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Abstract: Mathematical models of tumor-immune interactions provide an analytic framework for
studying tumor-immune dynamics. In this paper, we present a mathematical model to describe tumor-
immune cell interactions, focusing on the role of the natural killer (NK) cells and CD8+ cytotoxic T
lymphocytes (CTLs) in immune surveillance. According to the experimental and clinical results, we
determine part of the model parameters to reduce the model parameter space. Then we analyze the
local geometric properties of the equilibria of model and carry out numerical simulations to verify the
conditions for the stability properties of equilibrium points. Numerical results suggest that the host
immune system alone is not fully effective against progression of tumor cells, and CTLs play a crucial
role in immune surveillance.
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1. Introduction

The world-wide burden of cancer (malignant tumor) is one of the major health problems, with more
than 8 million new cases and 5 million cancer and cancer-related deaths per year [1]. Tumor cells can
lead to the appearance of specific antigens that are not found on normal cells and trigger reactions by
both the innate and adaptive immune systems [2–6]. Recent studies show that the immune system plays
an important role in recognizing and destroying tumor cells [7–9]. The immune response to tumor cells
is usually cell-mediated by the natural killer (NK) cells and CD8+ cytotoxic T lymphocytes (CTLs).

As the first line of defense in host body, NK cells kill tumor cells in a variety of distinct
ways [10–14]. In addition, NK cells do not express antigen receptors encoded by
recombination-activating genes, but instead express a range of germ-line encoded receptors, including
both inhibitory and activating proteins, to sense target cells. Upon the target cell recognition through
the integration of signals provided by a combination of inhibitory and activating receptors, NK cells
become activated. The ligands recognized by these distinct receptors include major histocompatibility
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complex (MHC) class I, stress-induced molecules, adhesion proteins and other molecules that are
used by NK cells to identify cells to be killed. Now we know that NK cells have an innate
mechanisms for target cells recognition, as well as an antibody-dependent mechanism [15, 16].

As part of the adaptive immunity, CTLs play a crucial role in recognizing and destroying tumor
cells [17–21]. When CTLs bind to epitopes from endogenous antigens bound to MHC on the surface of
the tumor cells and lyse the cells with perforins, the activation of T cells occurs, and then the activated
CTLs can directly kill tumor cells. In short, the CTLs induced apoptosis of tumor cells is mediated
through two distinct pathways: (a) the release of lytic granules containing perforins and granzymes
which enter the target cells; (b) the interaction of Fas ligand (FasL) with Fas on the CTLs and target
cells. More and more studies have shown that the CTLs primed to combat the target cancerous cells
contributes to the success of immune surveillance in controlling the tumor development and growth
[22–25].

Mathematical modeling is a powerful tool that helps researchers understand complex regulatory
mechanisms. An early work in the modeling of the immune system came from Sercarz and Coons
[26]. After that, a deterministic predator-prey model was proposed to show that the survival rate was
increased if the immune system was stimulated and an increase of effector cells increased the chance
of tumor survival in some cases [27]. Recently, the majority of existing mathematical models in tumor
immunology are based on the sets of ordinary differential equations (ODEs). In 1994, Kuznetsov et
al. defined an ODE model of the cytotoxic T lymphocytes response to the growth of an immunogenic
tumor [28]. They predicted a threshold above which there was uncontrollable tumor growth, but below
which the disease was attenuated with a recurrent profile with a 3-4 month cycle. Moreover, Tessi et
al. developed a set of ODEs considering all compartments of the immune system related to the tumor
response, which was based on experimental and clinical results [22]. The results of this paper suggested
that for a given tumor growth rate, there was an optimal antigenicity maximizing the response of the
immune system. In the work of Mahasa et al., the model was designed to illustrate how tumor evaded
both arms of host immunity, which was the first mathematical study of the tumor cells escape and
acquisition of immune resistance to immune system mediated by NK cells and CTLs [23].

Recent progress in tumor immunology and advances in immunotherapy suggests that the immune
system plays a fundamental role in combating tumor cells [2–4, 14, 16]. Therefore, it is important to
investigate the mechanisms underlying an effective immune response to tumor cells by using
mathematical models. For example, Tessi et al. developed a model including the primary cell
populations involved in effector T-cell mediated tumor killing: regulatory T cells, helper T cells, and
dendritic cells [22]. On the contrary, De Pillis and colleagues considered NK cells, cluster of
differentiation 8(CD8), circulating lymphocytes and interleukin 2(IL-2) to introduce a popular
model [24]. Despite the fact that the major advances in the fight against tumor cells, previous studies
have considered too many immune cells, so the interactions between tumor cells and the immune
system are unclear.

