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Abstract: Nowadays, real-world applications handle a huge amount of data, especially with high-
dimension features space. These datasets are a significant challenge for classification systems.
Unfortunately, most of the features present are irrelevant or redundant, thus making these systems
inefficient and inaccurate. For this reason, many feature selection (FS) methods based on information
theory have been introduced to improve the classification performance. However, the current methods
have some limitations such as dealing with continuous features, estimating the redundancy relations,
and considering the outer-class information. To overcome these limitations, this paper presents a
new FS method, called Fuzzy Joint Mutual Information Maximization (FJMIM). The effectiveness
of our proposed method is verified by conducting an experimental comparison with nine conventional
and state-of-the-art feature selection methods. Based on 13 benchmark datasets, experimental results
confirm that our proposed method leads to promising improvement in classification performance and
feature selection stability.

Keywords: mutual information; fuzzy sets; fuzzy mutual information; feature selection; classification
systems

1. Introduction

Recently, classification systems have a wide range in many fields such as text classification,
intrusion detection, bio-informatics, and image retrieval [1]. Unfortunately, a huge amount of data
which may include irrelevant or redundant features is one of the main challenges of these systems.
The negative effect of these undesirable features reduces the classification performance [2]. For this
reason, reducing the number of features by finding an effective subset of features is an important task
in classification systems [2]. Feature reduction has two techniques: feature selection and feature
extraction [3]. Both reduce a high-dimensional dataset into a representative feature subset of
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low-dimensional. Feature extraction is effective when the original features fail to discriminate the
classes [4], but it requires extra computation. Moreover, it changes the true meaning of the original
features. In contrast, the feature selection preserves the true meaning of the selected features, which is
important for some classification systems [5]. Furthermore, the result of FS is more understandable
for domain experts [6].

FS tries to find the best feature subset which represents the dataset well and improves the
performance of classification systems [7]. It can be classified into three approaches [6]: wrapper,
embedded, and filter. According to an evaluation strategy, wrapper and embedded are called
classifier-dependent approaches, while filter is called classifier-independent approach [8]. In this
paper, we use the filter approach according to its advantages over wrapper or embedded approaches in
terms of efficiency, simplicity, scalability, practicality, and classifier-independently [6, 9]. Filter
approach is a pre-processing task which finds the highly ranked features to be the input of
classification systems [7, 10]. There are two criteria to rank features: feature relevance, and feature
redundancy [11]. Feature relevance is related to how features discriminate different classes, while
feature redundancy is related to how features share the same information of each other [12]. To define
these criteria, filter approach uses many weighting functions which rank features based on their
significance [10] such as correlation [13], mutual information (MI) [14]. MI overcomes the weakness
of correlation, whereas, correlation is suitable only for linear relationship and numerical features [1].
MI is suitable for any kind of relationship such as linear and non-linear. Moreover, MI deals with both
numerical and categorical features [1].

Although MI has been widely used in many methods to find the best feature subset that maximizes
the relevancy between the candidate feature and class label, and minimizes the redundancy between
the candidate feature and pre-selected features [15]. The main limitations of these methods are: (1)
difficult to indicate the best candidate features with the same new classification information [16], (2)
difficult to deal with continuous features without information loss [17], and (3) consider the inner-
class information only [18]. In this paper, we integrate fuzzy concept with mutual information to
propose a new FS method called Fuzzy Joint Mutual Information Maximization (FJMIM). The fuzzy
concept helps the proposed method to exploit all possible information of data where it can deal with
any numerical data and extract the inner and outer-class information. Moreover, the objective function
of FJMIM can overcome the feature overestimation problem which happens when the candidate feature
be completely correlated with some of pre-selected features and does not depend on the majority of the
subset at the same time [8].

The rest of this paper is organized as follows: Section 2 presents the basic measures of fuzzy
information theory. Then, we present the proposed method in section 3. After that, the experiment
design was presented in section 4, followed by the results and discussion in section 5. Finally, section
6 concludes the paper.

2. Basic measures of fuzzy information theory

For the purpose of measuring the significance of features, information theory introduced many
information measures such as entropy, and mutual information. To enhance these measures, fuzzy
concept is used to estimate new extensions of information measures based on fuzzy equivalence
relations such as fuzzy entropy, and fuzzy mutual information [19, 20]. Fuzzy entropy measures the
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average amount of uncertainty of fuzzy relation in order to estimate its discriminative power, while
fuzzy mutual information measures the shared amount of information between two fuzzy relations. In
the following, we present the basic measures of fuzzy information theory:

Given a dataset D = F ∪C, where F is a set of n features, and C is the class label. Let F̄ =
{a1,a2, . . . ..,am} be a feature of m samples, where F̄ ∈ F . Let S is the feature subset with d of selected
features, and the remaining set is {F−S}, where F̄f ∈F−S and F̄s ∈ S. Based on the fuzzy equivalence
relation RF̄ on F̄ , the feature F̄ can be represented by the relation matrix M(RF̄).

