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Abstract: In this study, we ranked the Multimodal Features extracted from Congestive Heart Failure 

(CHF) and Normal Sinus Rhythm (NSR) subjects. We categorized the ranked features into 1 to 5 

categories based on Empirical Receiver Operating Characteristics (EROC) values. Instead of using all 

multimodal features, we use high ranking features for detection of CHF and normal subjects.  We 

employed powerful machine learning techniques such as Decision Tree (DT), Naïve Bayes (NB), SVM 

Gaussian, SVM RBF and SVM Polynomial. The performance was measured in terms of Sensitivity, 

Specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), Accuracy, False 

Positive Rate (FPR), and area under the Receiver Operating characteristic Curve (AUC). The highest 

detection performance in terms of accuracy and AUC was obtained with all multimodal features using 

SVM Gaussian with Sensitivity (93.06%), Specificity (81.82%), Accuracy (88.79%) and AUC (0.95). 

Using the top five ranked features, the highest performance was obtained with SVM Gaussian yields 

accuracy (84.48%), AUC (0.86); top nine ranked features using Decision Tree and Naïve Bayes got 

accuracy (84.48%), AUC (0.88); last thirteen ranked features using SVM polynomial obtained 

accuracy (80.17%), AUC (0.84). The findings indicate that proposed approach with feature ranking 

can be very useful for automatic detection of congestive heart failure patients and can be very helpful 

for further decision making by the clinicians and physicians in order to decrease the mortality rate. 

Keywords: multimodal features; empirical receiver operating characteristics; machine learning; 

congestive heart failure; decision tree; normal sinus rhythm; support vector machine 
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1. Introduction  

Heart Rate Variability (HRV) is a convenient non-invasive tool for the measurement of 

autonomous cardiac function by sympathetic and parasympathetic branches of the nervous system i.e. 

to introduce electrocardiography (ECG) time series analysis [1] and complex systems and the 

technology of variability analysis [2]. Conventional techniques used for the quantification of various 

HRV signals by employing linear strategies have represented that decrease in the variability have direct 

association with increase in the heart failure mortality. However, in some situations 

the HRV data cannot be evaluated by using linear methods [3]. 

In the recent studies, the researchers developed and employed different techniques for the 

detection of congestive heart failure (CHF) subjects using Inter-beat Interval (IBI) time series extracted 

from ECG signals including symbolic time series was used by [4] to study the dynamics of interbeat 

heart interval [5], threshold dependent symbolic entropy to classify healthy and pathological subjects, 

wavelet based soft decision technique to detect congestive heart failure [6] and combined classical 

HRV indices with wavelet entropy to detect congestive heart failure [3]. Isler and Kuntalp [3] 

considered wavelet entropy features and HRV features along with KNN classifier to distinguish regular 

subjects and CHF subjects. Hossen and Al-Ghunaimi [6], used wavelet-based soft determination 

methodology for estimating the spectral density of average power of IBI time series for screening of 

CHF subjects. Thuraisingham [7] proposed a novel technique using features from KNN classification 

method and second order difference plot of IBI time series to distinguish CHF and normal subjects. 

Yu and Lee [8] proposed a mutual information based featured to detect congestive heart failure. 

Pecchia et al. [9] proposed short term power features along with very simple threshold based classifier 

for the detection of CHF. Aziz et al. [5] used symbolic time series analysis for distinguishing healthy 

subjects from CHF patients. Altan et al. [10] extracted features from IBI time series using Hilbert-

Huang transform and multilayer perceptron neural network used to classify normal subjects, CHF and 

coronary artery disease subjects. Awan et al. [4] introduced multiscale simplified improved Shannon 

entropy for extracting features from IBI time and used different classifiers for discriminating NSR and 

CHF subjects. Choudhary et al. [11] proposed grouped horizontal visibility graph entropy for 

discriminating normal, CHF and atrial fibrillation subjects. Recently, Isler et al. [12] applied Multi-

stage classification of congestive heart failure based on short-term heart rate variability. Moreover, 

Narin et al. [13] predicted paroxysmal atrial fibrillation based on short-term heart rate variability. The 

researchers [14] tested the irregularity or very short electrocardiogram (ECG) signals as a method for 

predicting a successful defibrillation in patients with ventricular fibrillation. 

The machine learning algorithms rely on the type and relevancy of feature extraction approach. 

The classification efficiency can be enhanced by extracting the most relevant features which is a hot 

topic in machine learning and signal & image processing problems. In the past, researchers have 

obtained numerous characteristics from different physiological signals and systems. Wang et al. [15] 

proposed multi-domain feature extracting approach to identify the accurate epileptic seizure detection.  

Hussain [31] proposed multi-modal (multi-domain, and nonlinear) feature extracting approach for 

epileptic seizure detection, arrhythmia detection [16] and Rathore et al. proposed hybrid feature to 

detect colon cancer [17]. After extracting the features, all features are not contributing equally, their 

importance can be determined by ranking the features based on different ranking algorithms. The 

management for feature selection and follow-up for the relevant features information processing, the 

Feature Importance Ranking (FIR) plays an important role in the area feature selection methods based 
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on mutual information criteria of max dependency [18], feature ranking algorithm to detect cardiac 

arrythmia [19], feature ranking to reconstruct dynamical network [20], feature selection to assess 

thyroid cancer pronosis [22], and Multi-objective-based radiomic feature selection for lesion 

malignancy classification [21]. The main objective of the FIR is to arrange the features in accordance 

with their relative significant value. Depending to which the labels on training samples are used, all 

methods are divided into supervised and unsupervised approaches, whereas the supervised process 

labels are used [21]. From a technical point of view, some approaches, such as the Wilcoxon rank-sum 

test and t-test, use statistical analysis and class separability parameters to measure inter-feature 

relationships, and some other approaches investigate reciprocal knowledge [18], sparse regression, 

spectral analysis, and include some classification efficiency into accounts and the selection of 

classifiers for machine learning [21].  Leguia et al. [20] used the Random Forest and Relief-F to ranked 

the  feature importance of each node to predict the value of each other node. Karnan et al. [19] proposed 

feature ranking score (FRS) algorithms on different statistical parameters to select the optimal 

parameters for  classification of signals from public domain MIT-BIH arrhythmia data. These optimal 

features are provided to the least square support vector. Mourad et al. [22] combined the features 

selection algorithms and machine learning algorithms (Kruskal-Wallis’ analysis, Relief-F and 

Fisher’s discriminant ratio) to analyse the specific attributes of de-identified thyroid cancer 

patients in the SEER sample. 

