB 0.75 0.75 0.75 0.75 0.75 0.14 0.94 

NNET 0.88 0.75 1.00 1.00 0.80 0.04 0.88 

RF 0.88 1.00 0.75 0.80 1.00 0.04 0.94 

XGB-L 0.88 1.00 0.75 0.80 1.00 0.04 0.88 

XGB-Tree 0.88 1.00 0.75 0.80 1.00 0.04 0.88 

AVNET 0.88 0.75 1.00 1.00 0.80 0.04 0.84 

To distinguish the fast and normal gait dynamics, the highest performance in terms of accuracy 
(88.0%), p-value (0.04) were obtained using NNET, RF, XGB-L, XGB-Tree and AVNET. The 
highest performance in terms of AUC was obtained NB & RF with AUC (0.94) followed by XGB-L 
& XGB-Tree with AUC (0.88), SVM-L with AUC (0.87), NNET with AUC (0.63), AVNET with 
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AUC (0.84) CI as reflected in Table 2 alongwith other performance metrics. The other performance 
metrics computed are reflected in Table 2. 

Table 3. Classification accuracy of slow and normal gait walking based on different 
classifiers. 

Classifier accuracy sensitivity specificity PPV NPV P-Value AUC 

CART 0.50 1.00 0.00 0.50 NA 0.64 0.50 

SVM-L 0.88 1.00 0.75 0.80 1.00 0.04 0.75 

SVM-R 0.75 0.50 0.75 0.75 0.75 0.14 0.81 

NB 0.75 0.50 1.00 1.00 0.67 0.14 0.81 

NNET 0.75 0.75 0.75 0.75 0.75 0.14 0.81 

RF 1.00 1.00 1.00 1.00 1.00 0.004 1.00 

XGB-L 1.00 1.00 1.00 1.00 1.00 0.004 1.00 

XGB-Tree 0.88 1.00 0.75 0.80 1.00 0.04 1.00 

AVNET 0.75 0.75 0.75 0.75 0.75 0.14 0.88 

To classify the slow vs normal gait walking subjects, the highest performance was obtained 
using RF and XGB-L with accuracy (100%), p-value (0.004) followed by SVM-R, XGB-Tree with 
accuracy (88%), p-value (0.04), NB, NNET, AVNET with accuracy (75%), p-value (0.14). The 
highest performance in terms of AUC was obtained using RF, XGB-L, XGB-Tree with AUC (1.00) 
followed by AVNET with AUC (0.88), NB & NNET, SVM-R with AUC (0.81) as depicted in Table 3 
alongwith other performance measures. The other performance metrics computed are reflected in 
Table 3. 

The Figure 2(a–c) shows the AUC to classify different gait walking speeds using strides interval 
signals by extracting multimodal features and employing robust machine learning techniques. To 
classify fast vs slow gait walking, the highest separation was obtained using RF, XGB-L with AUC 
(0.94) followed by XGB-tree, AVNET with AUC (0.91), NNET AUC (0.88), NB, SVM-R AUC 
(0.81), SVM-L AUC (0.68) and CART with AUC (0.50) as depicted in Figure 2(a). To distinguish 
the fast and normal walking, the highest separation was obtained using NB, RF with AUC (0.94) 
followed by SVM-R with AUC (0.93); NNET, XGB-L, XGB-tree with AUC (0.88), SVM-L with 
AUC (0.87), AVNET AUC (0.84) and CART with AUC (0.50) as reflected in Figure 2(b). Moreover, 
to distinguish the slow and normal gait walking, the highest separation was obtained using RF, 
XGB-L, XGB-tree with AUC (1.00) followed by AVNET with AUC (0.88), SVM-R, NB, NNET 
with AUC (0.81), SVM-L with AUC (0.75) and CART (0.50) as shown in Figure 2(c). The results 
reveal that the highest separation was obtained to distinguish slow vs normal followed by slow vs 
fast and fast vs normal showing that high differences among the gait stride interval walking between 
these groups accordingly. 
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(a)                                     (b) 

 

(c) 

Figure 2. The area under the receiver operating characteristic (AUC) curve to classify 
different gait walking speeds using stride interval signals a) fast vs normal, b) fast vs 
slow, c) slow vs normal. 

