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Abstract: Targeted therapy is one of the promising strategies for the treatment of cancer. However,
resistance to anticancer drug strongly limits the long-term effectiveness of treatment, which is a
major obstacle for successfully treating cancer. In this paper, we analyze a linear system of ordinary
differential equations for cancer multi-drug resistance induced mainly by random genetic point
mutation. We investigate that the resistance generated before the beginning of the treatment is greater
than that developed during-treatment. This result depends on the concentration of the drug, which holds
only when the concentration of the drug reaches a lower limit. Moreover, no matter how many drugs are
used in the treatment, the amount of resistance (generated at the beginning of the treatment and within
a certain period of time after the treatment) always depends on the turnover rate. Using numerical
simulations, we also evaluate the response of the mutant cancer cell population as a function of time
under different treatment strategies. At appropriate dosages, combination therapy produces significant
effects for the treatment with low-turnover rate cancer. For cancer with very high-turnover rate (close
to 1), combination therapy can not significantly reduce the amount of resistant mutants compared to
monotherapy, so in this case, combination therapy would not have advantage over monotherapy.
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1. Introduction

Cancer is a major public health problem and a leading cause of death in every country of the
world [1]. Promising clinical approaches that could counter cancer are urgently needed, such as
targeted therapy. After decades of development, it has become an effective and standard way for the
anticancer treatment [2]. However, drug resistance to targeted therapy often strongly limits the
long-term effectiveness of treatment and reduces the survival rates for cancer patients [3]. Therefore,
drug resistance is one of the major obstacles to improving the chances of clinical anticancer treatment
success.

Diverse forms of approaches have been proposed that aim to better understand and eventually
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overcome drug resistance [4], one of which, of course, is the experimentally reveal mechanisms of
drug resistance. Although the cancer resistance mechanisms are very complex, several of them have
been revealed [5–9]. One mechanism of resistance generation is the result of genetic events such as
mutations. Studies have shown that two main types of mutations, gene amplification and point
mutation, lead to cells drug resistance [10–12]. Gene amplification is the result of an overproduction
of one or more specific genes, which means that a parts of the genome is copied to a much greater
extent than the replication of DNA composing the rest of the genome. This defect expands the
phenotype that the gene gives to the cells, which in turn, induces resistance by giving the cells with
more copies of a specific gene than the drug can handle. However, the frequency of gene
amplification occurs is much lower than point mutation [10]. Point mutation prevents the drug from
successfully binding to the target protein, which is a permanent phenomenon and makes its progeny
cells resistant to the drug. It is this type of drug resistance that we consider in this paper.

Experimental studies in vitro and in vivo have made rapid progress in revealing the mechanisms of
drug resistance. One may pay attention to such problems as: how does the generation of drug
resistance depend on the tumor size, mutation rate and the number of drugs? Does resistance arise
before the beginning of the treatment or mainly during treatment? How does the possibility of
resistance generation change depend on the dosage of the drug? Whether combination therapy have
an advantage over monotherapy? Independent experimental studies are expensive and
time-consuming because of multiple cell types and drug dosages need be considered except for other
experimental conditions and challenges. As an alternative, mathematical modeling is a powerful tool
that may helps us address these problems.

Many mathematical models have been proposed to study drug resistance based on biological
mechanisms, such as ordinary differential equation (ODE) model [13], stochastic model [14, 15],
stochastic differential equation (SDE) model [8], partial differential equation (PDE) model [16] or
other models [17–19]. The first model of drug resistance due to point mutation can be traced back to
the classical study by Goldie and Coldman [20] in 1979, who analyzed the probability of the
appearance and evolution of resistant by using stochastic processes (see [21, 22]). After that, more
results on point mutation are obtained by the authors for the case of one or multi-drug
resistance [23–26]. For example, in [24], a stochastic model is developed by Komarova to analyze the
dependence of the probability of resistance generation on the initial tumor load, mutation rate and
turnover rate. This model showed how the pre-existence of resistance is more important than the
generation of during-treatment. Using birth and death processes, Foo and Michor [26] described the
evolution of resistance during treatment due to a single (epi)genetic alteration. They further provided
a methodology for predicting the risk of resistance under various dosing strategies. Another recent
work is by Bozic et al. [27], in which branching processes are used to describe the evolutionary
dynamics of lesions in response to treatment. They improved on the results previously obtained in
these works and provided a closer match to simulations. Although these models have greatly
improved our understanding of cancer progression, the stochastic methods used are often have their
complexity. Tomasetti and Levy [28] built a simple ODE-based model to obtain comparable results to
those using complex techniques of stochastic model. The advantage of this model is that it is possible
to analyse the results of resistance to any number of drugs. However, this framework did not address
the relationship among drug resistance and dosage of the drug and evaluate the efficiency of
combination drug therapy. It is desirable to develop mathematical models that can fully evaluate the
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evolution of drug resistance and the efficiency of combination therapy.
In this paper, we improve the mathematical model proposed by Tomasetti and Levy [28] to connect