M(RF̄) =


r11 r12 . . . r1m
r21 . . . . . . r2m
. . . . . . . . . . . . . . . . .

rm1 rm2 . . . rmm

 (2.1)

where ri j = RF̄(ai,a j) is the fuzzy equivalence relation between two samples ai and a j.
In this paper, the used fuzzy equivalence relation between two elements ai and a j is defined as [21]:

RF̄(ai,a j) = exp−‖ai−a j‖ (2.2)

Fuzzy equivalence class of sample ai on RF̄ can be defined as:

[ai]RF̄
=

[ri1]

a1
+

[ri2]

a2
+ · · ·+ [rim]

am
(2.3)

Fuzzy entropy of feature F̄1 based on fuzzy equivalence relation is defined as:

H(F̄) =
1
m

m

∑
i=1

log
m

|[ai]RF̄
|

(2.4)

where |[ai]RF̄
|= ∑

m
i=1 ri j.

Let F̄1 and F̄2 be two features of F , fuzzy joint entropy of F̄1 and F̄2 is defined as:

H(F̄1, F̄2) = H(RF̄1
,RF̄2

)

=
1
m

m

∑
i=1

log
m

|[ai]RF̄1
∩ [ai]RF̄2

|
(2.5)

Fuzzy conditional entropy of F̄1 given F̄2 is defined as

H(F̄1|F̄2) = H(RF̄1
|RF̄2

)

=
1
m

m

∑
i=1

log
|[ai]RF̄2

|
|[ai]RF̄1

∩ [ai]RF̄2
|

(2.6)

Fuzzy Mutual information between two features F̄1 and F̄2 is defined as:

I(F̄1; F̄2) = I(RF̄1
;RF̄2

)

=
1
m

m

∑
i=1

log
m|[ai]RF̄1

∩ [ai]RF̄2
|

|[ai]RF̄1
.[ai]RF̄2

|
(2.7)
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Fuzzy conditional mutual information between feature F̄1 and F̄2 given class C is defined as:

I(F̄1; F̄2|C) = H(F̄1|C)+H(F̄2|C)−H(F̄1, F̄2|C) (2.8)

Fuzzy joint mutual information between two features F̄1, F̄2 and class C is defined as:

I(F̄1, F̄2;C) = I(F̄1;C)+ I(F̄2;C|F̄1) (2.9)

Fuzzy interaction information between among F̄1, F̄2 and C is defined as:

I(F̄1; F̄2;C) = I(F̄1;C)+ I(F̄2;C)− I(F̄1, F̄2;C) (2.10)

3. Proposed feature selection method

In this section, we presented the general theoretical frameworks of different feature selection
methods based on mutual information. Then, we studied the limitation of previous work. Finally, we
introduced the proposed method.

3.1. Feature selection based on mutual information

Brown et al. [22] studied the exist feature selection methods based on MI and analyzed the different
criteria to propose the following theoretical framework of these methods.

J(F̄f ) = I(F̄f ;C)−β ∑
F̄s∈S

I(F̄f ; F̄s)+ γ ∑
F̄s∈S

I(F̄f ; F̄s|C) (3.1)

This framework is a linear combination of three terms: relevance, redundancy, and conditional that
measures the individual predictive power of the feature, the unconditional relation, and the
class-conditional relation, respectively. The criteria of different feature selection based on MI depends
on the value of β and γ . MIM (β = γ = 0) [23] is the simplest FS method based on MI. It considers
only the relevance relation only. However, It may suffer from the redundant features. MIFS (γ = 0)
[24] introduced two criteria to estimate the feature relevance and redundancy. An extension of MIFS,
called MIFS-U [24] is proposed to improve the redundancy term of MIFS by considering the uniform
distribution of the information. However, Both MIFS and MIFS-U still require an input parameter β .
To avoid this limitation, MRMR (β = 1

|S| , γ = 0) [25] introduced the mean of the redundancy term as

automatic value to the input parameter (β ). JMI (β = γ = 1
|S|) [26] extended MRMR to extract the

benefit of conditional term. In addition, Brown et al. [22] introduced also a similar non-linear
framework to represent some methods as CMIM method [27]. According to [22], CMIM can be
written as:

Jcmim = min
F̄s∈S

[I(F̄f ;C|F̄s)]

= I(F̄f ;C)−max
F̄s∈S

[I(F̄f ; F̄s)− I(F̄f ; F̄s|C)]
(3.2)

The reason of the non-linear relation on CMIM returns to the using of max operation. Similar to
CMIM, JMIM [8] introduces a non-linear relation as follows:

J jmim = min
F̄s∈S

[I(F̄s;C)+ I(F̄f ;C|F̄s)]

= I(F̄f ;C)−max
F̄s∈S

[I(F̄f ; F̄s)− I(F̄f ; F̄s|C)− I(F̄s;C)]
(3.3)

Mathematical Biosciences and Engineering Volume 18, Issue 1, 305–327.



