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Abstract: Quantile estimation with big data is still a challenging problem in statistics. In this paper 

we introduce a distributed algorithm for estimating high quantiles of heavy-tailed distributions with 

massive datasets. The key idea of the algorithm is to apply the alternating direction method of 

multipliers in parameter estimation of the generalized pareto distribution in a distributed structure 

and compute high quantiles based on parameter estimation by the Peak Over Threshold method. This 

paper proves that the proposed algorithm converges to a stationary solution when the step size is 

properly chosen. The numerical study and real data analysis also shows that the algorithm is feasible 

and efficient for estimating high quantiles of heavy-tailed distribution with massive datasets and 

there is a clear-cut winner for the extreme quantiles. 

Keywords: distributed algorithm; big data; high quantile estimation; heavy-tailed distribution; Peak 

Over Threshold method 

 

Abbreviations: POT: Peak Over Threshold; GPD: Generalized pareto distribution; EDF: 

Empirical distribution function; WNLS: Nonlinear weighted least squares method; ADMM: The 

alternating direction method of multipliers; ARB: The absolute relative bias; RMSE: The root of 

mean square errors 

1. Introduction 

Changes in the magnitude and frequency of extremes of nature phenomena, such as extreme 
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precipitation, streamflow, floods, temperature, or wind speed, have a serious negative effect on human 

society (loss of life, damage to buildings and infrastucture) and environment. Knowledge of high 

quantiles of the probability distribution is of great importance for planning and design engineering. For 

example, high quantile of the maximal water level provides a risk measure for dike design in water 

resources structures [1], extreme wind patterns associated with speed and direction provide some 

guidance in structural projects related to onshore and offshore activities, wind farms, and oil and gas 

exploitation [2]. In addition, the generalized Pareto (GPD) and generalized extreme-value (GEV) 

distribution have been used in the modeling natural extreme events in hydrology, climatology, 

meteorology, and other areas [3–5]. So it is very necessary to provide a good estimation of high 

quantiles for the heavy-tailed distributions. 

Many of the statisticians who have been interested in this problem have used extreme value 

theory as their major tool. Among the several methods considered, the Peak Over Threshold method 

with generalized Pareto distribution has been quite successful and very widely used. To estimate high 

quantiles, the estimators of parameters of the generalized Pareto distribution are required. For this 

parameter estimation problem, many methods have been proposed in the literature, see [6–12]. The 

Peak Over Threshold method has been commonly used to estimate extreme quantiles when the 

datasets are not massive. Recently, as datasets are becoming increasingly large, some researchers 

have proposed some new methods for applying the Peak Over Threshold method to high quantile 

estimation with massive data. Using a nonlinear least square, Song and Song [13] proposed a new 

parameter estimation method with generalized Pareto distribution for massive datasets that 

minimizes the sum of squared deviations between the empirical distribution function and the 

theoretical generalized Pareto distribution, and used this parameter method to estimate high quantiles 

by the conventional Peak Over Threshold. Sequently, Park and Kim [14] pointed out a drawback of 

Song's method that their actual formation was only applicable when the underlying model's tail fitted 

the generalized Pareto distribution unconditionally and it was also not fair in comparison with the 

other estimation methods as the alternative method was under the Peak Over Threshold framework 

whereas the Song's nonlinear least square method was not. To this end, they revised the nonlinear 

least square method and proposed a new version the nonlinear weighted least squares method. The 

performance of this modified method was highly competitive in estimating high quantiles for 

heavy-tailed distributions. Meanwhile, Kang and Song [15] also pointed out that this method 

outperformed other methods in estimating more extreme values such as the 99.9th and 99.99th 

quantiles with a small number of observations. However, the above-mentioned methods are 

conducted with full sample in a single machine. At present, the exceedingly large size of data often 

makes it impossible to store all of them on a single machine and many applications have individual 

agents collecting data independently. Communication between agents is expensive due to the limited 

bandwidth, and direct data sharing has also raised privacy and lost of ownership concerns. These 

constraints often make it prohibitive to direct application of the existing methods. Therefore, this 

paper attempts to develop a distributed algorithm for estimating high quantiles of heavy-tailed 

distributions. 