drug resistance to dosage of the drug. The basic modeling assumptions and ODE-based model are
introduced in section 2. In section 3, we show the main results obtained from the model analysis: the
dependence of resistance present at time of the beginning of the treatment on turnover rate, the relative
roles between pre-treatment phase and treatment phase, and the efficiency of combination therapy are
discussed. Finally, we finish the paper with conclusions and future directions in section 4.

2. Mathematical model

In this section, we propose a linear system which consists of a set of ordinary differential equations
for cancer drug resistance in the context of multi-drug therapy. This model is an extension of previous
work by Tomasetti and Levy [28], the main difference is that we improve the model by a more accurate
Hill function dosing model, so as to analyze the influence of drug concentration changes on the amount
of resistance generated in pre-treatment phase and during treatment.

2.1. The conceptual framework

In the course of cancer progression, each cell has a certain probability to undergo death, division,
mutation, or transformation. These different processes can lead to an increase or decrease in the number
of cells of the given type, see Figure 1. However, mutations may give rise to different types of cells
that are resistant to drugs. To better understand how the process of generation of resistance to the drug,
we present the following conceptual framework. If we only consider treatment with one drug, then
there are two types of cells in the system that are either susceptible or resistant to this drug. We can
describe this process by the network x1

µ
−→ x0, where µ is the mutation rate, the subscript j in notation

x j represents susceptibility ( j = 1 means susceptible, and j = 0 not susceptible to this drug ).
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Figure 1. The four basic processes:
death, division, mutation and
transformation (applied to one of
the “red” cells).
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Figure 2. Mutation network for three
drugs (see text for details, also see refs.
[23, 24]).

For the treatment with n different drugs, a cell has to accumulate n mutations to become resistant to
all drugs. We assume that there are n types of mutations, and the mutation rates are denoted by µ1, µ2,
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..., µn. Each mutation rate µi corresponding to a phenotype resistant to drug i. Thus, it is easy to find
that different resistant phenotypes can be up to m = 2n − 1. As an example, the mutational processes
for n = 3 can be presented by a combinatorial mutation network, which is shown in Figure 2. Each
node corresponds to a phenotype, which is described by the binary number of length n: “0” represents
susceptible to the drug corresponding to its position, “1” represents resistant. The symbol below the
nodes represents the corresponding variable. For example, 010 denotes this phenotype is resistant to
drug 2 but not to drug 1 and 3. 000, 111 denote fully susceptible or resistant to all drugs, respectively.

2.2. The case of one drug

Let us suppose that we have one drug. Denote by N(t) and R(t) the number of wild-type cancer
cells (drug-sensitive cells) and resistant cells (resistance is acquired by means of a mutation) at time t,
respectively. Our model is based on the following assumptions:

(1) According to the Skipper-Schabel-Wilcox model, we assume that cancer cells follow exponential
growth as in ref. [28].

(2) Denote the birth, death, and mutation rate as l, d and µ, respectively. Assume that 0 < µ � 1, the
condition 0 ≤ d < l corresponds to a clonal expansion. The ratio 0 ≤ d/l < 1 defines the turnover
rate of cancer cells. We call the scenario where d/l � 1 a low-turnover, low death cancer. In
contrast, the scenario where d/l ≈ 1 describes extremely high-turnover, high death cancer. To
simplify the initial presentation, we consider a symmetrical case, assume that the birth rate, death
rate and mutation rate are the same for all types cells.