In this study, we employed FIR for extracting most contributing factors based on the feature 

ranking categorized (1 to 5) for detection of healthy and CHF subjects for clinical decision making. 

The category value 1 depicts that feature is most important and the value 5 reveals that feature least 

important. Moreover, the greatest ROC value indicate that feature is more important and as the ROC 

value decreases, the importance of the feature deceases accordingly.  We first extracted multimodal 

features from CHF and NSR subjects and then ranked them based on EROC and random classifier 

slop [23], which ranks features dependent on the criterion for class separability of the region between 

EROC and Classifier at periodic intervals slope.  

2. Material and methods 

2.1. Dataset 

 

The RR time series interval data were taken from the Physionet databases [24]. Data from the 

Normal Sinus Rhythm (NSR) subject, Congestive Heart Failure (CHF) subjects and Atrial Fibrillation 

(AF) subjects in the cardiac interval (RR interval) time series were analysed [24]. The heart activity 

data from NSR subjects had been taken from 24-Hour recordings of 72 subjects by using Holter 

monitor system. The dataset consist of 35 Males and 37 Females (54 from the NSR subjects of the RR-

interval and 18 from the Normal sinus rhythm RR internal Database used in the study [25]. The age 

range of 20–78 years for the measured population was 54.6 ± 16.2 (mean ± SD). At 128 Hz, ECG data 

was sampled. The CHF group consisted of 44 participants aged from 22–78 years, 29 Males and 15 

Females aged 55.5 ± 11.4 and the data from the RR CHF interval and 15 years from the Congestive 

Heart Failure RR interval Database used in the study [26] were collected for 29 CHF subjects [24]. 

According to the practical classification system of the New York Heart Association (NYHA), CHF 

subjects can be divided into four categories. This method categorizes patients by the signs of the 
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patient's regular behaviour and quality of life. In this study we used 20,000 samples of each subject to 

distinguish CHF from NSR patients. 

2.2. Feature extraction 

 

Figure 1. Schematic Diagram to extract Multimodal features (i.e. Time domain, frequency 

domain and entropy-based features) to detect CHF and then applying the feature ranking 

to determine the feature importance. The classification performance was computed based 

on multimodal features and ranked features with categorify one to five. 

After extracting features, another important criterion is also to get the most appropriate features 

with high ranks. This can be done by ranking the features based on various criteria. Firstly, from CHF 

and NSR subjects, we extracted multimodal features. We then ranked the features to differentiate the 

CHF from NSR subjects based on receiver operating curve (ROC) value. We then applied the machine 
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learning classification techniques based on the different inputs of the ranked features to evaluate the 

detection performance.  

The Figure 1 shows the schematic diagram for CHF detection. In the first step, we extracted the 

general multimodal features from NSR subject and the CHF subjects. In the second step, we ranked 

the extracted features based on ROC values. In the third step, we employed different machine learning 

algorithms such as Decision Tree, SVM along with its kernels tricks, and Naïve Bayes approach on 

five different categories of ranked features i.e. Category 01 with all extracted features, Category 02 

with top 05 ranked features with higher ROC values obtained, Category 03 top nine ranked 

features, Category 04 last thirteen ranked features and Category 05 the last two ranked features 

with very low ROC values. Finally, for testing and training of data validation, we employed 

standard 10-fold cross validation. 

2.2.1. Time and frequency domain features 

The time and frequency domain approaches are commonly used to collect the time series and heart 

spectral dynamics control of these signals vibrations to quantify the heterogeneity of physiological 

signals (i.e. EEG or ECG) caused by various pathologies. The techniques of the time domain are used 

for the tracking of the short-term, medium-term and long-term fluctuations of physiological signals 

and processes, while preserving the effects of various spectrums. The definition for patients suffering 

from various heterogeneity dysfunctions is detailed in (Task Force of the European Society of 

Cardiology and the North American Society of Pacing and Electrophysiology and Electrophysiology 

1996; Seely and Macklem 2004) including heart rate variability in insomnia patients [27], Ultra-

shortened time-domain HRV parameters [28], evaluating the homeostasis assessment model insulin 

resistance and the Cardiac autonomic System in bariatric surgery patients [29] and short-term 

measurement of heart rate variability during spontaneous breathing in people with chronic obstructive 

pulmonary disease [30]. etc. We have used same time domain, frequency domain, nonlinear entropy 

based and wavelet based features in previous studies to detect epileptic seizure [31], congestive heart 

failure [32] and arrhytymia detection [16]. 

2.2.2. Entropy and wavelet-based features 

Biological signals are production of beating heart and several muscle interacting components that 

display complex patterns variation and rhythms on monitoring devices. To analyse the fundamental 

mechanisms of these processes, these rhythmical shifts and patterns provide very valuable secret 

details. Extracting useful knowledge using conventional methods of data mining is impractical. The 

complexity of the physiological processes that are degraded by ageing and disease consists of systemic 

components and coupling between them. The researchers in the past applied various complexity based 

methods such as epileptic seizure detection using multi-modal features [31], seizure detection using 

symbolic entropy [33], lung cancer detection based on refined fuzzy entropy [34], arrythmia detection 

using refined fuzzy entropy [16], electroencephalographic (EEG) signals with motor movement using 

multi scale sample entropy [35], EEG alcoholic and control subjects using multiscale entropy with KD 

tree algorithmic approach [36], regression analysis to detect seizure [37]. The healthy subjects are more 

complex than pathological subjects. In the healthy subjects, all the structural elements and integrated 

functions within the structural elements are properly functional and linked for inter-communication, 

thus increasing their complexity computation value and entropy values. But, due to the weakening of 
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the coupling between the structural elements, the computed complexity value and entropy value of the 

diseased subjects is decreased. 

