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Abstract: Deep end-to-end learning based stereo matching methods have achieved great success 

as witnessed by the leaderboards across different benchmarking datasets. Depth information in 

stereo vision systems are obtained by a dense and accurate disparity map, which is computed by 

a robust stereo matching algorithm. However, previous works adopt network layer with the same 

size to train the feature parameters and get an unsatisfactory efficiency, which cannot be satisfied 

for the real scenarios by existing methods. In this paper, we present an end-to-end stereo 

matching algorithm based on “downsize” convolutional neural network (CNN) for autonomous 

driving scenarios. Firstly, the road images are feed into the designed CNN to get the depth 

information. And then the “downsize” full-connection layer combined with subsequent network 

optimization is employed to improve the accuracy of the algorithm. Finally, the improved loss 

function is utilized to approximate the similarity of positive and negative samples in a more 

relaxed constraint to improve the matching effect of the output. The loss function error of the 

proposed method for KITTI 2012 and KITTI 2015 datasets are reduced to 2.62 and 3.26% 

respectively, which also reduces the runtime of the proposed algorithm. Experimental results 

illustrate that the proposed end-to-end algorithm can obtain a dense disparity map and the 

corresponding depth information can be used for the binocular vision system in autonomous 

driving scenarios. In addition，our method also achieves better performance when the size of the 

network is compressed compared with previous methods. 
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1. Introduction 

Deep learning is the most useful tool for many applications, such as parameters compressing [1], 

sentiment analysis [2], information security [3], person re-identification [4], compressive sensing [5,6], 

object tracking [7], image classification [8–10], etc.. Nowadays, image sensors are widely used in the 

fields such as robotics [11], automatic-driving [12], medical diagnosis [13], security monitor [14], 

Augmented Reality (AR) [15], which are the core components of vision systems. Stereo matching aims 

at estimating the disparity map between a rectified image pair, which is of great importance to 

various applications such as obstacle avoidance for robot navigation [16,17], 3D scene 

reconstruction for augmented and virtual reality system [18], and 3D visual object tracking and 

location [19,20]. Depth information captured from image sensors can be calculated by the following 

typical structure: Time of Flight (ToF) [21,22], structured light [23,24], and binocular vision [25,26], 

in which ToF and structured light have high accuracy in a particular scene, but they need high 

implementation cost. In the field of automatic-driving [12], binocular stereo vision technology [27] is 

widely adopted due to the advantages of low cost, information abundant, and high robustness in 

object recognition, which can extract the dense parallax map and achieves the segmentation of road 

lane lines. The binocular vision system architecture used in the autonomous driving scenario is 

shown in Figure 1. 

 

Figure 1. Workflow of binocular autonomous vehicle. 

As shown in Figure 1, f  denotes the focal length of the binocular, indicating the distance 

from point p  to point lp  and rp . d  represents the difference between lp  and rp  in the 

x-axis direction. B  denotes the distance between two camera centers. Z  is the depth distance 

from point p  to point lO  or rO , which can be calculated by Eq (1.1):  
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algorithm, with a popular four-step pipeline being developed. This pipeline includes matching cost 

calculation, matching cost aggregation, disparity calculation, and disparity refinement. Traditional 

stereo matching methods can be roughly divided into three categories: global matching (GM) [30–32], 

local matching [33,34] and semi-global matching (SGM) [35–37]. The global matching method attempts 

to solve the optimal solution in the global, but the calculation is very laborious and the global 

optimal solution may not be found. The global method does not require the cost aggregation step. In 

addition, the selection of different calculation methods and optimal strategies have a great influence 

on the global method. The local matching algorithm matches local features within a certain range of 

matching points, which is depend on the rationality of the matching window. And local matching 

algorithm performance worse when processing the weak texture area and the occlusion area. 

Semi-global block matching (SGBM) is a combination of the global method and local method. 

SGBM adopts a pixel-by-pixel matching cost calculation method and a dynamic programming 

algorithm to achieve optimal path search in the one-dimensional smoothing constraints. However, 

the performance of the traditional stereo matching methods is severely limited by the handcrafted 

features adopted by cost functions, which cannot meet the demands of computation accuracy in 

complex scenes. 