An approach for the distributed and parallel computation is based on the alternating direction 

method of multipliers (ADMM), which is proposed by [16]. And this algorithm has been extensively 

used in various areas such as model fitting [17], sparse inverse covariance selection [18], 

constrainted sparse regression [19]. In the distributed alternating direction method of multipliers, the 

original problem is partitioned into N subproblems, and each subproblem contains a subset of 
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samples or learning parameters. At each iteration, the workers solve the subproblems and send the 

up-to-date variable information to the master, who summarizes this information and broadcasts the 

result to the workers. In addition, convergence properties of the distributed ADMM have been 

extensively studied, see Ref [16,20–22]. Further, the synchronous distributed method has also been 

extended to the asynchronous setting to speed up the computation, see Ref [23,24]. This paper 

proposes a distributed algorithm for high quantile estimation based on the synchronous distributed 

method because each worker uses same estimation method to handle the samples of the same size so 

that each worker’s computation time is almost the same. Specially, we adopt the nonlinear weighted 

least squares method to estimate the local parameter of generalized Pareto distribution in each 

processor, conduct the distributed alternating direction method of multipliers to compute the 

population parameter, and then use the Peak Over Threshold method to estimate high quantiles in a 

distributed structure. 

The remainder of this paper is organized as follows. Section 2 introduces the Peak Over 

Threshold method for high quantile estimation, the nonlinear weighted least squares method for 

parameter estimation and the distributed alternating direction method of multipliers for consensus 

problem. Section 3 proposes a distributed algorithm based on alternating direction method of 

multipliers and the nonlinear weighted least squares method to estimate high quantiles under the 

Peak Over Threshold framework and discusses the algorithm convergence. Section 4 conducts 

simulation to discuss the estimation performance of the proposed distributed method compared with 

the WNLS method based on full sample and the mean WNLS method. Section 5 applies our method 

to a real example. Section 6 concludes the paper. 

2. Preliminaries 

2.1. High quantile estimation－POT method 

The distribution function of GPD is defined as 
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where   and   are the shape and scale parameters, respectively. 0x  if 0  and 

 x0  if 0 . This GPD family can be also extended to define a GPD with a location 

parameter  , as ).()( ,,,  −= xGxG
 
In this paper, we consider the heavy-tailed distributions only, 

that is, the shape parameter .0  See [23] for details on GPD. 

Pickands [25] and Balkema and de Haan [26] showed that the distribution of excesses can be 

approximated by the GPD if the distribution is in the maximum domain of attraction. As seen in Ref [27], 

most of the common continuous distributions are in the maximum domain of attraction. We now 

introduce the POT method to estimate high quantiles of the unknown continuous distribution. 

Specifically, we let )(xF  be the distribution function of an arbitrary continuous distribution, and 

define the exceedance of loss events over u  by 
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which can be fitted by GPD (ξ, σ). Thus we can rewrite )(xF  as 
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using the three-parameter GPD, and estimate it by 
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where )(xFn  is the EDF and )(
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is the theoretical distribution function of GPD fitted with 

observations over .u Compute the p-th quantile by inverting Eq (2.4) as 
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Therefore, for high quantile estimation of heavy-tailed distributions, we only focus on the GPD 

parameter estimation. For more theoretical details on POT, see [26]. 

2.2. GPD parameter estimation method－WNLS 

Here, we review the WNLS method proposed by Park and Kim [14] for estimating GPD 

parameters. Suppose that we have a sample nxx ,,1   of size ，n  and nnu   observations that 

are greater than the selected GPD threshold .u  Without loss of generality, it is assumed that 

.21 nxxx  
 
The WNLS method is divided into two steps. The first step finds the interim 

estimate )ˆ,ˆ( 11   using a nonlinear minimization: 
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In the second step, because the distribution of )(
i

XF  is that of 
nin

U
;1+−

 that the )1( +− in th order 

statistic of the uniform random variable, of which the distribution is known to be Beta(n-i+1,i) from the 

standard distribution theory. 1

;1
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+− nin
UVar  was used as the weight for each square deviance term, which 

yields the weight nonlinear minimization. The weighted nonlinear optimization was given as follow: 
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(2.7)  

Combined with the first step, the estimated parameters )ˆ,ˆ(
22

  called the WNLS estimator 

under the POT framework. 