309

3.2. Limitation of previous work

Although MI has been widely used in many feature selection methods such as MIFS [24], JMI [26],
mRMR [25], DISR [28], IGFS [29], NMIFS [30] and MIFS-ND [31]. These methods suffer from the
overestimation of the feature significance problem [8]. For this reason, Bennasar et al. [8] proposed
JMIM method to address the overestimation of the feature significance problem. However, it may fail
to select the best candidate features if they have the same new classification information. To illustrate
this problem, Figure 1 shows the FS scenario, where F̄1 and F̄2 are two candidate features, F̄s is the
pre-selected feature subset, and C is the class label. F̄1 is partially redundant with F̄s, while F̄2 is
independent to F̄s. Suppose that F̄1 and F̄2 have the same new classification information I(F̄1;C|F̄s)=
(area 3) and I(F̄2;C|F̄s)= (area 5) respectively. In this case, JMIM may fail to indicate the best feature
where I(F̄1, F̄s;C) and I(F̄1, F̄s;C) are equal.

Unfortunately, JMIM also shares some limitations with the previous methods. Firstly, it can not
directly estimate MI between continuous features [17]. To address this limitation, there are two
methods were introduced. One is to estimate MI based on Parzen window [18], but it is inefficient in
high-dimensional feature spaces with spare samples [17]. Moreover, its performance depends on the
used window function which requires a window width parameter [32]. The other one is to discretize
continuous features before estimating MI [33], but it may cause information loss [34]. Secondly,
JMIM depends only on inner-class information without considering outer-class information [18].

Figure 1. Venn diagram presents the feature selection scenario where the two candidate
features F̄1 and F̄2 have the same new classification information.

3.3. Fuzzy Joint Mutual Information (FJMIM)

Motivated by the previous limitation of JMIM, we proposed a new FS method, called Fuzzy Joint
Mutual Information Maximization (FJMIM). Both of FJMIM and JMIM depends on ”maximum of
the minimum” approach. The main difference is that JMIM maximizes the joint mutual information
of the candidate feature and pre-selected feature subset with class, whereas FJMIM maximizes the
joint mutual information of the candidate feature and pre-selected feature subset with class without
considering the class-relevant redundancy. To illustrate the difference in Figure 1, JMIM depends on
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the union of areas 2, 4, and 3, while FJMIM depends on the union of areas 2 and 3. The proposed
method discarded the class-relevant redundancy (area 4) because it can reduce the predictive ability
of the feature subset when a candidate feature is selected [15]. On the other hand, integrating fuzzy
concept with MI has many benefits. Firstly, using a fuzzy concept helps to deal directly with continuous
features. Furthermore, it enables MI to take the advantages of inner and outer-class information [35].
Moreover, FS methods based on fuzzy concept are more robust toward any change of the data than
methods based on probability concept [36].

According to FJMIM, the candidate feature F̄f must satisfy the following condition

F̄f = arg max
F̄f∈F−S

(min
F̄s∈S

(I(F̄f , F̄s;C)− I(F̄f ; F̄s;C))) (3.4)

FJMIM also can be written according to the non-linear framework as follows:

F̄f = 2∗ I(F̄f ;C)−max
F̄s∈S

[I(F̄f ; F̄s)− I(C; F̄s)− I(F̄f ; F̄s|C)− I(F̄f ;C|F̄s)] (3.5)

The proposed method can be summarized to find the best feature subset of size d as follows:

Input: F is a set of n features, C is the class label, and d is the number of selected features.
Step 1: Initialize the empty selected feature subset S.
Step 2: Update the selected feature set S and the feature set F .

Step 2.1: Compute I(F̄ ;C) for all F̄ in the feature set F .
Step 2.2: Add the feature F̄ that maximizes I(F̄ ;C) to the selected feature set S.
Step 2.3: Remove the feature F̄ from the feature set F .

Step 3: Repeat until |S|= d

Step 3.1: Add the feature F̄ that satisfies
argmaxF̄f∈F−S(minF̄s∈S(I(F̄f , F̄s;C)− I(F̄f ; F̄s;C)))
to the selected feature set S.
Step 3.2: Remove the feature F̄ from the feature set F .

Output: Return the selected feature set S.

4. Experiment

Success of FS methods depends on different criteria such as classification performance, and
stability [11]. Consequently, we design the experiment based on these criteria (Figure 2). To clarify
our improvement, we compared our proposed method FJMIM, with four conventional methods
(CMIM [27], JMI [26], QPFS [37], Relief [38]) and five state-of-the-art methods (CMIM3 [39], JMI3
[39], JMIM [8], MIGM [40], and WRFS [41]). The compared methods can be divided into two
groups: FS based on fuzzy concept and FS based on probability concept. For the methods which
depend on probability concept, data discretization is required as a pre-processing step prior to the FS
process. So, the continuous features are transformed into ten bins using EqualWidth discretization
[42]. Then, we selected feature subset from all methods based on threshold which is defined as the
median position of the ranked features (or the nearest integer position when the number of ranked
features is even).
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Figure 2. Experiment design of the proposed method Fuzzy Joint Mutual Information
(FJMIM): firstly, a discretization pre-processing is applied before FS methods based on
probability concept. Then, the FS methods are evaluated according to classification
performance, and feature stability.