(3) In this paper, we only consider the scenario of non-mutagenic drugs. The drug-induced death rate
h̃ depends on drug concentration (D) using Hill function h̃ = h · D/(K + D) as in ref. [8], where h
represents maximal death rate, and K is a Michaelis constant representing the drug concentration
associated with reaching the half-maximal inhibition effect.

(4) Assume that resistance is acquired by means of a point mutation, which happens only in one
direction. As a result, a drug-sensitive cell differentiating into one drug-sensitive and one mutant
cell [24].

With these assumptions, the model given by Tomasetti and Levy [28] can be modified as follows:N′(t) = (l − d)N(t),
R′(t) = (l − d)R(t) + µN(t).

t ≤ t∗. (2.1)

N′(t) =
(
l − d −

h · D1

K1 + D1

)
N(t),

R′(t) = (l − d)R(t) + µN(t)
t > t∗. (2.2)

where the drug therapy starts at time t∗. D1, K1 represent concentration and Michaelis constant of the
first drug, respectively. The system (2.1) describes the pre-treatment dynamics with initial condition
N(0) = N0 > 0 and R(0) = 0, and system (2.2) describes the dynamics after the treatment starts with
initial conditions N(t∗) and R(t∗), which are the solutions of system (2.1) at t = t∗.

Remark 1. In the present model, we assume that resistant cells behave in the same way as the sensitive
cells. This may not be the case, it is possible that resistant cells have a relative fitness advantage or
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disadvantage compared to the sensitive cells. See for example [25], if the birth and death rate are
l1, d1 for sensitive cells, l2, d2 for resistant cells, respectively. Then the relative fitness is given by
α = (l2 − d2)/(l1 − d1), resistant cells can be advantageous (α > 1), neutral (α = 1), or deleterious
(α < 1). Therefore, the relative fitness considered in this paper is only the neutral case. It can be
modified according to different situations.

2.3. The case of two drugs

Let us consider the treatment with two drugs. Denote by R1(t) and R2(t) the number of mutant
cancer cells that they are resistant only to the first or to the second drug at time t, respectively. The
number of mutated cells that are resistant to both drugs at time t is denoted by R(t). Before presenting
our model, we have the following additional assumptions in addition to the case of one drug:

(5) Assume that two drugs have similar effects when inducing the death of drug-sensitive cancer cells,
namely, both two drugs can increase the death rate of drug-sensitive cells. Using Hill function, the
death rate of drug-sensitive cancer cells following treatment can be given by h̃ = h·

( D1
K1+D1

+ D2
K2+D2

)
,

where D2, K2 represent concentration and Michaelis constant of the second drug, respectively.
(6) Assume that for any cells that are non fully resistant state, if they are resistant to only one drug,

the second drug is still effective and can kill the cells with the maximum rate. That is, the mutant
cells that are resistant to only the first drug, they can still killed by the second drug with the rate

h·D2
K2+D2

; similarly, mutant cells that are resistant to only the second drug, they can still killed by the
first drug with the rate h·D1

K1+D1
.

Under these assumptions, the model for drug resistance with two drugs is given by
N′(t) = (l − d)N(t),
R′1(t) = (l − d)R1(t) + µN(t),
R′2(t) = (l − d)R2(t) + µN(t),
R′(t) = (l − d)R(t) + µR1(t) + µR2(t).

t ≤ t∗. (2.3)



N′(t) =
(
l − d − h · (

D1

K1 + D1
+

D2

K2 + D2
)
)
N(t),

R′1(t) =
(
l − d −

h · D2

K2 + D2

)
R1(t) + µN(t),

R′2(t) =
(
l − d −

h · D1

K1 + D1

)
R2(t) + µN(t),

R′(t) = (l − d)R(t) + µR1(t) + µR2(t).

t > t∗. (2.4)

Similarly, in the case of treatment with two drugs, the system (2.3) and (2.4) describe the dynamics of
pre-treatment phase and after the treatment starts, respectively.

