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Abstract: Asymptomatic transmission of infectious diseases has been recognized recently in several
epidemics or pandemics. There is a great need to incorporate asymptomatic transmissions into tradi-
tional modeling of infectious diseases and to study how asymptomatic transmissions shift epidemic
dynamics. In this work, we propose a compartmental model with asymptomatic transmissions for
waterborne infectious diseases. We conduct a detailed analysis and numerical study with shigellosis
data. Two parameters, the proportion p of asymptomatic infected individuals and the proportion k of
asymptomatic infectious individuals who can asymptomatically transmit diseases, play major rules in
the epidemic dynamics. The basic reproduction number R0 is a decreasing function of parameter p
when parameter k is smaller than a critical value while R0 is an increasing function of p when k is
greater than the critical value. R0 is an increasing function of k for any value of p. When R0 passes
through 1 as p or k varies, the dynamics of epidemics is shifted. If asymptomatic transmissions are not
counted, R0 will be underestimated while the final size may be overestimated or underestimated. Our
study provides a theoretical example for investigating other asymptomatic transmissions and useful
information for public health measurements in waterborne infectious diseases.
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1. Introduction

Asymptomatic transmission refers to the transmission of a disease from an individual who does not
develop symptoms. It has been recognized in many infectious diseases. Nelson et al. [1] pointed out
there was an asymptomatic transmission in cholera epidemics. Lopez et al. [2] reported an asymp-
tomatic transmission occurred in Giardia lamblia infections. Okpalanwa et al. [3] showed that there
was an asymptomatic population of resistant salmonella in Nigeria. Most importantly, the current
pandemic COVID-19 can be transmitted asymptomatically. It is necessary now to incorporate asymp-
tomatic transmissions into traditional models of infectious diseases. In this study, as proof of principle,
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we focus on modeling of waterborne infectious disease which has an asymptomatic transmission com-
ponent.

Pathogens, viruses, parasites, and microorganisms with eutrophication in non-clean drinking water
can cause the spread of infectious diseases. After drinking, it may cause diseases such as cholera,
typhoid fever, amoebic dysentery, bacillus dysentery, and other diarrheal diseases, and it may cause
dengue fever, lymphatic filariasis, malaria, onchocerciasis, yellow fever trachoma, and other water-
borne diseases [4]. According to World Health Organization, in 2019, 785 million people still lack
basic drinking water, of which 144 million people live on surface water. At least 2 billion people
worldwide use drinking water sources that are contaminated with feces. Contaminated drinking water
is estimated to cause more than 485,000 deaths [5].

The earliest mathematical model for studying infectious diseases is the SIR model proposed by
Kermack and McKendrick [6]. This model has been widely applied in real life, and there have been
a lot of related studies. Mathematical models have also been applied to study waterborne infectious
diseases. An early models related to waterborne infectious diseases was a system of two ordinary dif-
ferential equations proposed by Capasso and Fontana [7] in 1979, which considered the evolution of
a human infected population in urban communities and marine bacterial population (cholera bacteria).
Codeco [8] extended this model to a SIB model with a susceptible population to study the long-term
dynamics. We conducted detailed analysis for several early models [9]. Tien and Earn [10] proposed a
multi-channel transmission for infectious disease modeling. That is, the model has susceptible individ-
uals, infectious individuals, bacteria in the water, and recovered individuals (SIWR), where the disease
can be transmitted from infected individuals to susceptible individuals, and from bacteria in the water
to susceptible individuals. In real situations, when knowing viruses in the water, some disinfection
and sterilization will be taken. Misra and Singh [11] considered the effectiveness of the disinfection
and sterilization and the time lag of disinfection to build the XYZBC (X: susceptible individuals, Y:
infected individuals, Z: removed individuals, B: water cholera concentration, C: disinfectant concentra-
tion) model. Eisenberg et al. [12] established the SIRSW model for cholera spread, and calculated the
basic reproduction number and the global stability of endemic diseases. Wang and Cao [13] established
a network epidemic model for waterborne diseases which is a SIWR model.

The presence of asymptomatic individuals and incubation periods in many waterborne infectious
diseases can increase the spread of infectious diseases. Okpalanwa et al. [3] demonstrated that the
presence of multiple and extensively resistant salmonella in asymptomatic populations had a signifi-
cant impact on the ecology and epidemiology of antimicrobial resistance in Nigeria. Lopez et al. [2]
described that most, about 76%, of Giardia lamblia infections that occur during an epidemic are asymp-
tomatic. In his thesis [14], Laveri conducted a detailed data study about traveler’s diarrhea and found
that the proportion of pathogen-positive stools was highest among asymptomatic travellers who had
visited East Africa (80%), followed by Latin America (75%), West and Central Africa (68%), and
South Asia (64%), and lowest in Southeast Asia (46%). In a study by Nelson [1] et al., they claimed
that the number of asymptomatic cases of cholera reached nearly half. It should be noticed that there is
certain incubation period for asymptomatic transmissions. Angelo et al. [15] stated that the incubation
period of outbreak-associated listeriosis cases had a median of 11 days and 90% of cases occurred
within 28 days. The incubation period varies depending on specific pathogens, viruses, parasites, or
microorganisms. In 2014, Chen et al. [16] built a short-term SEIAWR model (also see [17]) based
on the characteristics of Shigella infection, and simulated the effectiveness of combining various mea-
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sures (treatments, disinfection, isolation, and school suspension). Recently, Chen et al. [18] proposed
a long-term SEIAWR model of COVID-19, they calculated the basic reproduction number to assess
the transmissibility of COVID-19 according to the reported data in Wuhan city, China. However, it is
important to characterize asymptomatic transmissions in these epidemic models.