To investigate the interactions between immune cells and tumor cells more clearly, we propose a
mathematical model that focus on those elements of the immune system that are known to be significant
in controlling tumor growth. So, the model consists three important agents, namely NK cells, CTLs,
and tumor cells. We first assume that both tumor cells and NK cells grow logistically. The logistic
model gives the description of the saturated growth dynamics. If the growth dynamics is well under the
saturation, it is a linear growth dynamics that has been used in the current modelling approaches. Thus,
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the logistical growth mechanism provides an alternative method to describe the growth dynamics of
NK cells. In addition, the proposed model takes into account an important role of the immune response
in the control of tumor cells. Our mathematical model of tumor-immune interactions mainly elucidate
the different roles of NK cells and CTLs in suppressing tumor cells. This work represents an attempt
to use a relatively simple model to capture the desired behaviors of the system dynamics.

2. Methods

2.1. Mathematical model

In this paper, we propose a model which consists a set of three ordinary differential equations
to describe the immune response to tumor cells. Our proposed model are based on the following
assumptions.

1) For the growth law terms of tumor cells, we consider several possible models including
exponential growth, Gompertz growth, and logistic growth. It has been found in numerous studies
both in vivo and in vitro that the growth of a tumor cell population is exponential for small quantities
while growth is slowed at large population sizes. According to the data in [29], we assume that a
tumor follows logistic growth in the absence of immune system.

2) As part of the innate immunity, NK cells are present and active in the host all the time, even in
the absence of tumor cells.

3) As part of the adaptive immunity, CTLs only occur in large numbers when tumor cells are present
in the host body.

4) Both NK cells and the CTLs are capable of killing tumor cells. But CTLs play a leading role in
killing tumor, as part of the adaptive immunity.

5) When immune system encounter with tumor cells, some number of NK cells and CTLs become
inactive, but have no damage on the cells.
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Figure 1. Schematic diagram of immune system interaction with tumor cells.

Based on the above assumption, we develop a three-population model that tracks the numbers of
tumor cells, NK cells and CTLs. Figure 1 demonstrates the detailed interactions between these cells.
We use N(t), L(t) and T (t) to represent the number of NK cells, CTLs, and tumor cells at time t,
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respectively. The model of ordinary differential equations describing the growth, death, and
interactions of these populations is given by:


N
′

(t) = aN(t)(1 − bN(t)) − α1N(t)T (t),
L
′

(t) = rN(t)T (t) − µL(t) − β1L(t)T (t),
T
′

(t) = cT (t)(1 − dT (t)) − α2N(t)T (t) − β2L(t)T (t),
(2.1)

with initial condition N(0) = N0 ≥ 0, L(0) = L0 ≥ 0, and T (0) = T0 ≥ 0.

In our model, all the parameters a, b, c, d, r, µ, α1, α2, β1, β2 are positive constants. The rate of
the NK cell populations growth is denoted by a, which includes both cell multiplication and death, and
the parameter 1

b represents the maximum carrying capacity of NK cells. We assume that in absence
of immune systems, the tumor cell populations follow logistic growth cT (t)(1 − dT (t)), with intrinsic
growth rate c and maximum carrying capacity 1

d . Since we have assumed that CTLs are only present
in the host immune system only when the tumor cells are present, the growth term for CTLs consists
only of natural cell death −µL(t). The recruitment term rN(t)T (t) represents interactions between
NK cells and tumor cells, through which we model the fact that the specific immune response of
CTLs is activated only after the activation of the earlier response of innate immunity. Additionally,
immune cells are inactivated through contact with tumor cells, the parameters α1, β1 represent the
respective proportions of NK cells and CTLs that are detached, when tumor cells bound with them.
The parameters α2, β2 represent the respective proportions of the fractional tumor cells which are killed
by NK cells and CTLs.

2.2. The reduced model

In order to quantitatively analyze the model, we attempt to determine the model baseline parameter
values or at least a reasonable physiological range for them, and fix the values of state variables c,
d, µ, α1, β1. A detailed listing of the parameters in model (2.1), along with their units, descriptions,
estimated values and reference sources from which these values were taken, is provided in Table 1.

Table 1. Summary of the parameters associated with model (2.1).