With the development of artificial intelligence, increasing researchers have begun to attempt to 

solve the stereo matching problem using deep learning methods. LeCun [38] trained a convolutional 

neural network to compute the stereo matching cost. The matching cost is refined by cross-based cost 

aggregation and semi-global matching. Subsequently, Zbontar [39] presented Siamese convolutional 

neural network architecture for learning a similarity measure on image patches and applied them to 

the problem of stereo matching. Siamese network architecture has two effects: One tuned for speed, the 

other for accuracy. The output of the convolutional neural network is used to initialize the stereo 

matching cost. However, the above network structures are too complex and have application limitations 

in the autonomous driving scenarios. 

Aiming at improving the matching accuracy of the network training for autonomous driving 

scenarios, an end-to-end stereo matching algorithm based on improved convolutional neural 

network is proposed for autonomous driving applications. The main contributions of our work 

are summarized as follows: 

· An end-to-end training algorithm pipeline based on improved convolutional neural 

network for autonomous driving application is designed. 

· The “downsize” full-connection layer combined with subsequent network optimize is 

employed in the proposed network to improve the efficiency of the algorithm. 

· A batch normalization layer is introduced after each convolutional layer to accelerate the 

convergence of the proposed network for autonomous scenario training with a large 

learning rate. 

· An improved loss function is adopted to approximate the similarity of positive and 

negative samples in a more relaxed constraint and improve the matching effect of the 

outputs. 

The KITTI 2012 and KITTI 2015 datasets are used to verify the effeteness and robustness of 

the proposed algorithm. Experimental results show that the end-to-end algorithm has a better 

performance in stereo matching to obtain a dense disparity map for the binocular vision system in 

autonomous driving. 
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2. Related works 

End-to-end deep stereo networks have not been extensively studied until the first large scale 

synthetic stereo datasets disclosed by Mayer et al. [40]. There are lots of traditional stereo matching 

methods were proposed in recent years, such as GM, SGM, SBGM and so on. Specifically, SGM is a 

method based on block similarity while SBGM is a method based on disparity learning. Different 

from the traditional matching cost calculation method, Zbontar [39] and Lecun [38] firstly employed 

convolutional neural network named it MC-CNN to learn the similarity measurement between two 

image patches and used it to initialize the matching cost. Luo et al. [41] proposed a Siamese network 

which can produce excellent accurate results in less than a second of GPU computation. However, 

our method does not focus on low-level vision tasks such as optical flow, so the above methods are 

not appropriate. Shaked and Wolf [42] deepened the network for matching cost calculation using a 

highway network architecture with multi-level weighted residual shortcuts. It was demonstrated that 

this architecture outperformed several networks, such as the base network from MC-CNN. 

Subsequently, Kendall et al. [43] proposed a method for learning parallax based on three 

dimensional (3D) convolution end-to-end. The method uses the geometrical characteristics of the image 

to extract depth features, the 3D convolution layer in the network is used to improve disparity estimation 

to realize parallax learning of sub-pixel precision without post-processing. However, the road matching 

effect in the above method is not satisfactory in complex scenes. Guney et al. [44] designed the Displet 

network, which uses sparse parallax estimation and image semantic segmentation to normalize the 

parallax, which can effectively solve the mismatching problem of stereo matching. Mayer et al. [40]. 

presented a novel approach named DispNet, which is an end-to-end CNN using synthetic stereo pairs for 

training. In parallel with the proposal of DispNet, similar CNN architectures are also applied to optical 

flow estimation, leading to FlowNet [45] and its successor (FlowNet 2.0 [46]). GWCNet [47] introduces 

group-wise correlation to provide better similarity measures than previous work and it can cooperate with 

the concatenation volume to further improve the performance. 

After that，Pang et al. [48] proposed a cascaded residual learning (CRL) network with richer input 

information, which consists of two parts: DisFullNet and DisResNet. Specifically, the input of DisResNet 

includes both the output disparity maps of the DisFullNet network and the left graph generated by the 

warp operation, such a network structure can not only improve the training efficiency, but also optimize 

the initial parallax map, however, the matching accuracy is lower than FlowNet. Different form CRL, 

Liang et al. [49]. propose to calculate reconstruction error in feature space rather than color space and 

share features between disparity estimation network and refinement network. 