2.2.2.1. Approximate entropy 

Pincus in 1991 proposed approximate entropy (ApEn) [38] to compute the regularity presence in 

the bio-signal time series recording data. The measurement of the entropy indicates that the probability 

of related or similar patterns does not repeat in observation. Mathematically, 

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = 𝐶𝑚(𝑟) − 𝐶𝑚+1(𝑟)                                   (2.1) 

The 𝐶𝑚(𝑟) and 𝐶𝑚+1(𝑟) are being computed as detailed in [36]. Two parameters are set to 

measure the average entropy, i.e. m, which is the length of the window, and r, the criterion of similarity. 

We selected m = 3 and r = 0.15 times the standard deviation of data in this analysis as given in [38]. 

2.2.2.2. Fast sample entropy with KD tree algorithmic approach 

Sample entropy (SampEn) as proposed by [39], which is a revamped form the approximate 

entropy. In contrast to the average entropy, sample entropy is more stable then approximate entropy 

since it is independent to estimate the randomness of data duration and trouble-free execution. 

Recently, researchers used a sample entropy version based on the KD tree algorithmic approach, which 

is more stable in terms of time and space complexity as detailed in [36]. 

In 1975, Bentley design a binary tree algorithm known as the K-Dimensional (KD) space partition 

tree. A rectangle “Bv” is connected with each of its 'v' nodes. The 'v' would be the leaf node if “Bv” 

does not have any point in its interior. In other examples, by creating a vertical and horizontal line such 

that each rectangle comprises at no more than half of the lines, “Bv” can be separated into two 

rectangles. Details of the KD tree algorithm are computed by Hussain et al [36]. Using the following 

steps, the complexity of time and space is minimized. 

Step 1. Original time series of RR-Interval was transformed to spaced points set from {𝑋} =

{𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑁} be a time series of length N. The time and memory cost are O (N). 

Step 2. Using N-m points of the series for which total cost is O (N log N) and memory is O(N)), the 

K-dimensional tree is constructed. Here construct time is O (N log N) for k-d tree. 

Step 3. Range query: The time cost is 𝑁 𝑂(𝑁1 
1

𝑑) for N queries for d-dimensional k-d search and the 

memory cost are O(N). Where 𝑂(𝑁1 
1

𝑑) is search time for k-d tree. 

2.2.2.3. Wavelet entropy 

Wavelet-based entropic measurements were also computed by researchers in the past to identify 

the nonlinearity presence in the results. The most widespread wavelet entropy techniques [40] include 

Shannon, Threshold, Log Energy, Sure and Norm etc. Shannon entropy [40] was used by calculating 

wavelet coefficients which is created from the wavelet packets (WPT) to calculate the signal intensity, 

where maximum values indicate a high uncertainty in the CHF or NSR subjects and hence greater 

complexity. In addition, wavelet entropy was used [41] to capture the underlying dynamical 

mechanism connected with the bio-signal. The entropy 'E' must be a cost function of additive 

information such that E (0) = 0. 
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E(S) =  ∑ E(Si)i                                                (2.2) 

Where S is a signal and (𝑆𝑖) are signal coefficients on an orthonormal basis. The function E (S) is 

defined as wavelet entropy as expressed inequation (5). 

2.2.2.4. Shannon entropy 

The Claude Shannon first suggested the entropy of Shannon in 1948 [42] and is most commonly 

used in information science. In addition, it is the measurement of the vulnerability associated with a 

randomness of the data space. Shannon entropy precisely estimate the predicted value of the results 

found in a packet. We can describe the Shannon entropy of a random variable S as follows: 

𝐸(𝑆) =  − ∑ 𝑆𝑖
2𝑙𝑜𝑔2(𝑆𝑖

2)                      (2.3)

𝑛

𝑖=1

 

Where Si represents coefficients of signal S in an orthonormal basis. If the entropy value is greater 

than one, the component has a potential to reveal more information about the signal and it needs to be 

decomposed further in order to obtain simple frequency component of the signal [43]. By using the 

entropy, it gave a useful criterion for comparing and selection the best basis. 

2.2.2.5. Wavelet entropy 

This entropy measure was proposed by [44] can mathematically defined such as: 

E(S) =
∑ |Si|

p
i

N
                                                      (2.4) 

Where p is the power, the terminal node signal must be 1 ≪ P < 2 and (Si) I is the terminal waveform 

signal. 

2.2.2.6. Threshold entropy 

E(Si) = 1 if |Si| > p and 0 elsewhere so E(s) = # {i such that |Si | > p} is the number of time instants 

when the signal is greater than a threshold p. 

The threshold entropy value was determined using a value of 0.2. 

2.2.2.7. Sure entropy 

The threshold of the parameter P and the values of P ≥ 0 are used. 

𝐸(𝑠) = 𝑛 − #{𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑠𝑖| ≤ p} + ∑ 𝑚𝑖𝑛(𝑠𝑖2 ,𝑝2)𝑖    (2.5) 

Where, the discrete wavelet entropy E is a real number, s is the terminal node signal and (si) i the 

waveform of terminal node signals. In Sure entropy, p is a positive threshold value and must be p ⩾ 2 [45].  

The entropy of Sure was measured at threshold 3. 

2.2.2.8. Norm entropy 

The P is used in Normal Entropy as the power and value of P ≥ 1. The intensity in lp norm entropy is: 

𝐸(𝑠𝑖) = |𝑠𝑖|
𝑝

   (2.6) 
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𝑠𝑜 𝐸(𝑠) = ∑ |𝑠𝑖|
𝑝

𝑖
 𝑖 = ||𝑆||𝑝

𝑝
 

The entropy of the norm was estimated at 1.1 with power. 

The wavelet norm entropy represents the ordering of nonstationarity of time series fluctuation. 