2.3. Distributed ADMM for consensus optimization 

Consider minimization of a function )(g  in a distributed computing environment. Assume 
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that this function can be decomposed into K  components as 
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where nR  and each 
k

g
 
is a local objective on node .k  It is useful to solve this problem either 

when there are many samples that it is inconvenient or impossible to process them on a single machine or 

when the data is naturally collected or stored in a distributed fashion. This problem is common in various 

areas such as machine learning, signal processing and wireless communication [28]. For example, in 

regularized risk minimization,   is the model parameter to be estimated, and kg
 
is the regularized 

risk functional defined on node .k  

This problem can be reformulated as the following global variable consensus optimization 

problem.
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where   is called the consensus variable, and n

k R
 
is node 'k s local copy of the parameter. In a 

distributed computing environment, this problem can be efficiently solved by the ADMM algorithm, 

and the iteration procedure is 
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where ky
 
is the Lagrange dual variable. This distributed ADMM algorithm can be easily 

implemented in a distributed system with one master and K  workers. The master is responsible for 

updating the consensus variable   and each worker minimizes its local objective kg
 
(in parallel) 

based on its own data subset, and sends the updated local copy k  
to the master. The master, in turn, 

updates   by driving the k  
into consensus, and then distributes the updated value back to the 

workers, and the process reiterates. Therefore, the distributed algorithm can be described as a 

computation network with a star topology as shown in Figure 1, in which a master node coordinates 

the computation of a set of distributed workers. 

In addition, the primal and dual residuals of this problem are 
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and their squared norms are 
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Figure 1. A star computer cluster with master and workers. 
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then a reasonable termination criterion of this algorithm is that the primal and dual residuals must be 

small 
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where 0pri  and 0dual  are feasibility tolerances for the primal and dual feasibility conditions, 

respectively. 

3. A distributed quantile estimation algorithm for heavy-tailed distributions 

In this section, we propose a distributed algorithm to estimate high quantiles for heavy-tailed 

distributions. This algorithm combines the WNLS method and the distributed ADMM to estimate 

GPD parameters, and then use parameter estimators to compute high quantiles by the conventional 

POT. Next, we will introduce the algorithm procedures and its some properties in detail.  

3.1. Algorithm deveploment 

Supposed that we have N observations 
N

xx ,,
1
  from a heavy-tailed distribution F  and these 

observation are stored on K  nodes and each node has m  observations. These observations can be 

written as Km  matrix, i.e. 
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For each node observations, we choose the q-quantile as a threshold value and pick out 

observations larger than the threshold value. More precisely, let 
k

u
 
be each node threshold value 
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for ,,,2,1 Kk =  then the observations selected from all node can be written as 
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is the local objective 

function of the k-th node. 

The minimization of )(g  can be reformulated as the following global variable consensus 

optimization problem 
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where   is the so-called consensus parameter, and k  
is the k-th local copy of the parameter. And the 

augmented Lagrangian is given by 
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where ,  denotes the inner product. 

Algorithm 1 Distributed ADMM for Eq (3.2). 

(1): Given initial variable 0  and 0y , set .0=t  

(2): repeat 

(3): update 
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(3.4) 

(3.5) 

(3.6) 

(4): set .1+ tt  
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(5): until a predefined stopping criterion is satisfied. 

In a distributed computing environment, this problem can be efficiently solved by the ADMM 

algorithm. The ADMM algorithm for solving Eq (3.2) is presented in Algorithm 1. This Algorithm 

can be easily implemented in a distributed system with one master and K workers. Each worker is 

responsible for updating its using Eqs (3.4) and (3.6), and the updated 
k


 
is then sent to the master, 

which is responsible for updating the consensus parameter and distributing its updated value back 

to the workers. Note that, as the ),(
kk

y
 
is local to each worker, their updates can be performed by 

all the workers in parallel. In addition, at the beginning of the algorithm, each worker can solve the 

optimization problem Eq (3.7) as parameter initial value for each data subset. 
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Therefore, let )ˆ,ˆ(ˆ  =  be the GPD parameter estimates with the above distributed algorithm, 

then a distributed quantile estimation under the POT framework is 
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Note: This algorithm aims to compute the quantiles of heavy-tailed distributions in a distributed 

storage architecture. The number of nodes K is generally fixed in this scenario. Of course, it is 

also feasible to deal with exceedingly large size of data on a single machine. But it should be 

noted that in this scenario higher accuracy generally requires more observations when estimating 

the tail index of the distribution (such as high quantiles). Therefore, we suggest the number of 

blocks should be as small as possible when each block sample size is manageable when our 

algorithm is applied to this scenario. We only focus on the distributed situation in this paper.  