In this work, we perform some detailed analysis to study the global dynamics of the long-term
SEIAWR model. We find the basic reproduction number, prove global stability for the endemic equi-
librium state, and show how the basic reproduction number changes as parameters related to asymp-
tomatic transmission vary. To compare the dynamics with short-term SEIAWR model, we also perform
analysis for the short-term model, and obtain the basic reproduction number and the final size. We also
conduct numerical analysis to demonstrate the dynamic behaviors of both short and long term models,
particularly, to show how an asymptomatic transmission shifts their dynamic behaviors.

The rest of the article is organized as follows. In Section 2, the long-term model SEIAWR is pro-
posed and analyzed. In Section 3, the short-term SEIAWR model is analyzed. In Section 4, numerical
studies are presented. The article is closed with discussion and conclusions in Section 5.

2. Long-term SEIAWR model and its analysis

In this section, we propose our long-term model, and compute equilibrium solutions and the basic
reproduction number. We analyze how an asymptomatic transmission changes the basic reproduction
number. We also prove global stabilities for the equilibria.

2.1. Preliminaries

We divide the population into five compartments: susceptible individuals, exposed individuals, in-
fected individuals, asymptomatic individuals who have acquired the disease, and removed individuals.
As traditional models, infected individuals can transmit disease to susceptible individuals. However,
there is a subpopulation of asymptomatic infectious individuals, and we consider some proportion of
those individuals can also transmit to susceptible individuals. For susceptible individuals, there is some
period of time to be exposed to both infected and asymptomatic infectious individuals. Both infected
and asymptomatic infectious individuals shed viruses or disease pathogens into the water. Suscep-
tible individuals can also acquire the disease from pathogens in the water. The Figure 1 shows the
interactions and flows in our model.

Denote the susceptible compartment by S , the exposed compartment E, the infected compartment I,
the asymptomatic compartment A, the removed compartment R, and the concentration of pathogens in
water W. This model is given as follows:

Ṡ (t) = Λ − ηS (t) − βS (t)(I(t) + kA(t)) − βwS (t)W(t),
Ė(t) = βS (t)(I(t) + kA(t)) + βwS (t)W(t) − ωE(t) − ηE(t),
İ(t) = (1 − p)ωE(t) − γI(t) − ηI(t),
Ȧ(t) = pωE(t) − γ′A(t) − ηA(t),
Ṙ(t) = γI(t) + γ′A(t) − ηR(t),
Ẇ(t) = µI(t) + µ′A(t) − εW(t),

(2.1)

with initial values S (0) = S 0, E(0) = E0, I(0) = I0, A(0) = A0, R(0) = 0, and W(0) = W0. The
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Figure 1. Flow chart of mathematical model.

parameters and their values are given in the Table 1. We briefly explain them here. The parameter Λ is
the birth rate of the susceptible individuals while η is the death rate. The parameter β is the individual
to individual infection rate. The parameter k is the proportion of asymptomatic infectious individuals
who can transmit the disease to susceptible individuals. The parameter βw is the infection rate from
pathogens in water to susceptible individuals. The parameter ω is the incubation rate. The parameter
p is the proportion of asymptomatic infected individuals. The parameter γ is the recovery rate of
infected individuals while γ′ is the recovery rate of asymptomatic infected individuals. The parameter
µ is the pathogen shedding rate from infected individuals while µ′ is the pathogen shedding rate from
asymptomatic infected individuals. The parameter ε is the pathogen degenerate rate, and 1/ε is the
average lifetime of the pathogens in the water.

If we let M(t) = S (t) + E(t) + I(t) + A(t) + R(t), and add first five equations together, we get
Ṁ(t) = Λ − ηM(t). Therefore, we can delete one equation from the first five equations. We consider
the following model in the rest of the paper,

Ṡ (t) = Λ − ηS (t) − βS (t)(I(t) + kA(t)) − βwS (t)W(t),
Ė(t) = βS (t)(I(t) + kA(t)) + βwS (t)W(t) − ωE(t) − ηE(t),
İ(t) = (1 − p)ωE(t) − γI(t) − ηI(t),
Ȧ(t) = pωE(t) − γ′A(t) − ηA(t),
Ẇ(t) = µI(t) + µ′A(t) − εW(t).

(2.2)

It is easy to show S (t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, A(t) ≥ 0, W(t) ≥ 0 if the initial values are
nonnegative. Hence, we can have that the nonnegative cone R5

+ is positively invariant for model (2.2)
where our model is well-posed. According to the model (2.2), let S (t) + E(t) + I(t) + A(t) = N(t),
then Ṅ(t) = Λ − ηN(t) − γI(t) − γ′A(t) ≤ Λ − ηN(t). We have N(t) ≤ Λ/η + (N(0) − Λ/η)e−ηt and
then lim supt→∞ N(t) ≤ Λ/η. Further, we can have that lim supt→∞W(t) ≤ Λ(µ + µ′)/εη. Therefore, all
solutions of model (2.2) are bounded in R5

+.
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Next, we compute equilibrium solutions for model (2.2). We set the right-hand side of each equation
in the model (2.2) to be zero,

Λ − ηS ∗ − βS ∗(I∗ + kA∗) − βwS ∗W∗ = 0
βS ∗(I∗ + kA∗) + βwS ∗W∗ − ωE∗ − ηE∗ = 0
(1 − p)ωE∗ − γI∗ − ηI∗ = 0
pωE∗ − γ′A∗ − ηA∗ = 0
µI∗ + µ′A∗ − εW∗ = 0.