2.2.2.9. Log energy 

  𝐻𝑙𝑜𝑔𝐸𝑛(𝐵) = − ∑ (𝑙𝑜𝑔2( 𝑃𝑖(𝐵)))2   𝑁−1
𝑖=0                (2.7) 

Where 𝑷𝒊(𝑩) denotes the function of probability distribution and is a logarithmic amount of the 

distribution square of these probabilities. 

2.3. Feature ranking algorithms 

Feature ranking algorithms are mostly used for ranking features independently without using any 

supervised or unsupervised learning algorithm. A specific method is used for feature ranking in which 

each feature is assigned a scoring value, then selection of features will be made purely on the basis of 

these scoring values [46]. The finally selected distinct and stable features can be ranked according to 

these scores and redundant features can be eliminated for further classification. To perform this step, 

feature selection algorithms such as wrapper method and filter method can be used. As filter method 

is an unsupervised technique that analyse the inherent distribution properties of the features, on the 

other hand wrapper method correlates the features properties with the class labels [47]. In the past, 

multiple experiments studies have shown that every well-known function discovery algorithm that 

exposes the rating to errors has been used to pick features [48]. Feature ranking can be affected by the 

selection of algorithm for feature selection for classification purpose. 

2.3.1. Filter methods 

Radiomic feature ranking is a type of feature ranking method that is used to select features based 

on their high scoring values. The algorithm described in [49] selects the features that are showing 

minimum correlation with each other. However, Laplacian score [50] calculates a scoring value for 

each individual feature which shows the locality preserving power of a feature. In greedy feature 

selection algorithm [51], for all the chosen features a nearest neighbour graph is used and 

reconstruction error is repeatedly calculated for assigning ranks to the selected features subset. Mitra 

et al. [52] proposed a minimum information index for feature ranking. Multi-cluster feature selection 

(MCFS) [53] algorithm is proposed to measure the correlations between various features and then 

select and rank the features accordingly. Zeng and Cheung [54] proposed another clustering algorithm 

that takes into account the correlation between each feature by employing Local Learning Based 

Clustering (LLC) method. Zhao et al. [55] proposed a normalized Laplacian matrix method obtained 

from the similarity graph of pair-wise features. 

2.3.2. Wrapper methods 

Feature selection phase can be repeated by using wrapper method [56]. Relief-F algorithm [57] 

sort the features into one group that have similar values for the closest neighbours with the same binary 

class and higher characteristics based on the associated values that shows various values for the closest 
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neighbours in various groups. Fisher Score [47] is another algorithm which assigns a scoring value to 

each feature by calculating the intra-class variance and inter-class separation ratio. Feature based 

Neighbourhood Component Analysis (FNCA) [56] learns weights of features to minimize the objective 

function which is used to calculate the cumulative lack of regression over training data leaves one out.. 

The Infinite Latent Feature Selection (ILFS) [54] technique is also an impressive algorithm that is used 

in rank assigning to the features by estimating the relevancy using conditional probability of all subsets 

of the features. Features Selection via Eigenvector Centrality [58] is another technique used for ranking 

the features by connecting them to a graph of clustering, then discovering the correlation between 

separate pairs of features. Concave Optimization [59] is another novel method that is used in feature 

selection and ranking. Two function classes are defined in this approach by using a separate plane that 

is generated by using a series of features that can discern between a pair of classes. 

2.3.3. Final feature ranking 

The above-mentioned algorithms can be used for ranking the radiomic and any other features 

individually by usage of filter methods and wrapping techniques. The scoring values that is assigned 

to each feature by ranking group methods to get the final ranking scoring values of all the functions, 

they were summed. To get more precise scoring values, the key objective is averaging the features 

scoring value and to give equal weight to all rating algorithms. Then top 25 selected features having 

average scoring values can be calculated from the filter methods and wrapper methods [47]. 

Let us consider an example that illustrates the feature ranking methodology [20]; we have an equation 

𝑦 = 𝑓(𝑥1, 𝑥2, … ) =  𝑥1
2 +  𝑥2 + 2            (2.8) 

Assume that f is an unknown function, but y depends on several variables of 𝑥𝑖 is known. Simply we 

can say that, 𝑥𝑖 represents the features and y represents the target variable. This task can be solved by 

employing machine learning algorithm 𝑀, 𝑖. 𝑒. 

𝑓 ≈ 𝑓 = 𝑀(𝐷)                                         (2.9) 

Where, D represents the data set and f shows the prediction model for any observation (𝑥1, 𝑥2, 𝑥3) can 

be used for predicting the value of 𝑦, 𝑦̂ = 𝑓(𝑥1, 𝑥2, 𝑥3). Now, consider a data set D comprised of L 

attributes tuples (𝑥1, 𝑥2, 𝑥3; 𝑦) and we want to reconstruct f. Remember that, in data we have 𝑥3 

feature, which does not influence y, because only available data is collected via features selection and 

ranking that “may or may not” influence the target variable. 

To check the feature importance, there are more than 30 algorithms developed. In this study, we 

computed ROC for feature importance ranking (FIR) as detailed in [60]. This method ranks the features 

based on the class separability criteria of the area between the empirical receiver operating 

characteristic curve (EROC) and the random classifier slop [23]. In this study, we extracted 22 

multimodal features from CHF and NSR subjects. We then ranked these features based on above 

criteria, and Figure 2 below sorted the multimodal features based on their importance obtained. We 

then categorized these features based on the ROC values to further classify the CHF and NSR subjects 

to see the overall detection performance based on ranked features instead of using all the features. The 

top 5 features even show the higher detection than 82%. This will further help the clinicians to make 

the decision for future diagnosis and treatment of the patients. The highest ROC value indicates the 

highest ranked and highly important feature and as the ROC value decreased the feature importance 

decreased accordingly. In this study, the feature importance is depicted in descending order based on 
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the ROC values obtained. Figure 2 shows the importance of ranked Multimodal features based on the 

class separability criteria of the area between EROC and random classifier slope. 