3.2. Algorithm convergence and termination criterion. 

Since the objective )(g  is a continous but might be non-convex function in Eq (3.1), we analyze 

the convergence of the proposed distributed algorithm by means of the convergence idea of the 

ADMM algorithm for non-convex problems. At first, we make the following assumption. 

Assumption 1. (i) For all k , k , where   is a closed convex sets on 2R . (ii) For all k , 

the step size k  
is chosen large enough such that 
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Theorem 3.1. If the Assumption 1 is satisfied, the proposed distributed algorithm converges to the 

set of stationary solutions of problem Eq (3.1). 

In addition, the termination criterion for this distributed algorithm is that the primal and dual 

residual must be small, that is 
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where 0abs  and 0rel  are respectively an absolute and a relative tolerance. The choice of abs  
depends on the scale of typical variable value and a reasonable value of rel  might be -310  or -410  
depending on the application. 

  

(a) The primal and dual residual (b) The objective function 

Figure 2. Convergence rate of the distributed algorithm for parameter estimation. (a) The 

primal and dual residual as a function of the number of iterations iter (t), where the dotted 

lines respectively denote the upper bound of error of the primal and dual residual in each 

iteration. (b) The objective function as a function of the number of iterations iter (t). 

Furthermore, in order to have a more intuitive understanding of the convergence rate of this 

distributed algorithm, we take 1= , 10=  to generate 610  observations from GPD (10,1) via 

simulation. These observations are stored into 10 nodes, we select 95% as threshold for each data 

subset and choose 2500}{max == k
k


 
where k  

is computed by Eq (3.9). The distributed 

algorithm is applied to estimate the parameter, and the algorithm convergence is showed in Figure 2. 

Figure 2(a) shows that the primal and dual residual are decreasing as the number of iterations increases, 

and this algorithm only iterates a few steps to reach the given termination condition. Figure 2(b) shows 
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that the objective function decreases rapidly and then stabilizes as the number of iterations increases. 

Therefore, these results can be seen that our algorithm convergence rate is fast. For simplicity, the 

distributed algorithm is called ADMM-WNLS. 

4. Results and discussions 

In this section, we will discuss performances of the distributed ADMM-WNLS method on 

estimation accuracy through simulation. Here, we firstly describe the simulation procedure as follow. 

(a) Generate N  random observations from the given distribution, and these observations are 

stored into K node and the sample size of each node is m . 

(b) Fix ,10  pq  where q and p are used for setting threshold value and targeted quantile, 

respectively. 

(c) For each node observations, select the 100q-th quantile as the threshold ku , 

.,,2,1 Kk =  

(d) Fit the GPD using the ADMM-WNLS method to estimate ),(   with all the observations 

above ku , for ,,,2,1 Kk =  and then estimate the quantile px̂  
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(e) Repeat the above steps 1000 times to compute the absolute relative bias and the root of mean 

square errors of quantile. 

4.1. Comparison between the ADMM-WNLS and WNLS methods 

In this part, we discuss performances of the distributed ADMM-WNLS method on quantile 

estimation accuracy compared with the WNLS method with full sample. 

 

Figure 3. The tail figure of three heavy-tailed distributions. 

The simulated samples are generated from the three common heavy-tailed distributions 

Log-gamma (2,1), GPD (10,1) and Cauchy (0,1). The degree of heavy tail of these three distributions 

is Log-gamma (2,1) > GPD (10,1) > Cauchy (0,1) as shown in Figure 3. We try sample sizes of 106 

and 107, choose 90%, 93% and 95% sample quantiles for each node data as each node thresholds, 
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and node number 10=K . The estimated quantiles p are 95%, 99%, 99.9% and 99.99%. The ARB 

and RMSE are computed to compare the estimation performances of the two methods. The ARB is 

defined as  |ˆ| −  where ̂  and   are the estimated and true quantiles, respectively. In this 

paper, we only present the results of the case of sample size of 106, the results of sample size 107 are 

similar. The simulated results are presented in Table 1. 

Table 1. Quantile estimation results under Log-gamma (2,1), GPD (10,1) and Cauchy 

(0,1): RMSE and ARB (in parenthesis). 