4.1. Evaluation criteria

4.1.1. Classification performance

FS plays an important role to improve the classification performance. There are many measures to
evaluate classification performance such as classification accuracy, precision, F-measure, area-under-
ROC (AUC), and area-under-PRC (AUCPR) [43]. To clarify our improvement, popular classifiers
were used in this study such as Naive Bayes (NB), Support Vector Machine (SVM), and 3-Nearest
Neighbors (KNN) [44]. The average classification performance measures were computed by 10-fold
cross-validation approach [45].

4.1.2. Stability

Another important evaluation criterion for FS is stability. FS stability measures the impact of any
change in the input data on FS result [46]. In this study, we measure the impact of noise on the selected
feature subset. Firstly, we produce the noise using standard deviation and the normal distribution of
each feature [47]. Then, we injected 10% of the data by adding noise. After that, we repeated this
step ten times. Each time produces a different sequence of selected features. Finally, we computed the
stability of each method using Kuncheva stability index [48].
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4.2. Datasets

Our experiment was conducted using 13 datasets from UCI machine learning repository [49]. Table
1 presents a brief description about these datasets.

Table 1. Datasets Description.

No. Datasets Instances Features Classes
1 Acute Inflammations 120 6 2
2 Arrhythmia 452 279 13
3 Blogger 100 6 2
4 Diabetic Retinopathy Debrecen (DRD) 1151 20 2
5 Hayes-Roth 160 5 3
6 Indian Liver Patient Dataset (ILPD) 583 10 2
7 Lenses 24 4 3
8 Lymphography 148 18 4
9 Congressional Voting Records (CVR) 435 16 2
10 Sonar 208 60 2
11 Thoracic Surgery 470 17 2
12 Wilt 4889 6 2
13 Zoo 101 17 7

5. Results and discussion

5.1. Classification performance

1) Accuracy: A paired two-tailed t-test is employed between FJMIM and other compared methods.
The notations ([=], [+], and [-]) indicate the statistically significant (5%) that the proposed method
(equals, wins, and losses) other methods. According to NB classifier, FJMIM achieved the maximum
average accuracy with score 78.02%, while Relief achieved the minimum average accuracy with score
75.34% (Table 2). The proposed method outperformed compared methods in the range from 0.06 to
2.68%. In SVM classifier, FJMIM outperformed other methods with score 80.03%, while Relief
achieved the minimum average accuracy with score 77.33% (Table 3). The proposed method
outperformed compared methods in the range from 0.69 to 2.7%. Similarly with KNN classifier,
FJMIM kept the maximum average accuracy by 81.45%, while Relief achieved the minimum average
accuracy with score 77.98% (Table 4). The proposed method outperformed compared methods in the
range from 0.57 to 3.47%. Across all datasets, Figure 3(a) shows the distribution of the average
accuracy values of all used classifiers. In a detailed box-plot, the box represents upper and lower
quartiles, while the black circle represents the median. The box-plot confirms that FJMIM is more
consistent and outperformed other compared methods. Figure 3(b) shows the average accuracy of the
three used classifiers. FJMIM achieved the best accuracy, followed by QPFS, JMI3, both of JMI and
CMIM, both of CMIM3 and JMIM, MIGM, WRFS, and Relief respectively. The proposed method
outperformed compared methods in the range from 0.6 to 2.9%.

2) Precision: Figure 4 shows the precision results of NB, SVM, KNN, and their average. FJMIM
achieved the highest precision, while Relief achieved the lowest precision. The proposed method
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Table 2. Classification accuracy using NB Classifier, FJMIM achieved the highest average
accuracy.