 

Figure 2. Multimodal features ranking based on Receiver operating Curve (ROC) to 

distinguish the CHF from normal NSR. The multimodal features are sorted based on the 

ranking values obtained using the ROC values obtained. The greatest ROC value denotes 

the highest ranked followed by lower ranked values. The ranked features are represented 

in descending order. 

2.4. Classification Methods 

2.4.1. Support vector machine (SVM) 

SVM is one of the most versatile approaches used for classification purposes of supervised 

learning techniques. SVM has recently been used excellently for concerns of  graphical pattern 

recognition [61], Artificial Intelligence (Machine Learning) [62] and Computer aided medical 

diagnosis Health problems [63]. In addition, SVM is used in numerous applications in several field, 

such as identification and detection, text recognition, retrial of content-based images, bioinformatics, 

voice recognition, etc. In infinite or high dimensional space, SVM creates a hyperplane or series of 

hyper-plan that could be used to classify a successful separation while using this hyper-plane that has 

the greatest distance to the closest training instances in each class (also called as the functional margin), 

typically the greater the margin implies the classifier's relatively generalization classification error. 
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SVM attempts to determine the hyper-plane that provides the training example with the greatest 

minimum width. This concept is also known as margin in SVM theory. The optimum margin is 

obtained for the maximised hyperplane. SVM has another significant function that offers the higher 

efficiency of generalization. Basically, SVM is a two-class classifier that relies on nonlinear training 

instances or a maximum dimension to transform data into a hyperplane. Let us define 𝑥. 𝑤 + 𝑏 = 0 a 

hyperplane, where w is its normal. The linearly separable instances is labelled as: 

{𝑥𝑖, 𝑦𝑖}, 𝑥𝑖 ∈ 𝑅𝑁𝑑, 𝑦𝑖 ∈ {−1,1} ,   i=1, 2, .... , N 

Here 𝑦𝑖 is the class label of two (Positive, Negative) class of SVM. The optimal limit with full 

margin is achieved by decreasing the objective function. i.e. 𝐸 = 𝑤2 subject to: 

𝑥𝑖 . 𝑤 + 𝑏 ≥ 1 𝑓𝑜𝑟 𝑦𝑖 = +1 

     𝑥𝑖 . 𝑤 + 𝑏 ≤ 1 𝑓𝑜𝑟 𝑦𝑖 = −1   (2.10) 

This can be incorporated into a series of disparities as follows: 

(xi. b + b)yi ≥ 1 for all i 

2.4.2. Decision tree (DT) 

Decision Tree determined the series regularity and similarities of the dataset which can be verified 

by the classifier and grouped into different classes. Liu et al. [64] used DT to assign data based on the 

option of an attribute that maximizes and improves the division of data. The characteristics are divided 

into multiple divisions before the termination conditions are fulfilled. The DT algorithm is 

mathematically developed using the following equations: 

𝑋 ̅ =  {𝑋1 , 𝑋2 , 𝑋3 ,……..𝑋𝑚}
𝑇
 

𝑋𝑖 = {𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑖𝑗, … … 𝑥𝑖𝑛} 

                  𝑆 = {𝑆1, 𝑆2 , 𝑆3, … … , 𝑆𝑖, … … 𝑆𝑚}    (2.11) 

Where m corresponds to the number of observations available, n represents the several independent 

variable, S use the m-dimension vector of the variable projected from 𝑿 ̅. 𝑿𝒊 is the 𝒊𝒕𝒉 component of 

autonomous n-dimension variables, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … … , 𝒙𝒊𝒋, … … 𝒙𝒊𝒏 of the 𝑿𝒊vector pattern and T is the 

transpose notation. 

The aim of DTs is to predict the  𝑿 ̅ observations. It is possible to construct multiple DTs from  

𝑿 ̅to various precision levels; although, the desirable DT is difficult since search space has a broad 

parameter dimension. Reasonable algorithms should be built for DT to represent the negotiate-off 

between precision and complexity. In this situation, the partitioning of the dataset  𝑿 ̅using DT 

algorithms uses a collection of local ideal decisions on the function instances. Which according to 

corresponding optimization method, Optimal DT, 𝑇𝑘0 is built. 

𝑅̂ (𝑇𝑘0) = 𝑚𝑖𝑛{𝑅̂ (𝑇𝑘0)},              𝑘 = 1,2,3, … … 𝐾 

  𝑅̂ (𝑇) = ∑ {𝑟(𝑡)𝑝(𝑡)}𝑘
𝑡∈𝑇     (2.12) 
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Where 𝑅̂ (𝑇)  denotes the uncertainty level during most of the 𝑇𝑘  tree misclassification, 𝑇𝑘0 

represent the desirable DT that decrease the classification error in the binary tree misclassification, T 

represent the binary tree ∈,{𝑇1, 𝑇2, 𝑇3, … … 𝑇𝑘, 𝑡1}. The tree index is represented by k, tree node by t, 

root node by 𝑡1, error resubstituting by r(t) misclassifying node t, likelihood that p(t) denotes some 

decrease in node t. The sub-trees of the right and left partitions are denoted by 𝑇𝐿  and 𝑇𝑅. The tree T 

is created by portioning the feature plan. For larger datasets, there is classification problems as these 

data sets are these circumstances, the decision tree is a suitable strategy and contains errors. The objects 

are taken as input and the output in form of yes/ no decision is provided by the algorithm. The decision 

tree algorithms use Boolean function [65] and sample selection [66]. The decision tree algorithms are 

used in many applications such as bioinformatics economics, medical diagnoses problems and other 

scientific situations etc. [67].   