The equilibrium points are solved as follows.
The disease-free equilibrium point of the model is E0 = (S 0, 0, 0, 0, 0), the endemic equilibrium

point is E1 = (S ∗, E∗, I∗, A∗,W∗), where S 0 = Λ
η

,

S ∗ =
Λ

η + β(I∗ + kA∗) + βwW∗
, E∗ =

Λ

ω + η

(
1 −

1
R0

)
, I∗ =

(1 − p)ωΛ

(γ + η)(ω + η)

(
1 −

1
R0

)
,

A∗ =
pωΛ

(γ′ + η)(ω + η)

(
1 −

1
R0

)
, W∗ =

[
(1 − p)µωΛ

(γ + η)(ω + η)ε
+

pωµ′Λ
(γ′ + η)(ω + η)ε

] (
1 −

1
R0

)
.

R0 is the basic reproduction number, which is calculated next.
Now, we can calculate the basic reproduction number of the model (2.2) according to the next

generation matrix methods [19]. Then the basic reproduction number R0 is given by

R0 =
(1 − p)ωβS 0

(γ + η)(ω + η)
+
µ(1 − p)ωβwS 0

(γ + η)(ω + η)ε

+
µ′pωβwS 0

(γ′ + η)(ω + η)ε
+

pkωβS 0

(γ′ + η)(ω + η)

= (1 − p)
[

ωβS 0

(γ + η)(ω + η)
+

µωβwS 0

(γ + η)(ω + η)ε

]
+ p

[
µ′ωβwS 0

(γ′ + η)(ω + η)ε
+

kωβS 0

(γ′ + η)(ω + η)

]
.

(2.3)

In order to understand how an asymptomatic transmission changes the dynamics of epidemics, we
may consider the basic reproduction number R0 is a function of the parameter p and k. The partial
derivatives with respective to those parameters will reveal the information. It is easy to obtain these
derivatives.

∂R0

∂p
=
ωβS 0

ω + η

(
k

γ′ + η
−

1
γ + η

)
+

ωβwS 0

(ω + η)ε

(
µ′

γ′ + η
−

µ

γ + η

)
,

∂R0

∂p
=

ωS 0

ω + η

[
βk

γ′ + η
−

β

γ + η
+

βwµ
′

(γ′ + η) ε
−

βwµ

ε (γ + η)

]
,

∂R0

∂k
=

ωβS 0 p
(γ′ + η)(ω + η)

.
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Remark 1. The basic reproduction number has two parts, one part is from infected transmission and
other one from asymptomatic transmission.

The basic reproduction number R0 is an increasing function of the parameter k which is the pro-
portion of asymptomatic infectious individuals who can transmit the disease to susceptible individuals.
If all other parameters are fixed, when the parameter k is increasing, the dynamics of model (2.1) can
be dramatically changed once R0 increases from the value smaller than 1 to the value greater than 1.

Now, we fixed all parameters except p and k. There exists a critical value of k under a simple
condition, the basic reproduction number R0 is an increasing function of p when k is greater than the
critical value, and R0 is a decreasing function of p when k is smaller than the critical value. This
means that, the proportion of asymptomatic infected individuals can also change the dynamics of the
model (2.1) in two different ways depending on the proportion of asymptomatic infectious individuals.

2.2. Global stability

In this subsection, we present two theorems about global stability of equilibrium solutions.

Theorem 1. When R0 ≤ 1, the disease-free equilibrium E0 is globally asymptotically stable in the
region R5

+.

Proof. We prove the global stability of E0 by constructing a Lyapunov function. Let

U(t) = (S (t), E(t), I(t), A(t),W(t))

be the solution of model (2.2) through any ϕ := (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ R5
+. It is not difficult to find that

U(t) is bounded and further S (t) > 0 for all t > 0. Now, let us define a function V on D0 = {ϕ ∈ R5
+ :

ϕ1 > 0},

V(ϕ) = ϕ1 − S 0 − S 0 ln
ϕ1

S 0

+ R0ϕ2 +
βS 0ε + µβwS 0

(γ + η)ε
ϕ3

+
µ′βwS 0 + kβS 0ε

(γ′ + η)ε
ϕ4 +

βwS 0

ε
ϕ5.

(2.4)

Clearly, V is continuous on D0 ⊂ R
5
+ and an infinite positive definite function with respect to E0.

Taking the derivative of (2.4) along the solution U(t) ∈ D0 of model (2.2) for t ≥ 1,

V̇(U(t)) =

(
1 −

S 0

S (t)

)
Ṡ (t) + R0 ˙E(t) +

βS 0ε + µβwS 0

(γ + η)ε
İ(t) +

µ′βwS 0 + kβS 0ε

(γ′ + η)ε
Ȧ(t) +

βwS 0

ε
Ẇ(t).
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Then it follows

V̇(U(t)) =

(
1 −

S 0

S (t)

)
[Λ − ηS (t) − βS (t)(I(t) + kA(t)) − βwS (t)W(t)]

+

[
(1 − p)ωβS 0

(γ + η)(ω + η)
+

pkωβS 0

(γ′ + η)(ω + η)

]
[βS (t)(I(t) + kA(t)) + βwS (t)W(t) − ωE(t) − ηE(t)]

+

[
µ(1 − p)ωβwS 0

(γ + η)(ω + η)ε
+

µ′pωβwS 0

(γ′ + η)(ω + η)ε

]
[βS (t)(I(t) + kA(t)) + βwS (t)W(t) − ωE(t) − ηE(t)]

+
βS 0ε + µβwS 0

(γ + η)ε
[(1 − p)ωE(t) − γI(t) − ηI(t)]

+
µ′βwS 0 + kβS 0ε

(γ′ + η)ε
(pωE(t) − γ′A(t) − ηA(t))

+
βwS 0

ε
(µI(t) + µ′A(t) − εW(t)).