Parameters Units Description Estimated value(units) Source
a day−1 Growth rate of NK cells none none
b cell−1 Inverse of NK cells carrying capacity none none
c day−1 Growth rate of tumor 5.14 × 10−1 [29]
d cell−1 Inverse of tumor carrying capacity 1.02 × 10−9 [29]
r cell−1day−1 Rate of NK-lysed tumor cell debris activation of CTLs 1.1 × 10−7 [32] [25]
µ day−1 Death rate of CTLs 2.0 × 10−2 [32]
α1 cell−1day−1 Rate of NK cell death due to tumor interaction 1.0 × 10−7 [29]
α2 cell−1day−1 Rate of NK-induced tumor death 3.23 × 10−7 [29] [33]
β1 cell−1day−1 Rate of CTLs death due to tumor interaction 3.42 × 10−10 [27]
β2 cell−1day−1 Rate of CTLs-induced tumor death none none
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Then the model (2.1) is as follows:
N
′

(t) = aN(t)(1 − bN(t)) − 1.0 × 10−7N(t)T (t),
L
′

(t) = rN(t)T (t) − 2.0 × 10−2L(t) − 3.42 × 10−10L(t)T (t),
T
′

(t) = 5.14 × 10−1T (t)(1 − 1.02 × 10−9T (t)) − α2N(t)T (t) − β2L(t)T (t),
(2.2)

For the sake of simplicity, we put in dimensionless form the model (2.2), i.e,

N̄ =
α2

µ
N, L̄ =

α1α2

rµ
L, T̄ =

α1

µ
T, dt =

1
µ

dτ.

By rewriting N̄, L̄, T̄ , τ as N, L,T and t, respectively, this lead to the following dimensionless model:
N
′

(t) = pN(t)(1 − qN(t)) − N(t)T (t),
L
′

(t) = N(t)T (t) − L(t) − 3.42 × 10−3L(t)T (t),
T
′

(t) = 25.7T (t)(1 − 2.04 × 10−4T (t)) − N(t)T (t) − δL(t)T (t),
(2.3)

where p = a
µ
, q =

bµ
α2

, δ =
rβ2
α1α2

, c
µ

= 2.57 × 10, dµ
α1

= 2.04 × 10−4, β1
α1

= 3.42 × 10−3.

3. Results

3.1. Equilibria of the reduced model

In this section, we first identify the positively invariant set of the model (2.3), and then study the
existence and stability of equilibrium points. Regarding the positively invariant set, we have the
following results.

Lemma 3.1. The following set is a positively invariant set of model (2.3) R3
+ = {(N(t), L(t),T (t))|N(t) ≥

0, L(t) ≥ 0,T (t) ≥ 0}.

Proof. Let X(t) = (N(t), L(t),T (t)) be any positive solution of model (2.3), with initial condition X(0) ∈
R3

+. By the equations of the model (2.3), we have that

N(t) = N0e
∫ t

0 (p(1−qN(s))−T (s))ds,

L(t) = L0e
∫ t

0 ( N(s)T (s)
L(s) −1−3.42×10−3T (s))ds,

T (t) = T0e
∫ t

0 (2.57×10(1−2.04×10−4T (s))−N(s)−δL(s))ds.

That is, if N0 ≥ 0, L0 ≥ 0,T0 ≥ 0, then N(t) ≥ 0, L(t) ≥ 0,T (t) ≥ 0. Thus, R3
+ is a positively

invariant set of model (2.3). �

The equilibria of the model are determined by setting N
′

(t) = L
′

(t) = T
′

(t) = 0, and solving the
resulting algebraic equations:

pN(t)(1 − qN(t)) − N(t)T (t) = 0,
N(t)T (t) − L(t) − 3.42 × 10−3L(t)T (t) = 0,
25.7T (t)(1 − 2.04 × 10−4T (t)) − N(t)T (t) − δL(t)T (t) = 0.

(3.1)
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Then the model (2.3) has two non-negative boundary equilibria: O(0, 0, 0), E0(1
q , 0, 0) and endemic

equilibria E1(N∗1 , L
∗
1,T

∗
1) , E2(N∗2 , L

∗
2,T

∗
2). Here

N∗i =
p − T ∗i

pq
, (3.2)

L∗i =
(p − T ∗i )T ∗i

pq(1 + 3.42 × 10−3T ∗i )
, (3.3)

and T ∗i (i = 1, 2) are solutions of the following equation, given by

(3.42×10−3 +δ−1.7930376×10−5 pq)T 2 +(8.26512×10−2 pq−3.42×10−3 p−δp+1)T +25.7pq− p = 0.
(3.4)

It is clear that N∗i > 0, L∗i > 0, when 0 < T ∗i < p. Thus, endemic equilibria exist if and only if
0 < T ∗i < p. By using the Vieta’s theorem, we have results about the existence of endemic equilibria
of model (2.3) that are presented in Supplementary information Table S1.