To improve the matching accuracy of the network training for autonomous driving scenarios, an 

end-to-end stereo matching algorithm based on an improved convolutional neural network is proposed, 

which has a better performance in stereo matching. In addition, a better dense disparity map can be 

obtained in the proposed method for binocular vision system in autonomous driving. 

3. The pipeline of the proposed algorithm 

The proposed algorithm is used to extract the depth information of autonomous driving 

scenarios utilizing the images captured by the left and right cameras carried in cars. The flow chart is 

shown in Figure 2. in which L and R represent the left images and the right images captured by the 

binocular camera respectively. Firstly, taking the image pairs and corresponding labels as inputs of 
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the proposed neural network in both training and testing stages. Then the relevant parameters are set 

and the training model is obtained after several iterations. Finally, the trained feature model is loaded 

to obtain the depth information, which is represented by a dense disparity map. 

 

Figure 2. The flow chart of the proposed algorithm. 

3.1. Computing the matching cost 

Generally, the first step of the stereo matching method is to compute the matching cost at each 

position for each disparity image. The purpose of this process is to find the corresponding pixel 

points in matching maps. 

We use deep learning methods to compute the matching cost in the stereo matching procedure 

instead of finding matching points between the left and right pairs. The images are divided into 

multiple blocks, the red box (a) and (b) in Figure 3 are the blocks in the left and right images 

respectively, in which P and Q denote one pixel in the corresponding block separately. By comparing 

the similarities of the blocks to find the corresponding pixel points, the similarity can be calculated 

by the sum of absolute differences (SAD) in the image blocks. As shown in Eq (3.1), the smaller the 

similarity, the larger the matching cost. 
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(a)                          (b) 

Figure 3. Matching based on patches. (a) patch in the left image; (b) patch in the right image. 
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3.2. Network architecture 

The architecture of the proposed network is depicted in Figure 4. The convolutional neural 

network layer is used to extract different feature information of the left and right image blocks. A 

batch normalization layer is added after each convolutional layer to speed up the convergence of 

network training. Meanwhile, batch normalization is employed to keep the training process more 

smoothly with a higher learning rate and less initialization. Relu function [50,51] with a stronger 

expression ability is adopted to maintain the convergence speed of the model in a stable state. After 

four iterations, the left and right features are concatenated into the full connection layer. There are 

512, 384, 256, and 128 neurons respectively in the "downsize" full connection layer, which can be 

calculated by Eq (3.2): 

1

512,             1

128,     2,3,4
i

i

i
n

n i+

=
= 

+ =
                          (3.2) 

Where in  represents the number of neurons, i  denotes the number of iterations. In our 

experiment, the algorithm has the best matching effect when the number of iterations is 4. 

The feature is classified and judged by a 4-layer full connection layer. A cross entropy cost 

function is employed in the training process, as shown in Eq (3.3): 

log( ) (1 ) log(1 )F t s t s= + − −                           (3.3) 

Where s  is the output of the similarity comparison network, t  denotes the sample tag, 1t =  

and 0t =  represent a positive input sample and a negative input sample separately. 

 

Figure 4. Structure of the network. 

Similar/dissimilar judgment results are output in the form of scores for subsequent stereo 

matching. The cost function is constructed based on the inverse proportion of the similarity score, the 

more similar the image block, the smaller the cost. Finally, the cost function is post-processed by 

cross-cost aggregation and semi-global matching to choose the minimum cost as parallax. Since the 
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accuracy of the previous results could not meet the requirements of the experiment, the parallax was 

recalculated by fitting the conic through the adjacent cost at the adjacent parallax and calculate the 

final disparity maps. 