Simplified the above expression, we have

V̇(U(t)) = −η
(S (t) − S 0)2

S (t)
+ (R0 − 1)[βS (t)(I(t) + kA(t)) + βwS (t)W(t)] ≤ 0 (2.5)

for R0 ≤ 1. By (2.4) and (2.5), there is an ε = ε(ϕ) > 0 such that lim inft→∞ S (t) > ε. Thus, we have
that V is continuous on Γ0 ⊂ D0, where Γ0 is the closure of Γ0 = {U(t) : t ≥ 1}. Consequently, [20,
Corollary 3.3 and Remark 3.2] implies that E0 is uniformly stable. Further, V is also a Lyapunov
function on Γ1. From [20, corollary 2.1], we have that V̇(φ) = 0 for any φ ∈ ω(ϕ), where ω(ϕ) is the
ω-limit set of ϕ for model (2.2).

Next, we only need to prove that ω(ϕ) = {E0}. Let U(t) be the solution of model (2.2) with any
φ ∈ ω(ϕ). The invariance of ω(ϕ) yields U(t) ∈ ω(ϕ) for all t ∈ R. We thus have V̇(U(t)) = 0 for all
t ∈ R. Considering (2.5), it holds S (t) = S 0 for all t ∈ R. From the first equation of model (2.2), it
follows I(t) = A(t) = W(t) = 0 for all t ∈ R. By the second equation of model (2.2) and the invariance
of ω(ϕ), we have E(t) = 0 for all t ∈ R. Therefore, ω(ϕ) = {E0}. �

Theorem 2. When R0 > 1, the endemic equilibrium E1 is globally asymptotically stable in the region
D = {ϕ ∈ R5

+ : ϕ2 > 0}.

Proof. Firstly, it is not difficult to obtain the set D ⊂ R5
+ is a positive invariant set of model (2.2). Let

U(t) = (S (t), E(t), I(t), A(t),W(t)) be the solution of model (2.2) with any ϕ ∈ D. It follows U(t) is
bounded and U(t) � 0 for t > 0. Now, let us define a function V on D1 = {ϕ ∈ R5

+ : ϕ � 0},

V(ϕ) = ϕ1 − S ∗ − S ∗ ln
ϕ1

S ∗
+ ϕ2 − E∗ − E∗ ln

ϕ2

E∗

+

[
βS ∗

γ + η
+

βwS ∗µ
ε(γ + η)

] (
ϕ3 − I∗ − I∗ ln

ϕ3

I∗

)
+

[
βkS ∗

γ′ + η
+

βwS ∗µ′

ε(γ′ + η)

] (
ϕ4 − A∗ − A∗ ln

ϕ4

A∗

)
+
βwS ∗

ε

(
ϕ5 −W∗ −W∗ ln

ϕ5

W∗

)
.

(2.6)
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It is easy to see that V is continuous on D1 ⊂ D and an infinite positive definite function with respect
to E1.

We take the derivative of (2.6) along the solution U(t) ∈ D1 of the model (2.2) for t ≥ 1 as follows,

V̇(U(t)) = − η
[S (t) − S ∗]2

S (t)
+ βS ∗I∗ + βS ∗kA∗ + βwS ∗W∗ − βS (t)I(t) − βkS (t)A(t) − βwS (t)W(t)

−
(S ∗)2

S (t)
βI∗ −

(S ∗)2

S (t)
βkA∗ −

(S ∗)2

S (t)
βwW∗ + βS ∗I(t) + βkS ∗A(t) + βwS ∗W(t)

+ βS (t)I(t) + βkS (t)A(t) + βwS (t)W(t) − (ω + η)E(t) −
E∗

E(t)
βS (t)I(t) −

E∗

E(t)
βkA(t)

−
E∗

E(t)
βwS (t)W(t) + (ω + η)E∗ +

βS ∗

γ + η
(1 − p)ωE(t) −

βS ∗

γ + η
(γ + η)I(t)

−
βS ∗

γ + η

I∗

I(t)
(1 − p)ωE(t) +

βS ∗

γ + η
(γ + η)I∗ +

βwS ∗µ
ε(γ + η)

(1 − p)ωE(t) −
βwS ∗µ
ε(γ + η)

(γ + η)I(t)

−
βwS ∗µ
ε(γ + η)

I∗

I(t)
(1 − p)ωE(t) +

βwS ∗µ
ε(γ + η)

(γ + η)I∗ +
βkS ∗

γ′ + η
pωE(t)

−
βkS ∗

γ′ + η
(γ′ + η)A(t) −

βkS ∗

γ′ + η

A∗

A(t)
pωE(t) +

βkS ∗

γ′ + η
(γ′ + η)A∗ +

βwS ∗µ′

ε(γ′ + η)
pωE(t)

−
βwS ∗µ′

ε(γ′ + η)
(γ′ + η)A(t) −

βwS ∗µ
′

ε(γ′ + η)
A∗

A(t)
pωE(t) +

βwS ∗µ′

ε(γ′ + η)
(γ′ + η)A∗

+
βwS ∗

ε
µI(t) +

βwS ∗

ε
µ′A(t) − βwS ∗W(t)

−
βwS ∗

ε

W∗

W(t)
µI(t) −

βwS ∗

ε

W∗

W(t)
µ′A(t) + βwS ∗W∗,

where (1− p)ω = (γ + η)I∗/E∗, pω = (γ′ + η)A∗/E∗, ω+ η = (βS ∗I∗ + βkS ∗A∗ + βwS ∗W∗)/E∗. Finally,
we have that