From the above discussion, model (2.3) has three kinds of equilibrium points: O(0, 0, 0), E0(1
q , 0, 0),

Ei(N∗i , L
∗
i ,T

∗
i ). O(0, 0, 0) means that there is no tumor and no immune cells in the host, which can

be ignored. The equilibrium point E0( 1
q , 0, 0) shows that there are only NK cells, which means that

the tumor cells should be completely eliminated by treatment and other means. However, positive
equilibrium points Ei(N∗i , L

∗
i ,T

∗
i ) occur where a small tumor mass might coexist with a large number

of immune cells.

3.2. Stability of the reduced model

We now analyze the local geometric properties of the non-negative equilibria of model (2.3). The
first equilibrium O(0, 0, 0) is the trivial state, where all the populations are zero. The eigenvalues of
Jacobian matrix for O(0, 0, 0) are p, −1, 25.7. Therefore, O(0, 0, 0) is always a locally unstable saddle.
For practical and biological reasons, we do not take into account zero equilibrium O(0, 0, 0).

The Jacobian matrix of the equilibrium at E0(1
q , 0, 0) is given by

J(E0) =


−p 0 −1

q

0 −1 1
q

0 0 25.7 − 1
q


The characteristic equation of J(E0) is

(λ + p)(λ + 1)(λ +
1
q
− 25.7) = 0. (3.5)

So the eigenvalues of characteristic equation are −p, −1, 25.7 − 1
q . Hence, E0( 1

q , 0, 0) is a saddle for
q > q∗3 = 1

25.7 , or E0( 1
q , 0, 0) is locally asymptotically stable for 0 < q < q∗3.

The Jacobian matrix of the equilibrium at Ei(N∗i , L
∗
i ,T

∗
i ), (i = 1, 2) is given by

J(Ei) =


p − 2pqN∗i − T ∗i 0 −N∗i

T ∗i −1 − 3.42 × 10−3T ∗i N∗i − 3.42 × 10−3L∗i
−T ∗i −δT ∗i 25.7 − 1.04856 × 10−2T ∗i − N∗i − δL∗i


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The characteristic equation of J(Ei) is

λ3 + Aλ2 + Bλ + C = 0, (3.6)

where

A = pqN∗i + 8.6628 × 10−3T ∗i + 1,
B = pqN∗i (8.6628 × 10−3T ∗i + 1) + 5.2428 × 10−3T ∗i + 1.79303 × 10−5T ∗i

2

+ δN∗i T ∗i − 3.42 × 10−3δL∗i T ∗i − N∗i T ∗i ,
C = pqN∗i (5.2428 × 10−3T ∗i + 1.79303 × 10−5T ∗i

2 + δN∗i T ∗i − 3.42 × 10−3δL∗i T ∗i )
− N∗i T ∗i − δN∗i T ∗i

2 − 3.42 × 10−3N∗i T ∗i
2.

According to Routh-Hurwitz theroem [34], the local geometric properties of Ei(N∗i , L
∗
i ,T

∗
i ), (i =

1, 2) are provided in Supplementary information Table S2.
Therefore, we can obtain the stability and type of all equilibrium points of the model (2.3), and the

meaningful results are listed in Table 2, detailed in Supplementary information Table S2.

Table 2. The stability of boundary equilibria and endemic equilibria of model (2.3).

No. p q delta O E0 E1 E2

1 (p∗2, p∗1) (q∗2, +∞) (6.97222 × 10−5, 1.42627 × 10−4) us us lasn nE
2 (p∗, 1.53797 × 106) (q∗3, q∗5) (1.06959, +∞) us us lasn nE
3 (p∗, p∗3) (q∗5, q∗4) (1.06959, +∞) us us lasn us
4 (0, p∗) (0, q∗1) (2.29881 × 10−4, +∞) us lasn nE us
5 (p∗, 5.12687 × 103) (1.64337 × 10−11, q∗3) (δ∗, +∞) us lasn nE us