Remark 2. To model the clinically relevant situation where we start treatment when the tumor reaches
a detectable size, we use the following trick to estimate the time of the beginning of the treatment t∗.
Assume that the initial number of cancer cells is N0 (N0 � 1) instead of one cell and the total number
of cancer cells at time t∗ is M. Using eigenvalue method, we can easily obtain the solutions of system
(2.1) are

N(t∗) = N0e(l−d)t∗ and R(t∗) = N0µt∗e(l−d)t∗
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By N(t∗) + R(t∗) = M and the mutation rate µ � 1, the time t∗ can be estimated as

t∗ ≈
1

l − d
ln

M
N0
. (2.5)

In this way, we can extend our model to the case of treatment with any number of drugs are being
simultaneously used. As an example, we show the model of treatment with three drugs in detail in S.1
of Supplementary information. While the basic mathematical tools that we used allow us to study the
case of n-drug, it is undeniable that any deterministic model has its complexity and limited validity in
mathematical processing as the number of drugs increases. Moreover, the combination of more than
three drugs is less practical in clinical application and may cause unknown side effects. Therefore, we
mainly focus on the combination of two drugs in this paper.

3. Results

3.1. Dependence on the turnover rate d/l

In this section, we investigate how does the generation of resistance at time of the beginning of the
treatment t∗ depends on the turnover rate d/l. Furthermore, we analyse the effect of the mutation rate
and detection size on resistance.

First, consider the case of one drug only. For the system (2.1), the solution of R(t∗) with initial
condition R(0) = 0 is given by

R(t∗) = N0µt∗e(l−d)t∗ .

In view of (2.5) to evaluate t∗ yields

R(t∗) = N0µt∗e(l−d)t∗ ≈
Mµ ln M

N0

l(1 − d
l )
. (3.1)

Therefore, we can see for one-drug treatment, the resistance present at time of the beginning of the
treatment is dependent of the turnover rate d/l.

For the case of two drugs, the solutions of R1(t∗) and R2(t∗) are given by

R1(t∗) = N0µt∗e(l−d)t∗ ,

R2(t∗) = N0µt∗e(l−d)t∗ .

By using eigenvalue method, we obtain

R(t∗) = N0(µt∗)2e(l−d)t∗ ≈ M
[ µ ln M

N0

l(1 − d
l )

]2
. (3.2)

Similarly, if we extend to the case of treatment with n drugs, then

R(t∗) = N0(µt∗)ne(l−d)t∗ ≈ M
[ µ ln M

N0

l(1 − d
l )

]n
. (3.3)

Another expression for the number of cells resistant to n drugs with no cross resistance can be found in
[27] (Eq (11) in the Supplement). Now we can obtain the same result, that is, the amount of resistance
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present at time t∗ always depends on the turnover rate d/l. This dependence becomes increasingly
stronger with the increase of the number of drugs, see Figure 3. For low-turnover rate, lower-death
cancer, the resistance in the pre-treatment is smaller. In contrast, for high-turnover rate, higher-death
cancer, the larger is the resistance present before treatment. It should be noted that for extremely high
turnover rate (d/l ≈ 1) such that µ ln M/N0

l(1−d/l) > 1, combination therapy is unlikely to yield an advantage
than monotherapy.
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Figure 3. The dependence of the amount of resistance present at time t∗ on turnover rate d/l.
The higher the turnover rate, the larger is the resistance. This dependence becomes stronger
with the increase of the number of drugs. Parameter values are chosen as follows: l = 0.2,
M = 109, N0 = 102, µ = 10−4.

In addition, with the increase of the number of drugs, we find two important differences:

• The amount of resistance now depends on the mutation rate, µ. If the mutation rate is higher, the
larger is the resistance present when the tumor reaches a detectable size. The larger the number
of drugs, the stronger this dependency (Figure 4(a)).
• An increase in the detection size, M, results in a larger resistance. Increasing the number of drugs,

the smaller the resistance is generated (Figure 4(b)).

In the simulations above, the parameters we used within biologically reasonable ranges, which
are collected or estimated from previous studies. The details are described in S.2 of Supplementary
information. The biological meaning underlying the parameters along with their units, estimated values
and reference sources are listed in Supplementary Table S.1.