Threshold Method 0.95 0.99 0.999 0.9999 

Log-gamma (2,1) 

q = 0.90 
WNLS 0.5607 (0.0040) 7.4622 (0.0077) 772.77 (0.0705) 27555 (0.2063) 

ADMM-WNLS 0.5586 (0.0039) 7.4361 (0.0077) 746.61 (0.0679) 26932 (0.2014) 

q = 0.93 
WNLS 0.6060 (0.0042) 8.5094 (0.0087) 550.51 (0.0477) 21016 (0.1535) 

ADMM-WNLS 0.6060 (0.0042) 8.8412 (0.0091) 520.52 (0.0477) 20247 (0.1473) 

q = 0.95 
WNLS \ 8.6016 (0.0088) 446.01 (0.0358) 17158 (0.1167) 

ADMM-WNLS \ 8.9735 (0.0092) 415.18 (0.0328) 16187 (0.1087) 

\ EMP 0.6223 (0.0041) 8.7913 (0.0089) 339.36 (0.0278) 15220 (0.0984) 

GPD (10,1) 

q = 0.90 
WNLS 0.7534 (0.0031) 7.8255 (0.0064) 213.69 (0.0170) 3548.48 (0.0288) 

ADMM-WNLS 0.7504 (0.0031) 7.9157 (0.0065) 207.93 (0.0168) 3529.43 (0.0285) 

q = 0.93 
WNLS 0.8835 (0.0037) 8.6265 (0.0072) 248.64 (0.0205) 4539.23 (0.0379) 

ADMM-WNLS 0.8807 (0.0037) 8.6518 (0.0073) 248.68 (0.0205) 4401.53 (0.0368) 

q = 0.95 
WNLS \ 6.9982 (0.0057) 228.37 (0.0182) 4328.99 (0.0344) 

ADMM-WNLS \ 7.1027 (0.0057) 224.87 (0.0177) 4265.73 (0.0337) 

\ EMP 0.8404 (0.0036) 8.6347 (0.0068) 340.08 (0.0288) 6684.76 (0.0803) 

Cauchy (0,1) 

q = 0.90 
WNLS 0.0299 (0.0038) 0.2544 (0.0063) 9.6805 (0.0252) 230.2367 (0.0636) 

ADMM-WNLS 0.0299 (0.0083) 0.2579 (0.0064) 10.2597 (0.0273) 242.5223 (0.0679) 

q = 0.93 
WNLS 0.0275 (0.0034) 0.2894 (0.0071) 8.2730 (0.0212) 137.6747 (0.0357) 

ADMM-WNLS 0.0274 (0.0034) 0.2911 (0.0072) 8.6283 (0.0221) 142.0018 (0.0369) 

q = 0.95 
WNLS \ 0.2574 (0.0065) 8.0840 (0.0203) 149.6838 (0.0381) 

ADMM-WNLS \ 0.2578 (0.0065) 8.2916 (0.0210) 149.1795 (0.0386) 

\ EMP 0.0282 (0.0034) 0.3142 (0.0081) 10.2107 (0.0260) 324.8123 (0.0791) 

Compared with the WNLS method, the distributed ADMM-WNLS method has a relatively 

good estimator for all cases and it performs better for 99.99% quantile in some cases. For 

Log-gamma (2,1), the ADMM-WNLS performs better for all cases. For GPD (10,1), the 

ADMM-WNLS performs relatively poor for the 95% and 99% quantiles, however, it gives greatly 

better results for the extreme quantiles (99.9% and 99.99%) with larger threshold values. For Cauchy 

(0,1), the two methods perform almost the same for the 95% quantile, and the ADMM-WNLS 

performs relatively poor for other higher quantiles. These results are shown that the estimation 

performance of the proposed distributed algorithm is better when the tail of distribution is thicker 

and the targeted quantiles is higher. It can been found from Table 1 that the different thresholds have 

little effect on the estimation accuracy, which illustrates the proposed ADMM-WNLS method is less 
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sensitive to the selection of the threshold. 

In additoion, the (non-parametric) empirical quantiles are usually very good estimators for 

quantiles when sample size is large. For this, we also compute the corresponding empirical quantiles 

(EMP) with full sample (this result is shown in the last column of each example, Table 1). Overall, 

the distributed ADMM-WNLS performs better than the EMP. This result is consistent with Song and 

Song [13] who found that the nonlinear least square method performs better than the EMP with 104 

observations. Furthermore, we suggest to choose the larger quantile as threshold for the 

heaviest-tailed distribution such as Log-gamma (2,1) because it is difficult to accurately describe the 

tail characteristics of this type of distribution if the selected threshold is small. 