V̇(U(t)) = − η
(S (t) − S ∗)2

S (t)
+ βS ∗I∗

[
3 −

S ∗

S (t)
−

E∗S (t)I(t)
E(t)S ∗I∗

−
I∗E(t)
I(t)E∗

]
+
βwS ∗A∗µ′

ε

[
4 −

S ∗

S (t)
−

E∗S (t)W(t)
E(t)S ∗W∗

−
A∗E(t)
A(t)E∗

−
W∗A(t)
W(t)A∗

]
+
βwS ∗I∗µ

ε

[
4 −

S ∗

S (t)
−

E∗S (t)W(t)
E(t)S ∗W∗

−
I∗E(t)
I(t)E∗

−
W∗I(t)
W(t)I∗

]
+ βkS ∗A∗

[
3 −

S ∗

S (t)
−

E∗S (t)A(t)
E(t)S ∗A∗

−
A∗E(t)
A(t)E∗

]
≤ 0,

(2.7)

where the average value inequalities are used.
From (2.6) and (2.7), it follows ω(ϕ) ⊆ D1. Hence by [20, Corollary 3.3 and Remark 3.2], we can

obtain that E1 is uniformly stable. And V is a Lyapunov function on {U(t) : t ≥ 1} ⊂ D1 for R0 > 1. It
follows from [20, corollary 2.1] that V̇(φ) = 0 for any φ ∈ ω(ϕ).

Let U(t) = (S (t), E(t), I(t), A(t),W(t)) be the solution of the model (2.2) with any φ ∈ ω(ϕ). Then
by the invariance of ω(ϕ), we have U(t) ∈ ω(ϕ) for all t ≥ 0. Consequently, it follow from (2.7) that
S (t) = S ∗, I(t)E∗ = I∗E(t), A∗E(t) = A(t)E∗ and W∗I(t) = W(t)I∗ for all t ≥ 0. Hence, we have

E∗ İ(t) = E∗(1 − p)ωE(t) − (γ + η)E∗I(t) = (E∗(1 − p)ω − (γ + η)I∗)E(t) = 0,
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which yields that I(t) is a constant function on R+. Further, it holds that U(t) (� 0) is a constant vector
function, i.e., a positive equilibrium of the model (2.2). By the uniqueness of the positive equilibrium,
we have ω(ϕ) = {E1} for any ϕ ∈ D and then E1 is globally attractive. �

3. Short-term SEIAWR model and its analysis

Chen et al. studied about shigella outbreaks in a local area in China [16]. They employed a short-
term SEIAWR model, where the birth and death of individuals were no longer considered. In this
section, we will carry out a basic analysis for the model. Particularly, we compute the basic reproduc-
tion number, and the final size.

The model is as follows.

Ṡ (t) = −βS (t)(I(t) + kA(t)) − βwS (t)W(t),
Ė(t) = βS (t)(I(t) + kA(t)) + βwS (t)W(t) − ωE(t),
İ(t) = (1 − p)ωE(t) − γI(t),
Ȧ(t) = pωE(t) − γ′A(t),
Ṙ(t) = γI(t) + γ′A(t),
Ẇ(t) = µI(t) + µ′A(t) − εW(t),

(3.1)

with initial conditions S (0) = N − E0 − I0 − A0, E(0) = E0, I(0) = I0, A(0) = A0, R(0) = 0, and
W(0) = W0.

When the birth rate and death rate of the population are not taken into account, the initial population
number is constant N, S (0) = N. It is easy to compute the basic reproduction number, or to derive
from the long-term model, which is given by

R0 =
(1 − p)N

γ

(
β +

µβw

ε

)
+

pN
γ′

(
kβ +

µ′βw

ε

)
. (3.2)

If we take partial derivative of R0 with respective to parameter p and k, we have

∂R0

∂p
= βN

(
k
γ′
−

1
γ

)
+

Nβw

ε

(
µ′

γ′
−
µ

γ

)
,

∂R0

∂k
=

pNβ
γ′

.

We have a similar remark.

Remark 2. The basic reproduction number has two parts, one part is from infected transmission and
other one from asymptomatic transmission.

The basic reproduction number R0 is an increasing function of the parameter k which is the propor-
tion of asymptomatic infectious individuals who can transmit the disease to susceptible individuals. If
all other parameters are fixed, when the parameter k is increasing, the dynamics of the system 2.1 can
be dramatically changed once R0 increases from the value smaller than 1 to the value greater than 1.

Now, we fixed all parameters except p and k. There exists a critical value of k, the basic repro-
duction number R0 is an increasing function of p when k is greater than the critical value, and R0 is
a decreasing function of p when k is smaller than the critical value. This means that, the proportion
of asymptomatic infected individuals can also change the dynamics of the model (2.1) in two different
ways depending on the proportion of asymptomatic infectious individuals. Of course, the critical value
of k is different from that in the long-term model.
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For short-term outbreaks of infectious diseases, we can find the final size of the susceptible individ-
uals, which can give us some information about the basic reproduction number. We now compute the
final size. Adding the first two equations of model (3.1), we get

Ṡ (t) + Ė(t) = −ωE(t). (3.3)

We claim that Ṡ (t) + Ė(t) is uniformly continuous and then limt→∞(Ṡ (t) + Ė(t)) = 0. In fact, for any
ε > 0, there exists a δ = δ(ε) > 0, it holds

| (Ṡ + Ė)(t1) − (Ṡ + Ė)(t2) |<
ε

2
,whenever | t1 − t2 |< δ.

It is easy to know the limit of S (t) + E(t) exists. By Cauchy convergence principle, there is a T =

T (ε) > 0 such that when t > T , we have

| (S + E)(t + δ) − (S + E)(t) |<
εδ

2
.

Hence it follows

| Ṡ (t) + Ė(t) | =
∣∣∣∣∣Ṡ (t) + Ė(t) −

(S + E)(t + δ) − (S + E)(t)
δ

+
(S + E)(t + δ) − (S + E)(t)

δ

∣∣∣∣∣
≤ |(Ṡ + Ė)(t) − (Ṡ + Ė)(α) | +

1
δ
| (S + E)(t + δ) − (S + E)(t)|

<
ε

2
+

1
δ

εδ

2
= ε,

where α ∈ (t, t + δ). Consequently,
lim
t→∞

E(t) = E(∞) = 0.