Dataset CMIM CMIM3 JMI JMI3 JMIM MIGM QPFS Relief WRFS FJMIM
Acute Inflammations100±0[=] 100±0[=] 100±0[=] 100±0[=] 100±0[=] 99.75±2.5[=] 99.75±2.5[=] 100±0[=] 90.83±8.5[+] 100±0
Arrhythmia 60.64±7.01[=] 59.22±6.17[=] 59.42±6.49[=] 59.58±6.58[=] 60.62±6.93[=] 58.98±6.39[=] 63.7±6.57[-] 64.94±6.33[-] 59.31±6.3[=] 59.74±6.43
Blogger 61.9±10.7[=] 61.9±10.7[=] 61.9±10.7[=] 64.9±10.2[=] 61.9±10.7[=] 61.9±10.7[=] 61.9±10.7[=] 65.4±7.84[=] 66.1±9.09[=] 65.9±10.26
DRD 57.59±4.95[=] 60.66±4.69[-] 60.3±5.04[-] 60.6±4.58[-] 57.59±4.95[=] 60.3±5.04[-] 61.19±4.49[-] 60.61±5.06[-] 57.47±4.98[=] 57.56±4.83
Hayes-Roth 45.81±10.77[=]45.81±10.77[=]45.81±10.77[=]45.81±10.77[=]45.81±10.77[=]45.81±10.77[=]49.37±10.53[=]46.31±11.48[=]45.81±10.77[=]49.37±10.53
ILPD 68.99±5.68[=] 67.33±5.87[=] 68.99±5.68[=] 67.33±5.87[=] 68.99±5.68[=] 68.99±5.68[=] 68.73±5.64[=] 64.96±6.45[+] 70.11±6.74[=] 69.54±5.75
Lenses 86.83±21.88[=]86.83±21.88[=]86.83±21.88[=]86.83±21.88[=]86.83±21.88[=]86.83±21.88[=]86.83±21.88[=]54.83±30.73[+]86.83±21.88[=]86.83±21.88
Lymphography 79.02±10.57[=]82.05±9.59[=] 79.02±10.57[=]77.93±10.87[=]78.27±10.98[=]77.25±11.38[=]79.02±10.57[=]82.61±9.77[=] 76.91±11.64[+]81.5±10.29
CVR 94.3±3.15[=] 94.32±3.12[=] 93.75±3.57[=] 93.75±3.57[=] 93.75±3.57[=] 93.75±3.57[=] 94.32±3.26[=] 93.82±3.28[=] 93.52±3.18[=] 93.75±3.57
Sonar 75.05±8.33[=] 75.42±9.08[=] 75.75±8.85[=] 76.23±9.99[=] 72.2±9.93[=] 72.14±9.54[+] 76.42±8.69[=] 74.25±8.33[=] 77.91±8.74[=] 77±8.98
Thoracic Surgery 83.83±3.1[=] 83.38±3.09[=] 83.38±3.09[=] 83.85±2.24[=] 83.38±3.09[=] 84.64±1.83[=] 83.55±3.08[=] 83.06±2.77[=] 83.85±2.74[=] 83.38±3.09
Wilt 94.61±0.06[=] 94.61±0.06[=] 94.61±0.06[=] 94.61±0.06[=] 94.61±0.06[=] 94.61±0.06[=] 94.61±0.06[=] 94.61±0.06[=] 94.61±0.06[=] 94.61±0.06
Zoo 95.15±5.74[=] 96.05±5.6[=] 96.03±5.66[=] 96.03±5.66[=] 96.03±5.66[=] 96.93±5.42[=] 94.08±6.6[=] 94.08±6.6[=] 92.96±7.05[=] 95.05±5.87

Average 77.21 77.51 77.37 77.50 76.92 77.07 77.96 75.34 76.63 78.02

Table 3. Classification accuracy using SVM Classifier, FJMIM achieved the highest average
accuracy.

Dataset CMIM CMIM3 JMI JMI3 JMIM MIGM QPFS Relief WRFS FJMIM
Acute Inflammations98.33±3.35[=] 99.67±1.64[=] 98.33±3.35[=] 98.33±3.35[=] 98.33±3.35[=] 99.42±2.44[=] 99.42±2.44[=] 100±0[+] 89.92±9.5[+] 99.42±2.44
Arrhythmia 66.09±6.81[=] 64.08±6.11[=] 65.01±5.96[=] 65.7±6.23[=] 66.14±6.61[=] 65.23±6.39[=] 66.82±6.2[=] 67.22±6.05[=] 65.23±6.15[=] 67.11±6.7
Blogger 68±4.02[=] 67.7±4.89[=] 68±4.02[=] 67.4±5.62[=] 68±4.02[=] 68±4.02[=] 67.7±4.89[=] 67.7±4.89[=] 68±4.02[=] 67.7±4.89
DRD 68.03±3.92[=] 67.55±4.07[=] 67.15±3.85[=] 67.03±3.95[=] 68.03±3.92[=] 67.19±3.8[=] 65.1±4.33[+] 61.91±4.51[+] 67.7±4[=] 67.96±4.23
Hayes-Roth 49.94±12.83[=]49.94±12.83[=]49.94±12.83[=]49.94±12.83[=]49.94±12.83[=]49.94±12.83[=]52±11.61[=] 48.75±13.21[=]49.94±12.83[=]52±11.61
ILPD 71.36±0.73[=] 71.36±0.73[=] 71.36±0.73[=] 71.36±0.73[=] 71.36±0.73[=] 71.36±0.73[=] 71.36±0.73[=] 71.36±0.73[=] 71.36±0.73[=] 71.36±0.73
Lenses 76.17±22.13[=]76.17±22.13[=]76.17±22.13[=]76.17±22.13[=]76.17±22.13[=]76.17±22.13[=]76.17±22.13[=]54.5±30.42[+] 76.17±22.13[=]76.17±22.13
Lymphography 81.57±10.06[=]80.56±9.09[=] 81.42±10.15[=]84.55±8.84[=] 82.02±10.48[=]79.06±10.44[+]81.57±10.11[=]80.3±9[=] 74.25±11.45[+]85.5±8.3
CVR 94.09±3.33[=] 94.46±3.37[=] 94.3±3.34[=] 94.32±3.32[=] 94.3±3.34[=] 94.3±3.34[=] 94±3.44[=] 94.43±3.41[=] 94.37±3.41[=] 94.3±3.34
Sonar 79.34±8.37[=] 80.48±8.05[=] 80.18±8.33[=] 78.46±8.44[=] 80.54±8.43[=] 76.93±8.71[=] 79.91±7.73[=] 82.1±8.07[=] 77.41±8.41[=] 80.67±7.88
Thoracic Surgery 85.11±0[=] 85.11±0[=] 85.11±0[=] 85.11±0[=] 85.11±0[=] 85.11±0[=] 85.11±0[=] 85.11±0[=] 85.11±0[=] 85.11±0
Wilt 97.62±0.57[+] 97.97±0.49[=] 97.97±0.49[=] 97.97±0.49[=] 97.62±0.57[+] 97.97±0.49[=] 94.61±0.06[+] 97.97±0.49[=] 97.62±0.57[+] 97.98±0.49
Zoo 95.75±5.12[=] 93.88±6.72[=] 89.39±5.72[+] 89.49±5.64[+] 89.49±5.64[+] 94.06±6.9[=] 95.27±5.85[=] 93.89±6.96[=] 90.49±7.96[+] 95.06±6.2