3.3. Loss function design 

The KITTI 2012 and KITTI 2015 stereo matching datasets are chosen to construct a binary 

classification dataset. At each image pixel point where the real parallax is known, a positive sample 

and a negative sample are extracted respectively to ensure the dataset contains the same number of 

positive and negative samples. In order to enrich the data of the positive and negative samples, a 

positive sample posQ  is obtained by setting the intermediate pixel points of the right image block 

according to Eq (3.4): 

( , )pos posQ x d o y= − +                             (3.4) 

Where poso  is a random number in the range [ , ]pos posv v− , which is generated during each 

iteration randomly. According to the experiments, it is confirmed that the matching effect is better 

when posv  is set to 4. Similarly, the negative sample negQ  is designed according to Eq (3.5): 

( , )neg negQ x d o y= − +                             (3.5) 

Where nego  is a random number in the range of [ , ]low highz z− , based on the generated poso , lowz

and highz  are set to 4 and 18 respectively, which relates to the stereo matching algorithm that was 

used later. When the matching cost of the correct match and the approximate correct match is small, 

the cross-cost aggregation performs better. In the subsequent stage of network training, the 

benchmark disparity for the positive and negative sample classification design is [1,0] , for each 

positive sample, the network expects it approach the similarity 1, and the similarity of negative 

samples is getting closer to 0. 

In this paper, the positive and negative samples in the algorithm are presented in order to satisfy the 

perfect matching of image blocks. When the network is about to convergence, the cross-entropy loss 

function is utilized to fit the network, which can be described by the following cross entropy loss 

function: 

ln( ) (1 ) ln(1 ), 11 3 1

ln( ) (1 ) ln( 1 ), 0, 3

ln( ) (1 ) ln(1 ),

loss

t s t s t s

D t s t s t s

t s t s others

 + + − − = −    −


= + −  + − =    
 + − −

         (3.6) 

As shown in Eq (3.6), s  represents the output of the network; 1t =  denotes positive 

samples and 0t =  is negative samples. In our experiment,   is set to 0.05. The algorithm 

performs better when the positive sample similarity is close to 1 and the negative sample 

similarity is close to 0. 
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4. Experimental results 

4.1. Training KITTI datasets 

Small-batch gradient descent is adopted during the training process, after a certain number of 

training-validation iterations, the batch size is set to 150 and the momentum is set to 0.9. In neural network 

training, the learning rate is one of the most important factors affecting training speed and training 

accuracy. If the learning rate is too small, convergence is easy to guarantee, but the convergence speed will 

be slower; if the learning rate is too large, the learning speed is fast, but it may cause gradient 

disappearance [52] or gradient explosion [53]. The learning rate in our experiments is set to 0.02 in the 

training process. In order to fit the correction range of weights in different stages, the learning rate is 

reduced gradually in the later iteration. When the 18th epoch is completed (1 epoch is to train all samples 

through the network once), the loss function is close to convergence. The experimental comparison found 

that the test results are the best when the block size is set to 9 × 9, so the subsequent experiments are based 

on 9 × 9 blocks. The experimental platform is NVIDIA K80 based on the TensorFlow environment. 

4.2. Experiment analysis 

4.2.1. Loss function error comparison 

From left to right in Table 1, the data are the error comparisons of training KITTI 2012 to validate 

KITTI 2012, training KITTI 2015 to validate KITTI 2015, training KITTI 2012 to validate KITTI 2015, 

and training KITTI 2015 to validate KITTI 2012, respectively. Table 1 shows the comparison of the 

improved loss function and MC-CNN [39] loss function based on KITTI 2012 and KITTI 2015 datasets. 

Table 1. Loss function error comparison. 

Method KITTI 2012 KITTI2015 
KITTI 2012 on 

KITTI 2015 

KITTI 2015 on 

KITTI 2012 

MC-CNN 2.63% 3.27% 4.03% 3.93% 

Ours 2.62% 3.26% 4.01% 3.88% 

As shown in Table 1, our method achieves the lowest error in the four experiments, which 

proves the validity of the proposed loss function. Table 2 gives the final parallax error comparison 

obtained by different Δ values in the improved loss function, which can be seen that the error result is 

the smallest when Δ is 0.05. 

Table 2. Error comparison between different Δ values. 

△ Error 

0.03 3.262 

0.04 3.267 

0.05 3.251 

0.06 3.283 

0.07 3.268 
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4.2.2. Comparison with other methods 

The proposed algorithm is compared with traditional stereo matching algorithms using in 

autonomous driving scenarios, including Efficient Large-Scale Stereo Matching [54] (Elas), SGM [55], 

Slanted Planar Smoothing (SPS) [56], Fast R-CNN [57] Matching, and MC-CNN [39] Fast and Slow, the 

objective error indicators are used for the comparison of experimental results. As shown in Table 3, the 

indicator is the ratio of the pixel points, in which the disparity value to the reference disparity is greater 

than m (m = 2, 3, 4, 5) pixels. It can be seen from Tables 3 and 4 that the error value of the proposed 

algorithm is smaller than other algorithms when the pixel radio is large than 3 pixels, which indicates the 

effectiveness of the proposed algorithm. 