4.2. Comparison between the ADMM-WNLS and mean-WNLS methods 

Next, we will compare performances of the proposed ADMM-WNLS method and another distributed 

method on parameter estimation and high quantile estimation of heavy-tailed distributions via simulation. 

Table 2. The RMSE and BIASa of GPD parameter estimation with 95% threshold value. 

sample size 

 

parameter 

 

RMSE BIASa 

mean-WNLS ADMM-WNLS mean-WNLS ADMM-WNLS 

 

 

 

410  

1=  0.2571 0.1546 0.1853 0.0647 

1=  0.0656 0.0529 0.0385 0.0231 

3=  0.6915 0.3654 0.5774 0.2938 

1=  0.0728 0.0819 0.0545 0.0397 

10=  2.4036 1.8136 1.8046 1.0228 

1=  0.0700 0.0707 0.0451 0.0465 

3=  2.8364 1.7676 2.3902 1.2315 

2=  0.1473 0.1446 0.1157 0.1077 

 

 

 

 

510  

1=  0.0490 0.0480 0.0257 0.0254 

1=  0.0173 0.0173 0.0081 0.0084 

3=  0.1393 0.1277 0.0711 0.0493 

1=  0.0173 0.0173 0.0081 0.0082 

10=  0.2895 0.2740 0.1585 0.0909 

1=  0.0173 0.0173 0.0081 0.0081 

3=  0.3369 0.2744 0.2038 0.1013 

2=  0.0316 0.0316 0.0096 0.0065 

 

 

 

 
610  

 

 

 

1=  0.0135 0.0134 0.0023 0.0016 

1=  0.0056 0.0056 0.0008 0.0008 

3=  0.0382 0.0381 0.0038 0.0016 

1=  0.0055 0.0054 0.0005 0.0005 

10=  0.1273 0.1273 0.0128 0.0040 

1=  0.0057 0.0056 0.0005 0.0005 

3=  0.0860 0.0849 0.0152 0.0044 

2=  0.0100 0.0100 0.0010 0.0010 

BIASa: the bias of each estimator. 
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4.2.1. Parameter estimation 

The distributed mean-WNLS method averages the estimators of each node. To compare the 

performance of the ADMM-WNLS and mean-WNLS methods, we generate the GPD random 

variables with the shape parameter )2,1(=  and the scale parameter ).10,3,1(=  We try 

sample sizes of 54 10,10  and 610 , node number 10=K  and the 90%, 95% sample quantiles as 

the threshold values. In this paper, we only present the results for the case of the 95% threshold 

value, the results for the 90% threshold value are similar. The simulation results of some 

parameters are listed in Table 2. As shown in Table 2, both the RMSE and BIAS values decrease 

as the sample size increases for the same parameter, and the overall performances of 

ADMM-WNLS estimators are better for all cases. Moreover, the performance of ADMM-WNLS 

becomes greatly better as the scale parameter increases for a fixed shape parameter and fixed 

sample size. Therefore, the parameter estimation accuracy of the ADMM-WNLS method is more 

higher as the tail of distribution is more thicker. 

4.2.2. High quantile estimation 

Next, we compare the performance of the ADMM-WNLS and mean-WNLS in estimating 

high quantiles of heavy-tailed distributions. Sample sizes of 54 10,10  and 610  are randomly 

generated from Cauchy (0,1), GPD (10,1), Log-gamma (2,1) and node number .10=K  We 

choose the 95% sample quantile as threshold value. The estimated quantiles p  are 99%, 99.9% 

and 99.99%. The wnlsARB
 

is defined as ,|ˆ| wnlswnls  −
 

where ̂  is the estimated quantile 

and wnls
 

is the WNLS estimator with full sample. The simulation results are listed in Table 3. 

Table 3. Quantile estimation results for Cauchy (0,1) GPD (10,1) and Log-gamma (2,1) with 

95% threshold value. 