3.2. Generation of resistance before and after treatment

In this section, we compare the generation of resistance before treatment and during treatment. In
other words, at what stage is resistance mainly generated: before treatment starts, or during treatment?
How does the possibility of resistance generation change depend on the dosage of the drug? In order to
do this, we introduce two quantities, R↑i (t) and R↓i (t). If we artificially set the mutation rate to zero after
time of the beginning of the treatment, then the only drug resistance that is present at time t (t > t∗)
comes from before treatment. We call such resistance as the “pre-treatment resistance at time t”, this
is denoted by R↑i (t) (the symbol ↑ represents the contribution of the pre-treatment phase to resistance
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Figure 4. The amount of resistance present at time t∗ depends on the parameters of the
model. (a) Dependence on the mutation rate, µ. The higher the value of µ, the larger is the
resistance. The larger the number of drugs, the stronger this dependency. Parameter values
are: l = 0.2, d = 0.1 M = 109, N0 = 102. (b) Dependence on the detection size, M. The
larger the value of M and smaller the number of drugs, the larger is the resistance. Parameter
values are: l = 0.2, d = 0.1, N0 = 102, µ = 10−4.

generation, and the subscript i indicates the number of drugs we use). Next, we set the mutation rate
to zero in the pre-treatment phase, and turn it back after the treatment starts. Thus, resistance develops
only during treatment. We define such resistance as the “during-treatment resistance at time t”, R↓i (t)
(the symbol ↓ represents the contribution of the treatment phase to resistance generation). Now, we
calculate and compare the quantities R↑i (t) and R↓i (t).

For one drug, it is clear that the pre-treatment resistance R↑1(t) is the solution of R(t) in system (2.2)
with the initial condition

R(t∗) =
Mµ ln M

N0

l − d
,

thus the expression of R↑1(t) is given by

R↑1(t) =
Mµ ln M

N0

l − d
e(l−d)(t−t∗). (3.4)

The resistance that is generated only during treatment R↓1(t), is the solution of R(t) in system (2.2),
subject to the initial conditions N(t∗) = M and R(t∗) = 0, we obtain

R↓1(t) =
Mµ(K1 + D1)

h · D1

[
e(l−d)(t−t∗) − e(l−d− h·D1

K1+D1
)(t−t∗)

]
. (3.5)

As we can see if R↑1(t) > R↓1(t) is satisfied for any t > t∗, there must be

Mµ ln M
N0

l − d
≥

Mµ(K1 + D1)
h · D1

.
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Therefore, we have

D1 ≥
K1(l − d)
h + d − l

, (3.6)

This result holds under the assumption that M
N0
≥ e. On the other hand, in order to ensure treatment

intensity is in the biologically relevant range, we have h > (l − d)(K1 + 1). For convenience, in the
analysis below, we choose h ≥ 2(l − d) is realistic. With this, our result agree with [23, 24] also on the
selection of threshold value of treatment intensity (see page 361 of [24] and page 9715 of [23]). There
are two conclusions from these calculations:

• In the case of one drug, the generation of resistance before and at a specific time after the
beginning of treatment depends on the turnover rate d/l (see Eq (3.4)).
• Under the realistic treatment intensity D1 ≥

K1(l−d)
h+d−l (assuming that M/N0 ≥ e), we have R↑1(t) >

R↓1(t), that is, resistance is mainly generated before the beginning of the treatment.

In the case of two drugs, R↑2(t) is the solution of R(t) in system (2.4) with the initial condition

R(t∗) = M
[µ ln M

N0

l − d

]2
,

and therefore

R↑2(t) = M
[µ ln M

N0

l − d

]2
e(l−d)(t−t∗). (3.7)

On the other hand, the solution of the system (2.4) with the initial conditions
N(t∗) = M,

R1(t∗) = 0,
R2(t∗) = 0,
R(t∗) = 0,

is given by

R↓2(t) =
Mµ2(K1 + D1)(K2 + D2)

h2 · D1D2

[
e(l−d)(t−t∗) − e(l−d− h·D1

K1+D1
)(t−t∗)

− e(l−d− h·D2
K2+D2

)(t−t∗)
]

+
Mµ2(K1 + D1)(K2 + D2)

h2 · D1D2
e(l−d− h·D1

K1+D1
−

h·D2
K2+D2

)(t−t∗)
.

(3.8)

Thus for any t > t∗, if R↑2(t) > R↓2(t) is true, then

M
[µ ln M

N0

l − d

]2
≥

2Mµ2(K1 + D1)(K2 + D2)
h2 · D1D2

.