Average 79.34 79.15 78.79 78.91 79.00 78.83 79.16 77.33 77.51 80.03

Table 4. Classification accuracy using KNN Classifier, FJMIM achieved the highest average
accuracy.

Dataset CMIM CMIM3 JMI JMI3 JMIM MIGM QPFS Relief WRFS FJMIM
Acute Inflammations99.5±1.99[=] 100±0[=] 99.5±1.99[=] 99.5±1.99[=] 99.5±1.99[=] 100±0[=] 100±0[=] 100±0[=] 99.67±1.64[=] 100±0
Arrhythmia 58.27±5.17[+] 57.63±5.17[+] 57.79±5.34[+] 58.32±5.08[+] 58.94±5.13[=] 57.67±5.21[+] 60.73±4.64[=] 65.13±4.43[-] 58.39±5.22[+] 61.11±5.23
Blogger 72.1±11.31[=] 72.1±11.31[=] 72.1±11.31[=] 78.8±10.18[=] 72.1±11.31[=] 72.1±11.31[=] 72.1±11.31[=] 70.3±11.41[=] 76.1±12.05[=] 78.6±11.37
DRD 64.3±4.19[=] 62.62±5.29[=] 63.69±4.58[=] 61.96±4.68[=] 64.3±4.19[=] 63.58±4.56[=] 60.47±4.64[+] 63.51±4.63[=] 64.06±4.4[=] 64.7±4.23
Hayes-Roth 59.19±10.41[=]59.19±10.41[=]59.19±10.41[=]59.19±10.41[=]59.19±10.41[=]59.19±10.41[=]63.12±11.32[=]57.56±10.82[=]59.19±10.41[=]63.12±11.32
ILPD 67.16±5.41[=] 68.22±5.06[=] 67.54±5.44[=] 68.22±5.06[=] 67.16±5.41[=] 67.3±5.42[=] 68.74±5.01[=] 67.84±5.56[=] 66.66±5.25[=] 69.15±5.62
Lenses 86.83±21.88[=]86.83±21.88[=]86.83±21.88[=]86.83±21.88[=]86.83±21.88[=]86.83±21.88[=]86.83±21.88[=]54.17±30.46[+]86.83±21.88[=]86.83±21.88
Lymphography 84.61±7.58[=] 72.61±9.14[+] 84.61±7.58[=] 84.16±9.46[=] 80.99±9.49[=] 76.62±8.87[=] 84.61±7.58[=] 81.44±9.42[=] 79.74±9.36[=] 78.87±8.35
CVR 93.63±3.43[=] 94.09±3.33[=] 95.26±3.01[=] 95.26±3.01[=] 95.26±3.01[=] 95.26±3.01[=] 94.14±3.37[=] 93.67±3.5[=] 94.09±2.95[=] 95.26±3.01
Sonar 85.09±7.43[=] 83.51±7.68[=] 87.74±7.51[=] 85.53±8.83[=] 82.7±9.06[=] 82.4±7.72[+] 86.15±7.24[=] 87.95±6.78[=] 84.17±7.73[=] 87.65±7.27
Thoracic Surgery 80.96±3.45[=] 81.38±3.53[=] 81.38±3.53[=] 83.45±3.05[=] 81.38±3.53[=] 82.64±3.28[=] 83.89±2.95[=] 82.68±3.08[=] 84.85±0.97[-] 81.38±3.53
Wilt 97.69±0.57[+] 98.12±0.55[=] 98.12±0.55[=] 98.12±0.55[=] 97.69±0.57[+] 98.12±0.55[=] 94.44±0.52[+] 98.12±0.55[=] 97.69±0.57[+] 98.12±0.55
Zoo 91.9±7.21[=] 92.06±7.35[=] 92.05±7.24[=] 92.05±7.24[=] 92.05±7.24[=] 91.16±7.48[=] 91.42±6.94[=] 91.42±6.94[=] 90.29±7.45[+] 94.08±6.6