Feature ranking algorithms are mostly used for ranking features independently without using 
any supervised or unsupervised learning algorithm. A specific method is used for feature ranking in 
which each feature is assigned a scoring value, then selection of features will be made purely on the 
basis of these scoring values [70]. The selection of Chi-square features is that they rank the features 
based on the statistical significance test and only take into account those features that depend on the 
class label. As the use of training data improves the ability to distinguish between classes with 
similar characteristics, supervised classifiers are highly consistent and produce precise results. We 
applied Chi-Squared method to rank the features in order to determine the overall feature important 
from all four datasets. So, we selected top three important features out of total sixteen features and 
then we reduced number of features in train set by including only the data of top three selected 
features i.e. wavelet threshold (WTh), wavelet log energy (WLogEn), wavelet shannon (WShannon) 
as reflected in Figure 3 followed by root mean square (RMS), wavelet sure (WSure), RMSSD, and 
SDSSD. 
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Figure 3. Feature importance with Chi squared feature selection method 

Table 4. Comparing means with independent sample t-test to distinguish fast from slow 
gait walking. 

Feature Sign. (2-tailed) Mean diff Std. Error Diff. 95 % CI Lower 95% CI Upper
SDASI 0.09842 −0.0053 0.0031 −0.0117 0.0011 
SDSI 0.03168 −0.0285 0.0122 −0.0543 −0.0028 
SDSD 0.00874 −0.0114 0.0039 −0.0196 −0.0033 

RMSSD 0.00532 −0.0176 0.0055 −0.0292 −0.0059 
SampEn 0.39450 0.0641 0.0735 −0.0903 0.2186 

Approx.En 0.33056 −0.0009 0.0009 −0.0027 0.0009 
WShannon 0.00139 2654.8444 703.4682 1176.9126 4132.7761 

WlogEn 0.00012 −1270.6982 259.9173 −1816.7643 −724.6322 
Wth 0.00024 715.3000 156.8173 385.8390 1044.7610 

WSure 0.00037 −1862.8891 426.3469 −2758.6106 −967.1676 
WNorm 0.00986 −138.5148 48.0112 −239.3825 −37.6471 

RMS 0.00066 −0.3021 0.0735 −0.4565 −0.1477 
Var 0.14395 −0.0032 0.0021 −0.0076 0.0012 

Smoothness 0.26438 0.0000 0.000003 0.0000 0.0000 
Kurtosis 0.42277 −0.1911 0.2330 −0.6806 0.2983 

Skewness 0.25048 −0.1708 0.1438 −0.4729 0.1314 

Table 3 reflect the statistical analysis of feature extracted from stride interval time series to 
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distinguish the fast and slow gait walking to compare means using independent sample t-test. We 
have extracted 16 features from time domain (SDASI, SDSI, SDSD, RMSSD), entropy and wavelet 
based features (SampEn, Approx.En, WShannon, WlogEn, Wth, WSure, WNorm) and statistical 
features (RMS, Var, Smoothness, Kurtosis, Skewness) from stride interval time series data. Table 4 
reflects the significance values, mean difference, standard error difference and 95% confidence 
interval of difference with lower and upper bound. The highest significance was obtained with 
wavelet features such as Wavelet log energy with P-value (0.00012) followed by wavelet threshold 
with P-value (0.00024), wavelet sure P-value (0.00037), RMS P-value (0.00066), wavelet Shannon 
P-value (0.00139), RMSSD P-value (0.00532), SDSD P-value (0.00874), wavelet norm P-value 
(0.00986) etc.  

The results reveal that these features are accordingly important to distinguish these stride 
interval time series conditions. 

4. Discussions 

Biological systems work in a coordinated manner and generate information in form of 
biological signals. Due to the dynamical behavior of these systems, the biological signals exhibit 
stochastic and non-stationary behavior including Stride-to-stride variations of gait cycle timing in 
parkinson’s disease (PD) [13], human gait dynamics based on multiscale entropy [14], stride 
intervals using threshold dependent symbolic entropy [15]. 

Like other biological signals, human also exhibits complex dynamical behavior due to the 
controlling mechanism exercised by CNS through musculoskeletal system [3]. The involvement of 
large number of muscles which contribute to human movement, and they show distinct and complex 
activation patterns during different walking speed. Numerous studies demonstrated that stride 
interval time series of healthy individual and walking with normal speed exhibit higher complexity, 
which decreases with aging, diseases and under constrained walking conditions. 

Based on the nonstationary and complex dynamics of gait walking patterns, we extracted 
multimodal linear and nonlinear features of stride interval time series data of health subject walking 
with normal, slow and fast speeds. In this study, after extraction the multimodal features, we used 
robust machine learning classifiers such as CART, SVM, RF, XBG, NNET and AVNET. The 
performance of classifiers evaluated using specificity, sensitivity, PPV, NPV, accuracy and AUC 
revealed classification ability proposed framework. The highest performance to classify fast vs slow 
walking was obtained using SVM-R, NNET, RF, AVNET with accuracy (88%), sensitivity & NPV 
(100%), p-value (0.04), while the highest separation was obtained using RF and XGB-L with AUC 
(0.94) followed by XGB-tree, AVNET with AUC (0.91). Likewise, to classify the normal and fast 
walking, the highest performance was obtained using SVM-R, NNET, XGB-L, XGB-tree with 
accuracy (88%), p-value (0.04), while the highest separation was obtained using NB, RF with AUC 
(0.94) followed by SVM-L with AUC (0.93). Moreover, to classify the slow and normal walking, the 
highest performance was obtained using RF, XGB-L with accuracy (100%), p-value (0.004) and 
AUC (1.00). 