Now, it is easy to verify that under the treatment intensity

D1 ≥
K1(l − d)
h + d − l

and D2 ≥
K2(l − d)
h + d − l

, (3.9)

we have R↑2(t) > R↓2(t). This result holds under the assumption that M
N0
≥ e

√
2. We conclude the

following:
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• Eq (3.7) shows that the dependence of resistance generated before and at a specific time after the
treatment starts on the turnover rate d/l becomes increasingly stronger with the increase of the
number of drugs.
• For two drugs, the R↑2(t) > R↓2(t) holds under the realistic treatment intensity D1 ≥

K1(l−d)
h+d−l and

D2 ≥
K2(l−d)
h+d−l (assuming that M/N0 ≥ e

√
2). Hence, the generation of resistance in pre-treatment

phase always plays the dominant role than during-treatment.

Indeed, the result of R↑i (t) > R↓i (t) can be given a intuitive explanation. Before the beginning of the
treatment, cells have a clonal expansion because of l > d, which certainly facilitates the generation of
resistance. However, during treatment, cells have a negative growth rate since the treatment intensity
Di ≥

Ki(l−d)
h+d−l such that h·Di

Ki+Di
+ d > l. This makes it less likely that more mutations can be acquired.

Therefore, the generation of resistance before the beginning of the treatment is greater compared to the
resistance created during treatment.

It is worth noting that in the discussion above, we considered that all mutations occurred before or
after treatment. There is another situation that cannot be ignored, that is, some mutations happen before
treatment and others happen after. The question might becomes: what happens when the secondary
mutation occurs before or after treatment? In fact, we still have the same conclusion, that is, resistance
is primarily created before treatment. The details on the derivation of this question are given in S.3 of
Supplementary information.

3.3. Evaluation of drug combination effect
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Figure 5. Evaluation of different treatment strategies effects. We compare the amount of
resistance present at time t with (a) no treatment and drug-1 monotherapy, (b) a combination
of 150 mg drug-1 and 1 mg drug-2 (Drug-1 & Drug-2, 1x), and a combination of 150 mg
drug-1 and 2 mg drug-2 (Drug-1 & Drug-2, 2x). The time t = 0 refers to t = t∗. l = 0.2,
d = 0.1, other parameter values are listed in Table S.1.

The focus of this section is to evaluate the efficiency of drug combination therapy. In the following
study, we use numerical simulations to examine three treatment strategies: drug-1 alone (Figure 5(a))
or with a combination of drug-1 and drug-2 at doses of 150 mg and 1 mg (1x; Figure 5(b)) or 150 mg
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and 2 mg (2x; Figure 5(b)). Note that the drug doses have been normalized and we use dimensionless
concentrations of drugs in the simulations. On the other hand, we would like to stress that the parameter
values used in this section are purely for numerical illustration, and do not represent specific model fits
or therapies.

As shown in Figure 5, either treated with single drug or a combination of two drugs, an appropriately
elevated dosage of the drug can reduce the number of resistant cells. Furthermore, by comparing
Figure 5(a) with 5(b), we find that the number of resistant cells R(t) in Figure 5(b) is several orders
of magnitude lower than in Figure 5(a). Therefore, our model predict that combination therapy has a
significant advantage over single drug therapy.

However, this result may not hold for very high-turnover cancers. For example, if we assume the
death rate d = 0.199, then the turnover rate d/l = 0.995 ≈ 1. The other parameter values are consistent
with above. Next, we use the same way as in Figure 5 to compare different treatment strategies. The
simulation results are shown in Figure 6.
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Figure 6. Evaluation of different treatment strategies effects. We compare the amount of
resistance present at time t with (a) no treatment and drug-1 monotherapy, (b) a combination
of 150 mg drug-1 and 1 mg drug-2 (Drug-1 & Drug-2, 1x), and a combination of 150 mg
drug-1 and 2 mg drug-2 (Drug-1 & Drug-2, 2x). The time t = 0 refers to t = t∗. l = 0.2,
d = 0.199, other parameter values are the same as above.

From Figure 6, it can be seen that the number of resistant cells R(t) in Figure 6(b) is more than in
Figure 6(a), although they are of the same order of magnitude. Therefore, in this case, combination
therapy is unlikely to yield an advantage than monotherapy, which also illustrates the result in section
3.1.