Average 80.09 79.10 80.45 80.88 79.85 79.45 80.51 77.98 80.13 81.45

outperformed other methods in the range from 0.6 to 12.7% based on NB, from 0.3 to 3.3% based on
SVM, and from 2 to 8.2% based on KNN. According to the average of all classifiers, FJMIM achieved
the highest precision by 71.2%, while Relief kept the lowest precision by 63.1%. The second-best
method achieved by CMIM3, followed by JMI3, QPFS, JMI, JMIM, MIGM, CMIM and WRFS. The
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Figure 3. Accuracy result of all compared methods. FJMIM outperformed in all cases.

results of precision distribution are inconsistent as shown in Figure 5. Both FJMIM and QPFS achieved
the best distribution. FJMIM achieved the highest upper quartile and median, while QPFS achieved
the highest lower quartile and median. In addition, FJMIM shares the highest upper quartile with JMI,
JMIM and MIGM.

3) F-measure: Figure 6 shows the F-measure results of the three used classifiers and their average.
FJMIM achieved the highest F-measure by 79.8, 71.5 and 84% on NB, SVM and KNN respectively.
Relief achieved the lowest F-measure on NB and SVM, while WRFS achieved the lowest score on
SVM. The proposed method outperformed other methods in the range from 0.3 to 16.6% based on NB,
from 0.1 to 1.4% based on SVM, and from 0.6 to 15.2% based on KNN. According to the average of
all classifiers, FJMIM achieved the highest precision by 78.4% and outperformed other methods in the
range from 2.5 to 10.8%. The second-best method achieved by JMI3, followed by QPFS, CMIM3,
JMI, JMIM, CMIM, MIGM, WRFS and Relief. Figure 7 shows the distribution of F-measure across
all datasets. The box-plot confirms the outperformance of FJMIM compared to other methods.

4) AUC: Figure 8 shows the AUC results of the used classifiers and their average. FJMIM achieved
the highest AUC on NB and KNN by 83.9 and 85.2%, while it achieved the second-best score on SVM
by 74.8%. On the other hand, Relief achieved the lowest AUC on all classifiers. Although MIGM
achieved the best AUC on SVM, FJMIM outperformed on the average of all classifiers. The proposed
method outperformed other methods in the range from 0.4 to 4.2%. As shown in the box-plot (Figure
9), the proposed method achieved the highest lower quartile and median values. On the other hand,
JMI achieved also the highest lower quartile, while CMIM achieved the highest upper quartile.
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Figure 4. Precision result of NB, SVM, KNN and their average. FJMIM achieved the best
result in all cases.
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Figure 6. F-measure result of NB, SVM, KNN and their average. FJMIM achieved the best
result in all cases.
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Figure 8. AUC result of NB, SVM, KNN and their average. FJMIM achieved the best result
in all cases except SVM.
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Figure 10. AUCPR result of NB, SVM, KNN and their average. FJMIM achieved the best
result in all cases except SVM.
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5) AUCPR: The highest AUCPR was achieved by both FJMIM and CMIM3 using NB, MIGM using
SVM, and FJMIM using KNN (Figure 10). On the other hand, Relief achieved the lowest AUCPR
using all classifiers. According to the average of all classifiers, FJMIM achieved the best AUCPR by
81.6%, while Relief kept the lowest AUCPR by 77.2%. The proposed method outperformed other
methods in the range from 0.3 to 4.4%. The second-best AUCPR was achieved by CMIM3, followed
by MIGM, both QPFS and JMIM, both CMIM and JMI, and both JMI3 and WRFS. Figure 11 shows
the distribution of AUCPR across all datasets. It’s obvious that CMIM achieved the highest median,
lower, and upper quartiles, while FJMIM achieved the highest median, upper quartile.

5.2. Feature stability

Figure 12(a) shows the stability of the used FS methods on all datasets. It’s obvious that FJMIM
is more consistent and stable compared to all other methods. Figure 12(b) confirms the stability of
the compared method. FJMIM achieved the highest average stability by 87.8%. The proposed method
outperformed other methods in the range from 6.6 to 43%. JMI achieved the second-best position by
81.2%, while Relief achieved the lowest stability by 44.3%.
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Figure 12. Stability result of all compared methods. FJMIM achieved the best result in all
cases.

More detailed results are presented in the appendix section. According to previous results, It is
obvious that FJMIM achieves the best results in most measures. This is expected because our
proposed addresses the feature overestimation problem and handle the candidate feature problem
well. Moreover, it avoids the discretization step. Another reason is the advantages of both inner and
outer class information which FJMIM depends on it. This information helps the proposed method to
be more robust toward the noise. On the other hand, the other compared methods are close to FJMIM
than Relief that achieved the lowest result. This is because all compared method except Relief
depends on mutual information as the proposed method to estimate the significant of features.
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6. Conclusions

In this paper, we propose a new FS method, called, Fuzzy Joint Mutual Information Maximization
(FJMIM). The proposed method depends on integrating an improved JMIM objective function with
fuzzy concept. The benefits of our proposed method include: 1) The ability to deal directly with
discrete and continuous features. 2) The suitability to handle any kind of relations between features
such as linear and non-linear relation. 3) The ability to take the advantages of inner and outer class
information. 4) The robustness toward the noise. 5) The ability to select the most significant feature
subset and avoiding the undesirable features.