us: unstable saddle; lasn: locally asymptotically stable node; nE: nonexistent

The equilibrium E0, Ei mean no tumor burden and large tumor burden, respectively. In cases 1–
3, E0 is unstable, and E1 is locally asymptotically stable. These show that the model allows for the
possibility of a large tumor mass, and tumor cells coexist with immune cells. However, cases 4 and 5
present different outcomes, namely E0 is locally asymptotically stable, and E2 is unstable. The most
ideal case is that E0 is stable, which we hope to achieve through treatment. The stability of Ei indicates
that tumor and immune cells in host body are in balanced. Tables 2 and 4 indicate that the stability of
the equilibrium points of the model (2.3) is mainly related to the parameters p, q and δ. Therefore, we
can change the stability of the equilibrium points of the model by changing the values of the parameters
p, q and δ.

3.3. Numerical simulations of the reduced model

In this subsection, we show that how the number and stability properties of the equilibrium points
are affected by the changes of parameters p, q, and δ. In all the simulations in Figure 2, we use
the parameter values in Table 1 but specify the different values of p, q, and δ. For the selection
of the parameters p, q, and δ, the detailed algorithm are shown in section 2 of the Supplementary
information. The numerical solutions of our model (2.3) along with the initial condition, are carried
out using MATLAB ode45.
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Firstly, for Case 1 in Table 2, we choose p = 7.3×103, q = 5.1×10−1, δ = 7×10−5. Simulated results
for this case, with initial condition 1×104 NK cells, 1×102 CTLs and 1×106 tumor cells, are pictured
in Figure 2(a). As shown in Figure 2(a), the tumor cell populations and immune cell populations are
non-zero for long days, and they tend to a constant value, that is, positive equilibrium E1(N∗1 , L

∗
1,T

∗
1) is

stable in this case.
Then, we simulate Case 3 in Table 2. In this case, p = 5 × 103, q = 6.2, δ = 1.08 are used in

simulation. The initial condition is N(0) = 1 × 104, L(0) = 1 × 102, T (0) = 1 × 106. Figure 2(b) shows
the number of immune and tumor cells. Compared with the simulation of Case 1, the number of tumor
cells is much smaller than that in Case 1.

Finally, we simulate Cases 4 and 5 in Table 2. In both cases we use q = 3×10−2, but use p = 4.9×103

and δ = 3 × 10−2 in Case 4, while p = 5 × 103, δ = 4 × 10−3 in Case 5. The initial values for these two
cases are the same as that in Case 1. Results in Figure 2(c),(d) show that, after a period of time, the
number of NK cells approaches a constant value, while the numbers of tumor cells and CTLs tend to 0.
The number of CTLs tends to 0 because we assume that CTLs only occur when tumor cells are present
in the system. These results indicate that the equilibrium E0( 1

q , 0, 0) is stable. In addition. although the
tumor cells are eliminated and the number of NK cells tend to be a constant in Cases 4 and 5, the time
of tumor elimination is different in Figure 2(c),(d).

The results in Figure 2 suggest that the parameters p, q, δ are important parameters to determine
the stability of the equilibrium points. The parameter space are within a region where we have two
equilibria: one with zero tumor burden (E0), and one with a large tumor burden (Ei). In medicine,
the goal of treatment is to eliminate tumor cells, which is reflected in mathematical model to drive the
system toward the zero tumor burden equilibrium E0. It is known from the above numerical simulations
that the NK cells environmental maximum capacity 1

q and the CTLs-induced tumor death rate δ should
be enhanced through treatment and other methods to achieve E0 stability. However, based on the
practical significance, NK cells environmental maximum capacity cannot be changed. Therefore, we
can increase the source of CTLs through treatment to improve the lethality of CTLs.

3.4. Tumor sensitivity of the parameter q

Despite some parameters the model (2.3), we note that it is significantly more sensitive to variations
to a few parameters. A sensitivity analysis of the parameters can highlight those model parameters that
have the greatest effect on model outcome. A standard approach to performing this analysis is to fix
all the parameters of model but one value, and then to increase or decrease one parameter by a certain
percentage, and examine the effect on the model outcome. After parameter sensitivity analysis, we find
that the parameter with the highest influence on tumor cells is the maximum environmental capacity of
NK cells 1

q . In model (2.3), we set p = 6 × 103, δ = 6.8 × 10−5, and q takes a value of 0.01 to 1, with
intervals of 0.01. Then we plot the number of tumor cells at t = 1000, with initial condition 1 × 104