4. Discussions

This section is designed to comment on the results obtained with our model and those obtained
in [23,24,27,28]. In order to model the evolution of drug resistance caused by stochastic genetic point
mutations, Tomasetti and Levy [28] proposed a basic ODE model. The advantage of their method
lay in the simplicity of the model, so that it could obtain drug resistance results comparable to those
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that were obtained by using complicated stochastic methods before (e.g, in [23, 24, 27]). However,
the drug-induced death rate considered in [28] is a constant, also in [23, 24, 27]. Drug-induced death
rate depends on the concentration of the drug actually, different death rate is caused by different drug
concentration. In this paper, we improve the model proposed by Tomasetti and Levy [28], establish
a more accurate Hill function dosing model, and analyse the effect of drug concentration changes on
the level of drug resistance before and after the treatment. Compared with the previous work, the main
differences of this paper are as follows:

(i) Our results agree with [28], which clearly show that no matter how many drugs are used in
the treatment, the amount of resistance (generated at the beginning of the treatment and within
a certain period of time after the treatment) always depends on the turnover rate, this result is
independent of the drug concentration (see Eq (3.1)–(3.3)). In contrast, one of the main results
of [23, 24] was that this dependence holds only in the case of multi-drugs, but not in the case of
single drug (see page 9715 of [23] and page 360 of [24]). Furthermore, we also analyse the effect
of the mutation rate and detection size on the amount of resistance. Both of these effects become
stronger with the increase of the number of drugs (see Figure 4).

(ii) In this work, we investigate the relative role of the pre-treatment phase and during-treatment in
the development of drug resistance. Our results indicate that the resistance generated before the
beginning of the treatment is greater than that developed during-treatment. This result depends on
the concentration of the drug, which holds only when the concentration of the drug reaches a lower
limit (see Eq (3.6)). From this perspective, the drug-induced death rate h must satisfy h > 2(l− d)
(see section 3.2). However, the condition for this result in [28] to hold was h > l − d (see page
6). The reason for this difference is that [28] did not consider the effect of drug concentration on
drug resistance, neither in [24, 27].

(iii) We improve the work of [28] and evaluate the effect of drug combination. The results show
that regardless of single-drug therapy or two-drug combination therapy, the amount of resistant
mutants can be reduced by appropriately increasing the drug concentration (see Figure 5). More
importantly, our model predict that for cancer with low-turnover rate, combination therapy has
significant advantage over monotherapy, which can further reduce drug resistance. However, it
should be noted that for cancer with very high-turnover rate (close to 1), combination therapy
can not significantly reduce the amount of resistant mutants compared to monotherapy, so in
this case, combination therapy would not have advantage over monotherapy (see Figure 6). This
result is consistent with [24,27], although the mathematical methods used are different. We use an
elementary, compartmental ODE system, while [23, 24, 27] adopted various stochastic methods.

In the final, we would like to reveal several interesting extensions associated with the model and
drug resistance. In our model, the cancer cells are modeled by an exponential growth as in ref. [28]. It
is a reasonable assumption for small number of cancer cells with early growth. In fact, the growth of
cancer cells slows when the population is large, this growth can be modeled by a more realistic model
such as the Gompertz growth, as Afenya and Calderón stated that this is best for describing chronic
myelogenous leukemia (CML) growth [29]. Another growth can be replaced by logistic growth, which
has been found to provide a better fit in numerous studies [8, 30].

As assumed in section 2.2 this work is carried out for non-mutagenic drugs. However, some
resistant is actually generated by the drug-induced. For example, Obenauf et al. [31] showed that
drug-sensitive cancer cells secrete a variety of resistance factors (such as IGF and HGF) under the
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effect of targeted therapy, which can facilitate the growth, dissemination and metastasis of cancer cells
and further increase drug resistance. In this case, the balance of the resistance generated between
pre-treatment and during-treatment may be reversed. Therefore, it is worth considering the
drug-induced resistance into our framework.

Drug resistance is a common obstacle during targeted therapy, which may be associated with
eventual treatment failure. Although one of the most effective treatment methods currently is the use
of a variety of targeted therapy strategies, including monotherapy or multi-drug combination therapy,
intermittently or continuously therapy, the design of the optimal treatment therapies (e.g., timing,
sequence) and the selection of the optimal dosages remains a challenge. It is our hope that a more
reasonable mathematical prediction model will be proposed to facilitate the design of clinical
therapies and we left it for future research.
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