From the third and the fourth equations of model (3.1), we can obtain that lim supt→∞ I(t) ≤ 0 and
lim supt→∞ A(t) ≤ 0. Since I(t) ≥ 0, W(t) ≥ 0, it holds limt→∞ I(t) = limt→∞ A(t) = 0. By the sixth
equation of model (3.1), similarly, we have limt→∞W(t) = 0. It is easy to conclude that S (∞) exists.

From (3.3), it follows ∫ ∞

0
(Ṡ (t) + Ė(t))dt = −ω

∫ ∞

0
E(t)dt,

Further, we have ∫ ∞

0
E(t)dt =

S (0) + E(0) − S (∞) − E(∞)
ω

=
S (0) + E(0) − S (∞)

ω
. (3.4)

The first three equations of the model (3.1) are added up, we have

Ṡ (t) + Ė(t) + İ(t) = −ωpE(t) − γI(t),

which yields

S (0) + E(0) + I(0) − S (∞) − E(∞) − I(∞) = ωp
∫ ∞

0
E(t)dt + γ

∫ ∞

0
I(t)dt.
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Substituting (3.3), we get∫ ∞

0
I(t)dt =

(1 − p)S (0) + (1 − p)E(0) + I(0) − (1 − p)S (∞)
γ

. (3.5)

The first four equations of the model (3.1) are added up, we have,

Ṡ (t) + Ė(t) + İ(t) + Ȧ(t) = −γ′A(t) − γI(t),

which leads

S (0) + E(0) + I(0) + A(0) − S (∞) − E(∞) − I(∞) − A(∞) = γ

∫ ∞

0
I(t)dt + γ′

∫ ∞

0
A(t)dt.

Substituting (3.5), which gives∫ ∞

0
A(t)dt =

pS (0) + pE(0) + A(0) − pS (∞)
γ′

. (3.6)

Integrating the last equation of the model (3.1), we have∫ ∞

0
Ẇ(t)dt = µ

∫ ∞

0
I(t)dt + µ′

∫ ∞

0
A(t)dt − ε

∫ ∞

0
W(t)dt. (3.7)

Substituting (3.5) and (3.6), it follows∫ ∞

0
W(t)dt =

W(0)
ε

+
µ(1 − p)S (0) + µ(1 − p)E(0) + µI(0) − µ(1 − p)S (∞)

γε

+
µ′pS (0) + µ′pE(0) + µ′A(0) − µ′pS (∞)

γ′ε
.

(3.8)

Next, we claim that S (∞) > 0. In fact, (3.5), (3.6) and (3.8) hint that∫ ∞

0
(β(I(t) + kA(t)) + βwW(t)) dt

is convergent. Therefore,
S (∞) = S (0)e−

∫ ∞
0 [β(I(t)+kA(t))+βwW(t)]dt > 0.

Integrate the first equation of the model (3.1), we have

ln
S (0)
S (∞)

= β

∫ ∞

0
I(t)dt + βk

∫ ∞

0
A(t)dt + βw

∫ ∞

0
W(t)dt, (3.9)

Substituting (3.5), (3.6) and (3.8), which yields,

ln
S (0)
S (∞)

= β
(1 − p)S (0) + (1 − p)E(0) + I(0) + (p − 1)S (∞)

γ

+ βk
pS (0) + pE(0) + A(0) − pS (∞)

γ′
+ βw

W(0)
ε

+ βw
µ(1 − p)S (0) + µ(1 − p)E(0) + µI(0) − µ(1 − p)S (∞)

γε

+ βw
µ′pS (0) + µ′pE(0) + µ′A(0) − µ′pS (∞)

γ′ε
.
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Further, we have

ln
S (0)
S (∞)

= R0

(
1 −

I(0)
N
−

A(0)
N
−

S (∞)
N

)
+

(
β

γ
+
µβw

γε

)
I(0)

+

(
βk
γ′

+
µ′βw

γ′ε

)
A(0) + βw

W(0)
ε

.

We take I(0) = A(0) = W(0) = 0 along this line in [21]. Thus, we have

ln
S (0)
S (∞)

= R0

(
1 −

S (∞)
N

)
.

If we consider the final size is a function of the basic reproduction number R0, we can get some
understanding about how R0 affect the final size. We take the derivative of the final size with respect
to R0, and have

dS (∞)
dR0

=
N − S (∞)

R0 − N/S (∞)
.

Because the total population size N is always greater than the final size, N > S (∞), the sign of
dS (∞)/dR0 is determined by the denominator R0 − N/S (∞). If R0 < 1, then the final size is a
decreasing function of R0. There exists a critical value of R0 which is greater than 1, the final size will
be an increasing function of the basic reproduction number R0 when R0 is greater than this critical
value.

We may combine the information in Remark 2 to infer how parameters k and p influence the final
size. Because R0 is an increasing function of k, we may infer that there exists a critical value of k
which corresponds to the critical value of R0. When k is greater than this critical value, the final size
S (∞) is an increasing function of k; when k is smaller than this critical value, the final size S (∞) is a
decreasing function of k.

However, R0 can increase or decrease as p varies depending on k, we may infer that there exists
three critical values of k which divide the interval [0, 1] into four subintervals. In each subinterval, the
final size is a monotonic function of p.

Remark 3. The proportion of asymptomatic infected individuals and the proportion of asymptomatic
infectious individuals both influence the final size. There exists a critical value of k, the final size will
increase as k increases when k is greater than the critical value, while the final size will decrease as k
increase when k is smaller than the critical value. The way of p influencing the final size depends on
the proportion of asymptomatic infectious individuals.

4. Numerical studies

In this section, we perform several numerical demonstrations for both short and long term models.