To confirm the effectiveness of FJMIM, 13 benchmark datasets have been used to evaluate the
proposed method in the term of classification performance (accuracy, precision, F-measure, AUC, and
AUCPR) and feature selection stability. According to nine conventional and state-of-the-art feature
selection methods, the proposed method achieved promising improvement on feature selection in the
terms of classification performance and stability.

In future work, we plan to extend the proposed method to cover multi-label classification problem.
Moreover, we plan to study the effectiveness of imbalanced data on the proposed method.
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Appendix

Tables A1–A6 show some numerical results of Figures 3(b), 4, 6, 8, 10 and 12(b), while Figures
A1–A4 show the statistical results (mean ± standard deviation) of some datasets (DRD, Sonar, Wilt
and Zoo) by precision, F-measure, AUC and AUCPR, respectively.
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Figure A1. The precision results of four datasets (DRD, Sonar, Wilt and Zoo) on the used
classifiers (NB, SVM and KNN).
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Figure A2. The F-measure results of four datasets (DRD, Sonar, Wilt and Zoo) on the used
classifiers (NB, SVM and KNN).
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Figure A3. The AUC results of four datasets (DRD, Sonar, Wilt and Zoo) on the used
classifiers (NB, SVM and KNN).
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Figure A4. The AUCPR results of four datasets (DRD, Sonar, Wilt and Zoo) on the used
classifiers (NB, SVM and KNN).

Table A1. Average accuracy of compared FS methods.

FS method Average
CMIM 78.9
CMIM3 78.6
JMI 78.9
JMI3 79.1
JMIM 78.6
MIGM 78.4
QPFS 79.2
Relief 76.9
WRFS 78.1
FJMIM 79.8
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Table A2. Precision results according to the used classifiers and their average.

FS method NB SVM KNN Average
CMIM 0.702 0.641 0.704 0.682
CMIM3 0.742 0.641 0.705 0.696
JMI 0.705 0.640 0.713 0.686
JMI3 0.712 0.636 0.723 0.690
JMIM 0.701 0.642 0.707 0.683
MIGM 0.701 0.637 0.708 0.682
QPFS 0.712 0.636 0.711 0.686
Relief 0.621 0.612 0.661 0.631
WRFS 0.698 0.632 0.708 0.679
FJMIM 0.748 0.645 0.743 0.712

Table A3. F-measure results according to the used classifiers and their average.

FS method NB SVM KNN Average
CMIM 0.722 0.712 0.818 0.750
CMIM3 0.795 0.712 0.752 0.753
JMI 0.724 0.712 0.823 0.753
JMI3 0.729 0.712 0.834 0.759
JMIM 0.719 0.714 0.821 0.751
MIGM 0.722 0.710 0.818 0.750
QPFS 0.732 0.712 0.825 0.756
Relief 0.632 0.708 0.688 0.676
WRFS 0.716 0.701 0.826 0.748
FJMIM 0.798 0.715 0.840 0.784

Table A4. AUC results according to the used classifiers and their average.

FS method NB SVM KNN Average
CMIM 0.835 0.733 0.812 0.793
CMIM3 0.836 0.748 0.844 0.809
JMI 0.837 0.734 0.815 0.795
JMI3 0.831 0.729 0.805 0.788
JMIM 0.836 0.742 0.812 0.796
MIGM 0.832 0.754 0.807 0.798
QPFS 0.838 0.710 0.807 0.785
Relief 0.804 0.707 0.801 0.771
WRFS 0.831 0.732 0.806 0.789
FJMIM 0.839 0.748 0.852 0.813
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Table A5. AUCPR results according to the used classifiers and their average.

FS method NB SVM KNN Average
CMIM 0.848 0.708 0.798 0.785
CMIM3 0.862 0.715 0.862 0.813
JMI 0.850 0.708 0.797 0.785
JMI3 0.837 0.705 0.800 0.781
JMIM 0.852 0.713 0.797 0.787
MIGM 0.857 0.724 0.827 0.803
QPFS 0.857 0.708 0.797 0.787
Relief 0.842 0.685 0.791 0.772
WRFS 0.850 0.697 0.795 0.781
FJMIM 0.862 0.718 0.869 0.816

Table A6. Average stability of compared FS methods.

FS method Stability
CMIM 72.6
CMIM3 67.3
JMI 81.2
JMI3 75.2
JMIM 75.9
MIGM 66.2
QPFS 71.7
Relief 44.3
WRFS 66.6
FJMIM 87.8
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