NK cells, 1 × 102 CTLs and 1 × 106 tumor cells. As can be seen from the Figure 3, a small change
in parameter q determines whether the number of tumor cells tends to be large or small or zero. This
finding hints at the direction we should follow to treat tumor cells. Since q =

bµ
α2

, we can search for
effective treatments to eliminate tumor cells by changing the parameters b, µ, α2. Given the human
body’s ability to tolerate, it is impossible to increase the maximum environmental capacity of NK cells
1
b . Therefore, we can search for effective treatments to eliminate tumor cells by decreasing death rate
of CTLs and increasing rate of NK-induced tumor death.
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(a) Numerical simulation of Case 1
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(b) Numerical simulation of Case 3
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(c) Numerical simulation of Case 4
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(d) Numerical simulation of Case 5

Figure 2. Simulations of the reduced model based on different sets of parameters, which are
correspond to the different cases in Table 2.
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Figure 3. Sensitivity analysis of the parameter q.
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4. Discussion

In this work, we develop a novel mathematical model to describe how tumor cells evolve and survive
the brief encounter with the immune system, which is in conformity with experimental data [29].
Compared with other models developed previously, main novelty of this model is to integrate the
dynamics of important parts of immune system. The main contributions of this model are the use of two
immune cell populations to reduce the tumor burden, and understand the interactions between tumor
cells and immune system clearly. Through an analysis of model (2.3), we get the equilibrium points
of the model, as well as the conditions for stability or instability. The above results demonstrate the
fact that an effective immune surveillance, mediated by NK cells and CTLs, is capable of controlling
small tumor cells growth. More importantly, the model simulations (see Figure 2) indicate that the
very small changes in parameters p, q, δ can have drastic consequences on the outcome of the tumor
cells. This means that NK cells and CTLs play a crucial role in tumor immune surveillance. What’s
more, the immune system alone is not fully effective against tumor progression.

The simulations of model, depicted in Figure 2(c),(d), support the importance of CTLs in immune
surveillance. What’s more, an increment in the number of CTLs or rate of CTLs-induced tumor death
results in depleted number of tumor cells. Thus, the CTLs based therapy can be used to enhance
immune surveillance against developing tumors. More importantly, the parameter q plays an important
role in the state of tumor cells. As shown in the Figure 3, we can see that small change in parameter
q can change the state of tumor cells greatly. In fact, weak immunogenicity is suggested to be a
major route of immune response failure under which adaptive immunity ultimately disappears without
sufficient antigenic stimulations.

Through the discussion in this work, we know that the immune system is not able to completely
control the development of tumors or destroy tumors. So, it is vital to consider treatment in the model.
Past studies and clinical results have shown that surgery, chemotherapy, radiation therapy, and
combination therapy are among the effective treatments for tumor patients [24, 30, 35, 36]. Although
these treatments have played key roles in tumor treatment, there are some side effects in many cases.
Immunotherapy is being developed and tested as a promising new approach to treatment for tumor
patients [2–4, 9]. Immunotherapy for tumor operate via several different ways. The goal of
immunotherapy is to boost the system’s own immune defense against the tumor. Some therapies aim
to promote the response from cytotoxic T-lymphocytes, such as CTLs, by attaching
immune-stimulating adjuvants such as a virus or bacteria to a patient’s own irradiated tumor
cells [31]. Based on the results of this work, we can consider adding a drug to the model that directly
stimulates CTLs activity without side effects.

In collaboration with mathematicians, biologists and physicians, we hope to use mathematical
models to better and more scientifically plan the schedules of the therapies. In the future work, we
will propose a mathematical model to investigate the interactions between immunotherapy and tumor
cells in more depth, understand dose-response profiles and then optimize therapeutic strategies to
reduce tumor cells. This could be a nontrivial task for giving optimal therapy to take into account
such important physiological processes as drug diffusion, nutrient consumption and the development
in tumor cells. Despite these complexities and limitations, we still believe that the mathematical
models are useful in aiding our understanding of tumor cells biology and treatment. And the models
will be invaluable for testing hypotheses, as well as identifying biological mechanisms.

Mathematical Biosciences and Engineering Volume 18, Issue 1, 373–385.



383

References

1. F. Bray, A. Jemal, N. Grey, J. Ferlay, D. Forman, Global cancer transitions according to the Human
Development Index (2008-2030): a population-based study, Lancet Oncol., 13 (2012), 790–801.

2. L. G. De Pillis, A. E. Radunskaya, C. L. Wiseman, A validated mathematical model of cell-
mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950–7958.
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