2.4.3. Naïve Bayes 

Naive Bayes is among the simplest probabilistic classifiers. In many real-world implementations, 

it also performs remarkably well, considering the firm presumption that, provided the class, all 

functions are conditionally independent. Pearl's (1988) proposed Bayesian Networks (BNs) are high-

level description of distributed probabilities over a set of parameters 𝑿 = {𝑿𝟏 , 𝑿𝟐 , , , , , , , , 𝑿𝒏} used 

by a learning method. The learning method of the NBs is split into two steps: learning constructs and 

learning parameters. A directed acyclic graph from the set X is being built by the former. Every node 

refers to the parameter in the graph, and each Arc represents a probabilistic interaction between two 

parameters, whereas the Arc path implies the causality direction. The probabilistic node is called the 

parent of the other node when two nodes are connected by an arc, and another is called the child. To 

denote both the vector (feature) and its respective node, we use 𝑋𝑖, and 𝑃𝑎 (𝑋𝑖)  to denote the parent 

set of the X-i node. The discovery of probability distributions, class probabilities and conditional 

probabilities associated with each component is called parameter learning, provided a framework [68]. 

2.4.4. K-nearest neighbor (KNN) 

The KNN classification was built from the need for discriminant analysis where it is unclear or 

difficult to establish accurate parametric estimates of probability densities. In the world of machine 

learning, KNN is the most commonly used algorithm for pattern recognition and many other fields 

used for classification problems. This algorithm is also known as an example-based algorithm (lazy 

learning). A model or classifier is not created automatically, but all samples of training data are preserved 

and kept until it is appropriate to identify new observations. This lazy learning algorithm feature makes 

it easier than eager learning to create a classifier until it is required to classify new observations. 

In the world of machine learning, KNN is the most commonly used algorithm for pattern 

recognition and many other fields used for classification problems [69]. This algorithm is also 

recognizing as an example-based algorithm. A predictive algorithm is not created automatically, 

however all samples of training instances are preserved and kept until it is appropriate to identify new 

observations. This KNN algorithm feature makes it easier and simpler to construct a classifier than 

eager learning before new insights need to be listed. Where complex data must be modified and 

revised more easily, this algorithm is even more significant. KNN with various distance metrics 

was used [70]. The KNN algorithm operates using the Euclidean distance theorem in conjunction 

with the following steps.  
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Step I: To train and validate the model, provide the extracted feature set to KNN. 

Step II: Measure distance using Euclidean distance formula. 

𝑑(𝑥𝑖, 𝑦𝑖) = ∑ √(𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1     (2.13) 

Step III: Sort the values calculated using Euclidean distance using 𝑑𝑖 ≤ 𝑑𝑖 + 1 where i=1,2,3,...k 

Step IV: Depending on the quality of the results, apply the means or vote. 

Step V: The K value (i.e. the number of nearest neighbors) depends on the sum and type of the KNN 

data supplied. The value of k is retained as large for large data, while the value of k is still kept tiny 

for small data. 

2.5. Training/testing data formulation 

For data training and testing formulation of the parameter, the Jack-knife k-fold cross validation 

methodology was used. 10-fold CVs is used in this research to test the efficiency of classifiers for 

various methods of extracting features. The most widely used and well-known methodology to test the 

output of classifiers is the 10-fold CV. The data is divided into 10 folds using 10-fold CV, 9 folds are 

involved in preparation, and sections of samples of remaining folds are expected based on the 9-fold 

testing. The research samples in the research fold are purely inaccessible to the qualified models. The 

entire process is replicated 10 times and is estimated appropriately by each class study. For other CVs, 

a corresponding approach is used. Finally, the projected labels for unseen samples are used to 

determine the precision of the designation. For any combination of system parameters, this procedure 

is repeated, and classification output for the sample has been recorded. 

2.6. Receiver operating characteristic curve (ROC) 

The ROC is graphed against the true positive rate (TPR), i.e. sensitivity and false positive rate 

(FPR), i.e. the CHF and NSR subjects' specificity values. The mean values of features for NSR subjects 

are graded as 1 and 0 for CHF subjects. The ROC function is then transferred to this vector, which 

plots each sample value against the values of specificity and sensitivity. ROC is one of the popular 

methods of calculating success in order to diagnose and interpret the efficacy of a classifier [71]. The 

TPR is graphed against the y-axis, and the x-axis is graphed against the FPR. The portion of a square 

unit is represented by the area under the curve (AUC). Its value varies from 0 to 1. The distinction is 

shown by AUC > 0.5. The superior diagnostic tool is shown by the greater AUC. TPR represents right 

positive cases calculated by dividing the total positive cases, while FPR represents negative cases 

expected as positive, calculated by dividing the total number of negative cases. 

3. Results and discussions 

In this study we extracted 22 multimodal features i.e. frequency domain features [very low 

frequency (VLF), ultra-low frequency (ULF), low frequency (LF), high frequency (HF), ratio of LF 

and HF (LFHF), total power (TP)], , time domain features [standard deviation of the consecutive 

intervals in each segment (SDNN), Standard deviation of the averages of EEG intervals (SDANN), 

standard deviation of differences between adjacent time series intervals in each segment (SDSD), 
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square root of the mean squared differences of N successive EEG time series intervals (RMSSD)]; 

statistical features (Skewness, smoothness, kurtosis, variance, root mean square), Nonlinear entropy 

features (approximate entropy, sample entropy based on KD tree) and wavelet entropy features 

(Threshold, Shannon, sure, norm, log energy) from Congestive Heart Failure (CHF) and Normal Sinus 

Rhythm (NSR) signals. We ranked the features and categorized the ranking based on ROC values 

obtained Category 01: all ranked features, Category 02: top five ranking features (Wavelet threshold, 

VLF, Kurtosis, ULF, TP), Category 03: top 09 ranking features (Wavelet threshold, VLF, Kurtosis, 

ULF, TP, LF, Skewness, SDNN, Variance), Category 04: last 13 ranked features (SDSD, HF, Wavelet 

sure, RMS, Approx. Entropy, Wavelet Shannon, Wavelet norm, smoothness, wavelet log energy, 

RMSSD, MSEKD, SDANN, LFHF) and Category 05: last two ranked features (SDANN, LFHF). The 

feature ranks are categorized on the value of ROC obtained using ranking method. We then employed 

machine learning techniques such as Decision Tree, Naïve Bayes, SVM Gaussian, RBF and 

Polynomial. Based on the all multimodal features, the highest performance was obtained using SVM 

Gaussian with sensitivity (93.06%), specificity (81.82%), PPV (89.33%), NPV (87.80%), accuracy 

(88.79%), FPR (0.1818) and AUC (0.9441) followed by Naïve Bayes with accuracy (88.79%), AUC 

(0.9296); SVM RBF with accuracy (87.93%) and AUC (0.9347); SVM polynomial with accuracy 

(87.93%), AUC (0.9343); decision tree with accuracy (78.45%), AUC (0.9296) as reflected in Table 1. 