5. Conclusions 

The aim of this study is to predict the changes in gait dynamics when the participant walk at 
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normal, fast and slow speeds. The gait rhythmical changes during fast, slow and normal walling are 
of nonlinear and non-stationary and temporal based variations. To quantify these dynamics, we 
extracted time domain and entropy-based complexity features. To predict the rhythmical changes 
between different gait walking, we applied robust machine learning techniques such as support 
vector machine, classification and regression tree (CART), Naïve Bayes, ensemble classifiers such as 
random forest, XGBoost and averaged neural network (AVNET). The prediction performance was 
computed in terms of different performance measuring metrics such as specificity, sensitivity, 
positive predictive value, negative predictive value, accuracy, area under the receiving operating 
curve and p-value. The results reveal that the proposed multimodal features using robust machine 
learning algorithms can be very useful to predict the changes in gait rhythms which can be very 
helpful in predicting the dynamics between the subsystems. In this study, we classified the healthy 
subject walking with different speeds. The proposed framework can be used to classify control and 
neuro-degenerative subjects as well as risk of falls in elderly subjects. 

6. Limitations of study and future recommendations 

Currently, we extracted multimodal features and employed robust machine learning techniques 
on a small dataset with a smaller number of examples. In future we will apply the proposed methods 
on larger dataset with other pathologies and clinical profiles of the patients. We will compute the 
classification performance based on the ranked features. We will also compute the association among 
features in order to determine the strength of association, which will further assist the clinicians for 
improving the diagnosis. We will also consider other important aspects for feature extracting 
strategies in order to further improve the classification performance. This approach will be used to 
detect the human physical activity based on different inputs on human inertial signals acquired 
through smartphones in order to improve the healthy lifestyle and comfort of the people. The 
multimodal feature extracting approach will also help to recognize a user identity based on their gait. 
Further multimodal feature extracting approach from gait stride intervals will include in 
improvement of biometric recognition, user-friendliness and security etc. 
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Appendix -A 

Glossary 
A 
Accuracy is a measure of usefulness or effectiveness of the classification scheme is called Accuracy 
Area under the receiver operating characteristic curve is a graphical plot that illustrates the 
diagnostic ability of a binary classifier system as its discrimination threshold is varied 
B 
Big Data Management is the organization, administration and governance of large volumes of both 
structured and unstructured data 
C 
Central nervous system is the part of the nervous system consisting primarily of the brain and 
spinal cord 
Congestive heart failure is a chronic progressive condition that affects the pumping power of your 
heart muscles 
D 
Detrended fluctuation analysis is a method for determining the statistical self-affinity of a signal 
Data-Driven Decision-Support System support decision making by allowing users to extract data 
from large databases, which are often in corporate data warehouses. 
E 
Epilepsy is a central nervous system (neurological) disorder in which brain activity becomes 
abnormal, causing seizures or periods of unusual behavior, sensations, and sometimes loss of 
awareness 
Ensemble classifiers is a set of classifiers whose individual decisions are combined in some way 
(typically by weighted or unweighted voting) to classify new examples 
L 
Locomotion means the act or ability of an entity or person to transport or move oneself from place to 
place. 
M 
Multiscale entropy provides insights into the complexity of fluctuations over a range of time scales 
and is an extension of standard sample entropy measures 
Mel frequency cepstral coefficients are coefficients that collectively make up an MFC. They are 
derived from a type of cepstral representation of the audio clip (a nonlinear 
"spectrum-of-a-spectrum") 
N 
Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the 
progressive degeneration of the structure and function of the central nervous system or peripheral 
nervous system 
Negative predictive value is the probability that subjects with a negative screening test truly don't 
have the disease 
P 
Parkinson’s disease is a brain disorder that leads to shaking, stiffness, and difficulty with walking, 
balance, and coordination 
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Positive predictive value is the probability that subjects with a positive screening test truly have the 
disease 
S 
Sensitivity is a measure of the classifier’s ability for identifying the positive class patterns is called 
sensitivity. 
Specificity is used to calculate the classifier’s ability for identifying negative class patterns 
 

©2021 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