4.1. Numerical study of the short-term model

Most of parameter values are taken from research [16,17], two parameter values are taken from [22].
We also assume two parameter values. We are interesting in how p and k influence the dynamics of the
models, therefore as long as all parameter values are in their natural ranges, we are not interested in any
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Table 1. Description of parameters in the model.
Parameter Description The parameter value source
β Person-to-person infection rate - -
b b = βN 0.0898 [17]
βw Reservoir-to-person infection rate - -
bw µβwN/ε 1.1264 × 10−9 [17]
k Proportion of asymptomatic infectious 0.3125 [17]
ω Incubation rate 1 [17]
p Proportion of asymptomatic infected 0.1 [17]
γ Recovery rate of the infected 0.0741 [17]
γ′ Recovery rate of the asymptomatic 0.0286 [17]
µ Pathogen shedding rate from the infected 0.63 Assumed
µ′ Pathogen shedding rate from the asymptomatic infected 0.71 Assumed
ε Pathogen degenerate rate 0.6931 [17]
Λ Birth rate of the population 0.01048 [22]
η Natural mortality rate of the population 0.00714 [22]
N The total population 1 Assumed

particular parameter values for our numerical study. The parameters and their values are summarized
in the Table 1.

If we completely use the data about a local outbreak of shigellosis from Chen [17] to compute the
basic reproduction number, we get

R0 = 1.188808

by simply substituting parameter values into

R0 =
(1 − p)b

γ
+

pkb
γ′

+
(1 − p)bw

γ
+

cpbw

γ′
.

According to the relationship between R0 and final size, we can calculate

S (∞) = 0.700135.

We numerically demonstrate how the proportion of asymptomatic infected individuals p and the
proportion of asymptomatic infectious individuals k influence the basic reproduction number. The pa-
rameter values are, b = 0.0898, bw = 1.1264×10−9, ω=1, γ=0.0741, γ

′

=0.0286, ε=0.6931, µ′=0.3125.
We can find that when 0≤ k < 0.386, the derivative of R0 with respective to p is less than 0, so R0

decreases with the increase of p. When 0.386 ≤ k ≤ 1, the derivative is greater than 0, so R0 increases
as p increases. We can see that the partial derivatives of R0 with respect to k are greater than 0 (for any
value of p), so R0 increases monotonically with respect to k.

Figure 2 shows that the value of R0 changes from greater than 1 to less than 1 as p increases
when 0≤ k < 0.386. This indicates that the large proportion of asymptomatic infected individuals
may prevent outbreaks of the epidemic when the proportion of asymptomatic infectious individuals is
smaller than the critical value.

Figure 3 shows that the value of R0 changes from less than 1 to greater than 1 as p increases,
when 0.386 ≤ k ≤ 1. This indicates that the large proportion of asymptomatic infected individuals
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Figure 2. Basic reproduction number.
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Figure 3. Basic reproduction number.
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Figure 4. Basic reproduction number. Figure 5. Basic reproduction number.

may promote outbreaks of the epidemic when the proportion of asymptomatic infectious individuals is
greater than the critical value.

Figure 4 shows that the value of R0 increases as k increases, and R0 changes from less than 1 to
greater than 1, which is independent of p. This indicates that the large proportion of asymptomatic
infectious individuals always promote outbreaks of the epidemic.

Figure 5 plots R0 as a function of k and p in the three-dimensional space, where the orange plane
is R0=1, the value of R0 is greater than 1 above the plane while smaller than 1 below the plane.

We numerically demonstrate how infected and asymptomatic infected individuals changes over time
course with different p and k values. Taking p = 0.1, k = 0.1, 0.25, 0.5, 0.75, the curves of infected
and asymptomatic infected individuals over time are calculated and drawn, as shown in Figures 6
and 8. Taking k = 0.3125, p = 0.1, 0.25, 0.5, 0.75, the curves of infected and asymptomatic infected
individuals over time are calculated and drawn, as shown in Figures 7 and 9.

Mathematical Biosciences and Engineering Volume 18, Issue 1, 92–111.



106

Time(days)
0 50 100 150 200 250 300 350 400

C
u

m
u

la
ti
v
e

 I
n

fe
c
ti
o

n
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Cumulative Infections

p=0.1,k=0.10
p=0.1,k=0.25
p=0.1,k=0.50
p=0.1,k=0.75

Figure 6. Cumulative infections.
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Figure 7. Cumulative infections.
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Figure 8. Asymptomatic infections.
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Figure 9. Asymptomatic infections.

Figure 6 shows how cumulative infections change in time with different proportion k of asymp-
tomatic infectious individuals when the proportion p of asymptomatic infected individuals is fixed.
This indicates that large k will make cumulative infections increasing fast. Figure 8 shows how cumu-
lative asymptomatic infections change in time with different proportion k of asymptomatic infectious
individuals when the proportion p of asymptomatic infected individuals is fixed. This indicates that
large k will make cumulative asymptomatic infections increasing fast.

Figure 7 shows how cumulative infections change in time with different proportion p of asymp-
tomatic infected individuals when the proportion k of asymptomatic infectious individuals is fixed.
This indicates that small p will make cumulative infections increasing fast. Figure 9 shows how cu-
mulative asymptomatic infections change in time with different proportion p of asymptomatic infected
individuals when the proportion k of asymptomatic infectious individuals is fixed. This indicates that
large p will make cumulative asymptomatic infections increasing fast.
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4.2. Numerical study of the long-term model

We numerically demonstrate how the proportion of asymptomatic infected individuals p and the
proportion of asymptomatic infectious individuals k influence the basic reproduction number. This
follows a similar pattern as short-term model.