Based on the category 02 ranking features, the overall highest detection performance was obtained 

using Naïve followed by SVM Gaussian, decision tree and SVM polynomial. Using the category 03 

features, we obtained highest performance using Naïve Bayes followed by SVM Gaussian, decision 

tree and SVM polynomial. Using the category 04 features, the highest performance was obtained using 

SVM polynomial followed by decision tree, SVM RBF Gaussian and Naïve Bayes. Based on the 

category 05 features, the highest detection performance was obtained using Naïve Bayes followed by 

SVM polynomial, SVM RBF, SVM Gaussian and decision tree. 

Figure 3 (a–e) shows the area under the receiver operating curve to distinguish the CHF subjects 

from NSR subjects by extracting multimodal features with feature ranking using robust machine 

learning classifiers. We categorized the AUC performance based on category 01 ranked a) all 22 

multimodal features, category 02 features b) Top five Ranked features, category 03 features c) Top 

nine ranked features, category 04 features d) last ranked 13 features and category 05 features e) last 

ranked two features.  

Using the category 01 ranked features, the highest separation was obtained using SVM Gaussian 

with AUC (0.9441) followed by SVM RBF with AUC (0.9347), SVM polynomial with AUC (0.9343); 

Naïve Bayes and decision tree with AUC (0.9296). By using category 02 ranked features, the highest 

separation was obtained using decision tree & Naïve Bayes with AUC (0.8722) followed by SVM 

Gaussian with AUC (0.8633), SVM RBF with AUC (0.8204), SVM polynomial with AUC (0.7869). 

Based on the category 03 ranked features, the highest AUC was obtained using NB & decision tree. 

Likewise, based on the category 04 ranked features, the highest separation was obtained using SVM. 

Moreover, based on the category 05 ranked features, the highest separation was obtained using Naïve 

Bayes and decision tree.  The AUC values of Naïve Bayes and Decision tree are same so are merged 

with one color. 
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Table 1. Detection of congestive heart failure detection performance with multimodal 

features-based features ranking using robust machine learning techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Sensitivity Specificity PPV NPV Accuracy FPR AUC 

                                                    Category 01: All Ranked features 

Naïve Bayes 0.8889 0.8864 0.9275 0.8298 0.8879 0.1136 0.9296 

Decision Tree 0.8194 0.7273 0.831 0.7111 0.7845 0.2727 0.9296 

SVM 

Gaussian 

0.9306 0.8182 0.8933 0.878 0.8879 0.1818 0.9441 

SVM RBF 0.9028 0.8409 0.9028 0.8409 0.8793 0.1591 0.9347 

SVM poly. 0.9722 0.7273 0.8537 0.9412 0.8793 0.2727 0.9343 

Category 02: Top five Ranked Features 

Naïve Bayes 0.8611 0.7727 0.8611 0.7727 0.8276 0.2273 0.8722 

Decision Tree 0.8889 0.5 0.7442 0.7333 0.7414 0.5 0.8722 

SVM 

Gaussian 

0.9722 0.5909 0.7955 0.9286 0.8276 0.4091 0.8633 

SVM RBF 0.9306 0.5909 0.7882 0.8387 0.8017 0.4091 0.8204 

SVM poly. 0.8611 0.5455 0.7561 0.7059 0.7414 0.4545 0.7869 

Category 03: Top Nine Ranked Features 

Naïve Bayes 0.8889 0.7727 0.8649 0.8095 0.8448 0.2273 0.8767 

Decision Tree 0.8472 0.6364 0.7922 0.7179 0.7672 0.3636 0.8767 

SVM 

Gaussian 

0.8611 0.6818 0.8158 0.75 0.7931 0.3182 0.8523 

SVM RBF 0.8472 0.6591 0.8026 0.725 0.7759 0.3409 0.8479 

SVM poly. 0.875 0.5455 0.759 0.7273 0.75 0.4545 0.6979 

 
                        Category 04: Last thirteen Ranked Features 

Naïve Bayes 0.8056 0.7045 0.8169 0.6889 0.7672 0.2955 0.828 

Decision Tree 0.8333 0.7955 0.8696 0.7447 0.819 0.2045 0.828 

SVM 

Gaussian 

0.875 0.5909 0.7778 0.7429 0.7672 0.4091 0.8422 

SVM RBF 0.875 0.6136 0.7875 0.75 0.7759 0.3864 0.8469 

SVM poly. 0.9167 0.6136 0.7952 0.8182 0.8017 0.3864 0.8374 

Category 05: Last Two Ranked Features 

Naïve Bayes 0.9722 0.4318 0.7368 0.9048 0.7672 0.5682 0.761 

Decision Tree 0.7361 0.5455 0.726 0.5581 0.6638 0.4545 0.761 

SVM 

Gaussian 

0.8889 0.4545 0.7273 0.7143 0.7241 0.5455 0.7301 

SVM RBF 0.8889 0.4545 0.7273 0.7143 0.7241 0.5455 0.72 

SVM poly. 0.8889 0.4545 0.7273 0.7143 0.7241 0.5455 0.7336 
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Figure 3. Area under the receiver operating characteristics (ROC) curve to determine 

the separation between CHF and NSR subjects using a) All features, b) Top five Ranked 

features, c) Top nine ranked features, d) last ranked 13 features, e) last ranked two 

features. The highest AUC values reflect the highest separation using robust machine 

learning classifiers such as Naïve Bayes, decision tree, SVM with Gaussian, RFB and 

polynomial kernels. 

（a） （b） 

（c） （d） 

（e） 
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Table 2. Comparison of results with previous studies. 