Distribution Sample size Method 
ARB wnls 

0.99 0.999 0.9999 

 
104 

ADMM-WNLS 0.0896 0.2186 0.3517 

 mean-WNLS 0.0522 0.2208 0.3860 

Cauchy (0,1) 105 
ADMM-WNLS 0.0081 0.0364 0.0630 

mean-WNLS 0.0076 0.0367 0.0643 

 
106 

ADMM-WNLS 0.0009 0.0037 0.0073 

 mean-WNLS 0.0008 0.0038 0.0073 

 
104 

ADMM-WNLS 0.0863 0.0787 0.1287 

 mean-WNLS 0.0538 0.2180 0.3697 

GPD (10,1) 105 
ADMM-WNLS 0.0115 0.0354 0.0590 

mean-WNLS 0.0074 0.0370 0.0679 

 
106 

ADMM-WNLS 0.0011 0.0040 0.0068 

 mean-WNLS 0.0008 0.0041 0.0076 

 
104 

ADMM-WNLS 0.0998 0.1525 0.1799 

 mean-WNLS 0.0582 0.2362 0.3894 

  
  Continued on next page 
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Distribution 

 

Sample size 

 

Method ARB wnls 

 0.99 0.999 0.9999 

Log-gamma (2,1) 105 
ADMM-WNLS 0.0128 0.0333 0.0518 

mean-WNLS 0.0079 0.0406 0.0718 

 
106 

ADMM-WNLS 0.0013 0.0043 0.0075 

 mean-WNLS 0.0009 0.0044 0.0081 

For three heavy-tailed distributions, the ADMM-WNLS performs better for the extreme high 

quantiles such as 99.9% and 99.99% in many cases when sample sizes are 410  and .105  When 

sample size is 610 , the ADMM-WNLS performs better for the extreme high quantiles such as 99.9% 

and 99.99% of the Log-gamma distribution and the GPD while the ADMM-WNLS doesn't perform 

worse for the high quantiles of the Cauchy distribution. These results can be seen that the 

ADMM-WNLS is a clear-cut winner for the extreme high quantile levels of the heaviest-tailed 

distribution. 

5. Real data applications 

The dataset used in this section is the SOA group medical insurance large claims data in 1991, 

which is available on the Internet at http: // lstat.kuleuven.be/Wiley/. There are 75,789 observations 

and this dataset has a long tail as shown in Figure 4.  

 

Figure 4. The estimated density curve of observations. 

Next, we will apply the ADMM-WNLS and WNLS methods to estimate the extreme quantiles 

of this dataset. For simplicity, we take a sample of size 70,000 as our targeted data, select 90%, 93% 

and 95% sample quantiles as threshold values, and this data is stored into 10 nodes. Table 4 shows 

the ARB of high quantile estimates for this data. It can seen from Table 4 that the 99%, 99.9% 

quantiles are estimated well for the two methods and the choice of threshold has little effect on 

estimation accuracy of a fixed quantile. However, since the amount of this data itself is not very large, 

sample size of each node is relatively small after partitioning, which leads to a bit large bias of the 

distributed ADMM-WNLS method than the WNLS method with full sample for the 99.99% 

extremely high quantile. Therefore, our distributed method is applicable for the quantile estimation 

http://lstat.kuleuven.be/Wiley/
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of heavy-tailed distribution in real application. 

Table 4. Quantile estimation results: ARB for SOA data. 

Threshold Method 
ARB 

0.99 0.999 0.9999 

q = 0.95 
ADMM-WNLS 0.0060 0.0241 0.0572 

WNLS 0.0058 0.0226 0.0414 

q = 0.93 
ADMM-WNLS 0.0057 0.0262 0.0620 

WNLS 0.0060 0.0256 0.0496 

q = 0.90 
ADMM-WNLS 0.0058 0.0205 0.0418 

WNLS 0.0061 0.0177 0.0311 

6. Conclusions 

With the amount of data increasing, it is impossible to store all of them on a single machine and 

the distributed storage architectures have been widely used. In this background, this paper attempt to 

find an algorithm to compute the quantiles of heavy-tailed distributions in a distributed storage 

architecture. To this end, we propose the ADMM-WNLS method under the POT framework. The key 

idea of the ADMM-WNLS method is to combine the distributed optimization algorithm (ADMM) 

and the efficient quantile estimation method (WNLS). Moreover, we discuss the distributed 

ADMM-WNLS performances on estimating the high quantiles through simulation study and real 

data analysis, and it can be seen that the distributed ADMM-WNLS provides a feasible and efficient 

solution to estimate high quantiles for heavy-tailed distributions in a distributed manner. In addition, 

Our proposed method is a centralized distributed estimation algorithm, the master node plays an 

important role in this algorithm procedures. When we conduct this algorithm, we need to ensure that 

the master node can complete this task normally in advance. If the master node fails, this distributed 

algorithm will not be applicable. To avoid this failure problem, we will attempt to extend the 

proposed algorithm to the decentralized distributed algorithm in the future. 
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