For demonstration, parameter values are µ = 0.63, µ
′

= 0.71,Λ = 0.01048, η = 0.00714, b =

0.0898, bw = 1.1264 × 10−9, ω = 1, γ = 0.0741, γ′ = 0.0286, ε = 0.6931, c = 0.3125.

Figure 10 shows that the value of R0 changes from less than 1 to greater than 1 as p increases
when k is greater than a critical value which is 0.3815 under other chosen parameter values. Figure 11
shows that the value of R0 changes from greater than 1 to less than 1 as p increases when k is smaller
than the critical value. Figure 12 shows that the value of R0 changes from less than 1 to greater than
1 as k increases. These indicates that, in various ways, asymptomatic infected individuals including
asymptomatic infectious individuals can shift the epidemic dynamics in term of the basic reproduction
number. Figure 13 plots R0 as a function of k and p in the three-dimensional space, where the orange
plane is R0=1, the value of R0 is greater than 1 above the plane while smaller than 1 below the plane.
It shows the combined influence of the two parameters p and k on the basic reproduction number.
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Figure 10. Basic reproduction number.
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Figure 11. Basic reproduction number.

In the long-term model, we numerically demonstrate how infected and asymptomatic infected
individuals changes over time course with different p and k values. Taking k = 0.1, p =

0.1, 0.25, 0.50, 0.75, the curves of infected and asymptomatic infected individuals over time are cal-
culated and drawn, which are shown in Figures 14 and 16. Taking p = 0.1, k = 0.1, 0.25, 0.50, 0.75,
the curves of infected and asymptomatic infected individuals over time are calculated and drawn, which
are shown in Figures 15 and 17.

As in the short-term model, if we fix p, large k will make both cumulative infections and cumulative
asymptomatic infections increasing fast as showed in Figures 15 and 17; if we fix k, small p will
make cumulative infections increasing fast while large p will make cumulative asymptomatic infections
increasing fast.
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Figure 12. Basic reproduction number. Figure 13. Basic reproduction number.
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Figure 14. Cumulative infections.
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Figure 15. Cumulative infections.

5. Discussion and conclusions

Asymptomatic transmission is a way to transmit a disease from an individual who does not develop
symptoms but has been infected to other susceptible individuals. It has been recognized in many infec-
tious diseases recently. The purpose of this study was to understand how asymptomatic transmissions
change the dynamics of epidemics in the frame of traditional mathematical modeling of epidemiology.
Based on a short-term model for waterborne infectious diseases, we propose a long-term model for
waterborne infectious diseases. Within the traditional modeling framework SEIAWR, we divide the
infected compartment into two groups or sub-compartments, infected group and asymptomatic infected
group. We attach a proportion or percentage to each of these two group, say p is for asymptomatic in-
fected group, then 1− p is for infected group. Individuals in the infected group have symptoms and are
infectious. Individuals in asymptomatic infected group have no symptoms and may be infectious. We
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Figure 16. Asymptomatic infections.
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Figure 17. Asymptomatic infections.

then assume there a proportion or percentage k of the asymptomatic infected group who are infectious,
which means they can asymptomatically transmit the disease to susceptible individuals. Our study was
focusing on these two parameters, and on understanding how these two parameters influence the basic
reproduction number and the final size.

The basic reproduction number R0 is an increasing function of k for any value of p. This is reason-
able because of the more asymptomatic infectious individuals in the population, the more possibilities
for susceptible individuals to get infected. The parameter k alone can shift the dynamics of the model.
R0 can change from a value smaller than 1 to a value greater than 1 as k increases. However, there is
a critical value for k which characterizes the influence of p. The basic reproduction number R0 is a
decreasing function of the parameter p when parameter k is smaller than the critical value while R0 is
an increasing function of p when k is greater than the critical value. Of course, in both cases, R0 can
pass through 1 as p varies although these dynamic changes are in different ways. We may interpret
that, if the infectious portion of the asymptomatic infected group is too low, and even we increase the
portion of the asymptomatic infected group, this cannot increase R0, in fact, decreases R0. It should be
noticed that the product pk is the percentage of asymptomatic infectious individuals in the population.
The portion of pk+(1− p) infected individuals has ability to transmit the disease. pk+(1− p) decreases
as p increases. This may explain why there is a critical value for k which characterizes the influence
of p.

We consider the final size as a function of the basic reproduction number R0 in order to understand
how two parameters p and k influence the final size. If R0 < 1, then the final size is a decreasing
function of R0. There exists a critical value of R0 which is greater than 1, the final size will be an
increasing function of the basic reproduction number R0 when R0 is greater than this critical value.
We combine this with the information about relations between R0 and k and p. We may infer that
there exists a critical value of k which corresponding to the critical value of R0. When k is greater
than this critical value, the final size S (∞) is an increasing function of k; when k is smaller than this
critical value, the final size S (∞) is a decreasing function of k. However, R0 can increase or decrease
as p varies depending on k, we may infer that there exists three critical values of k which divide the
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interval [0, 1] into four subintervals. In each subinterval, the final size is a monotonic function of p. For
given data about any outbreak of waterborne infectious disease, we should be able to compute these
subintervals and determine how p influence the final size.

We may conclude as follows. Two parameters p and k can characterize influences of asymptomatic
transmissions in spreading of infectious diseases. An asymptomatic transmission can shift the dynam-
ics of epidemics. If asymptomatic transmissions are not counted, the basic reproduction number R0

will be underestimated while the final size may be overestimated or underestimated.
It is clear there are other ways to incorporate asymptomatic transmission into modeling of epidemi-

ology. For example, asymptomatic transmissions may happen from asymptomatic infectious individ-
uals to both susceptible and infected individuals, and asymptomatic transmissions may happen from
asymptomatic infectious individuals to recovered individuals. In addition, it is important to apply our
modeling ideas to study current pandemic COVID-19. We plan to carry out some of these ideas in the
future.
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