Author Method Performance 

Li et al. [72] Convolutional Neural network Accuracy = 81.9%; Accuracy = 81.92% 

Isler Kuntalp [3] K-nearest Neighbor Sensitivity = 82.74%; Specificity = 96.27% 

Narin et al. [73] Support Vector Machine  Sensitivity = 79.33%; Specificity = 94.47% 

Isler Kuntalp., 

[74] 
K-nearest Neighbor Sensitivity = 82.72%; Specificity = 100.0% 

Pecchia et al. [9] Classification and regression tree Sensitivity = 89.75%; Specificity = 100.0% 

Elfadil Ibrahim. 

[75] 
Spectral Neural network Accuracy = 83.65% 

Yang et al. [76] Support vector machine Naïve Bayes Accuracy = 74.42% 

Son et al. [77] Decision tree Sensitivity = 97.53% 

This work 

SVM Gaussian 
Sensitivity (93.06%); Specificity (81.82%) 

Accuracy (88.79%); AUC (0.9441) 

Naïve Bayes Accuracy (82.76%); AUC (0.8722) 

SVM Gaussian Accuracy (76.72%); AUC (0.828) 

Naïve Bayes Accuracy (76.72%); AUC (0.761) 

 

The Table 2 reflect the summary of results obtained for different feature extracting strategies and 

classification algorithms. We aimed to check the features importance in detecting the congestive heart 

failure by ranking the features. This ranking will help the clinicians that which features are more import 

for them to make further decision. From the results depicted in Table 2, it is important to note that 

using all 22 multimodal features together, the highest accuracy (88.79%), AUC (0.9441) was obtained, 

while using only top five ranked features there was a very low decrease in performance with accuracy 

(82.76%), AUC (0.8722). This indicates that these five ranked features are more important than the 

other all extracted features in decision making. Similarly, the low ranked features further yielded the 

low detection performance. 

The heart rate dynamics are highly complex and nonlinear. The patients admitted in the emergency 

department with complain of shortness of breathing, increase of lower extremity edema, dyspnea on 

exertion, lower extremity edema, and or worsening fatigue should have heart failure, which require 

differential diagnosis. The temporal and spectral dynamics can be analyzed the time domain and 

frequency domain methods. The dynamics of complex systems also degraded due to aging and disease. 

To capture these dynamics, we extracted the nonlinear entropy and wavelet-based entropy 

measures. The researchers in the past extracted multidomain and modal features to detect epileptic 

seizure [31,33], arrhythmia detection [16], seizure detection using time frequency representation 

methods [78] and cancer detection such as lung cancer dynamics using refined fuzzy entropy 

methods [34], lung cancer detection based on multimodal features [79] and colon cancer  based on 

hybrid feature extracting strategy [17]. Recently Singh et al. [80] analysed that coronary heart disease 

with diabetes mellitus patients get significant results in clinical symptoms with improvement in the 

quality of life. To detect the heart rate variability, they employed SVM with RBF and decision tree 

[81]. The results obtained their studies revealed very good detection performance [82].  

This study is aimed to compute the congestive heart failure detection performance by ranking the 

multimodal features. The feature ranking may help the clinicians that which features are most suitable 

for further decision making. The feature ranking method also ranked the feature importance. There are 
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different feature ranking methods, we ranked the importance of Multimodal features based on the class 

separability criteria of the area between EROC and random classifier slope. The ranked features are 

than categorized based on ROC values achieved i.e. high ROC values, medium, low and very small 

ROC values. These categories can also help us to determine the detection performance by using all 

extracted features and categorized ROC values. We have observed that among the 22 multimodal 

features, the top ranked features gained a reasonable high detection performance. The top five selected 

features based on ranking methods were from wavelet, frequency domain and few statistical such as 

wavelet threshold, very low frequency, kurtosis, ultra-low frequency, total power. This indicates that 

these features are very helpful in detection the congestive heart failure. Moreover, with the lowest 

ROC ranked features, the detection performance was decreased. With the very low ranked features 

such as SDANN and LFHF, the performance was decreased further. These different categories also 

helped to determine the detection performance in a better way.  

4. Conclusion 

Heart rate variability analysis is a non-invasive tool used for assessing the cardiac autonomic 

control of nervous system. The congestive heart failure is the major problem worldwide. The 

researchers are developing efficient tools to improve the detection performance. In the past, researchers 

used different features extraction approaches. However, feature ranking also plays a vital role to judge 

the importance of features based on various factors. The important features can be very helpful for 

clinicians and radiologists to make the early decision. In this study, we extracted the multimodal 

features from both CHF and NSR subjects. We then ranked the features based on ROC values. The 

performance was measured based on categorized ranked features from one to five different ranking 

categories in order to see the performance results with top, medium, and low ranked features.  Based 

on all features used, the highest performance with accuracy (88.79%), AUC (0.9441) was obtained 

using SVM Gaussian. Based on the top five ranked features (i.e. wavelet entropy threshold, VLF, 

kurtosis, ULF, TP) with ROC value > 3 yielded highest detection performance with accuracy (82.76%), 

AUC (0.822) using, whereas top 9 features with ROC value between 2–3 yielded an accuracy 

(84.48%), AUC (0.8767) using Naïve Bayes. The ranked features based on their importance will 

greatly be helpful for clinicians for further decision making and can greatly impact in reducing the 

mortality rate. The results with top ranked features contributed a lot, while the performance results 

with low ranked features dramatically decreased.  

Limitation and future recommendations 

Currently, we have used the dataset with small sample size and lack of clinical information. In 

future, we will acquire big data and clinical profile of the patients. Moreover, we will explore more 

relationship to determine the feature importance base on different ranking methods and associations 

among the features. We will also extract and ranked these features for New York Heart Association 

(NYHA) functional classes and compute associations and ranks accordingly. We will also explore the 

association between different multimodal extracted features by computing the strengths and coupling 

relation which will further assist the clinicians to find the association and strength between and among 

the extracted features. The ranked features will further help the clinicians for further diagnosis and 

treatment of the patient.  
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