In addition, Tables 3 and 4 also show qualitative results on the runtime of the proposed method 

in KITTI 2012 and KITTI 2015 separately, which can be observed that our method has a clear 

advantage in runtime compared with other algorithms. 

Table 3. Error comparison of disparity with different algorithms (KITTI 2012). 

Algorithm > 2 pixels > 3 pixels > 4 pixels > 5 pixels Runtime (s) 

Elas 22.71 21.08 20.24 19.56 43 

SGM 6.27 4.88 4.15 3.56 48 

SPS 4.86 3.78 3.16 2.78 21 

Fast R-CNN 4.97 3.06 2.38 2.04 9 

MC-CNN-fast 4.89 3.03 2.30 1.93 1.37 

MC-CNN-slow 4.28 2.62 2.03 1.73 1.55 

Proposed 4.37 2.60 2.01 1.71 0.98 

Table 4. Error comparison of disparity with different algorithms (KITTI 2015). 

Algorithm > 2 pixels > 3 pixels > 4 pixels > 5 pixels Runtime (s) 

Elas 24.08 19.22 17.58 16.83 40 

SGM 10.04 6.94 5.46 4.49 49 

SPS 7.15 4.57 3.47 2.94 18 

Fast R-CNN 6.79 4.37 2.57 2.04 13 

MC-CNN-fast 7.54 4.01 2.84 2.32 1.88 

MC-CNN-slow 6.38 3.28 2.37 1.97 3 

Proposed 6.56 3.26 2.34 1.93 1.02 

4.2.3. Performance of the proposed algorithm 

In Figures 5–8, we show qualitative parallax results of our method on KITTI 2012 and KITTI 2015. 

By learning our method is often able to handle challenging scenarios, such as exposure and backlit 

autopilot scenes. The error map refers to the difference between the calculated disparity map and the 

pixel points of the reference disparity. It can be seen from the disparity map that the algorithm can 

obtain a smooth and dense disparity map, especially in the edge region of the target, and the edge 

information of the original target is retained obviously. 

In addition, our method also has effect on exposure and backlit scenes. For example, in Figure 5a,b, 

although the car in the shade, our method can still get a better dense parallax map and error map, as 
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shown in Figure 5c,d. For the exposure road in Figure 6a,b, our method can obtain the clear dense 

parallax map and error map, as shown in Figure 6c,d. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. Disparity map extracts from right and left image (a) left original image (b) 

right original image (c) disparity prediction (d) error map. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6. Disparity map extracts from right and left image (a) left original image (b) 

right original (c) disparity prediction (d) error map. 



7798 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7787–7803. 

 

(a) 

 

(b) 

  

(c) 

 

(d) 

Figure 7. Disparity map extracts from right and left image (a)left original image(b)right 

original image (c)disparity prediction (d)error map. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8. Disparity map extracts from right and left image (a)left original image(b)right 

original image (c)disparity prediction (d)error map. 

5. Conclusions 

In the field of autonomous driving, the accurate computation of depth information is crucial to 
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the driving safety. Recent studies using CNNs for stereo matching have achieved prominent performance. 

In this paper, an end-to-end stereo matching algorithm based on the improved convolutional neural 

network structure is proposed for autonomous driving scenarios. A “downsize” full connection layer 

and an improved loss function are introduced in the proposed network. The experiments are carried out 

on the KITTI 2012 and KITTI 2015 datasets. The experimental results show that our algorithm has 

higher accuracy and efficiency compared with the traditional algorithms and some deep learning-based 

methods. The loss function error of the proposed method for KITTI 2012 and KITTI 2015 datasets are 

reduced to 2.62 and 3.26% respectively, which also reduces the runtime of the proposed algorithm. The 

end-to-end stereo matching method proposed in this paper may provide the location algorithm supports 

for the automatic driving area. For future work, we plan to focus on using segmentation information to 

optimize parallax images after matching for more complicated driving tasks. 
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