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Abstract: As the basic units of the human body structure and function, cells have a considerable 

influence on maintaining the normal work of the human body. In medical diagnosis, cell examination 

is an important part of understanding the human function. Incorporating cell examination into 

medical diagnosis would greatly improve the efficiency of pathological research and patient 

treatment. In addition, cell segmentation and identification technology can be used to quantitatively 

analyze and study cellular components at the molecular level. It is conducive to the study of the 

pathogenesis of diseases and to the formulation of highly effective disease treatment programs. 

However, because cells are of diverse types, their numbers are huge, and they exist in the order of 

micrometers, detecting and identifying cells without using a deep learning-based computer program 

are extremely difficult. Therefore, the use of computers to study and analyze cells has a certain 

practical value. In this work, target detection theory using deep learning is applied to cell detection. A 

target recognition network model is built based on the faster region-based convolutional neural 

network (R-CNN) algorithm, and the anchor box is designed in accordance with the characteristics of 

the data set. Different design methods influence cell detection results. Using the object detection 

method based on our novel faster R-CNN framework to detect the cell image can help improve the 

speed and accuracy of cell detection. The method has considerable advantages in dealing with the 

identification of flowing cells. 

Keywords: faster R-CNN; anchor box; convolutional neural network; object detection; cell 

recognition 
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1. Introduction  

With the rapid development of science in recent years, computer technology has achieved many 

breakthroughs in image processing, which is being used increasingly in the biomedical field; such 

usage greatly promotes the development of medical image analysis [1]. At present, the prevention, 

detection, and treatment of many diseases are inseparable from biomedical image analysis. 

Biomedical image processing technology refers to the use of computer hardware to conduct digital 

processing of biomedical images and subsequently perform segmentation, recognition, analysis, 

interpretation, and other operations on digital medical images. Afterward, we can obtain the required 

feature information, which is then used for subsequent analysis and transmission. Cell segmentation 

and recognition can be used to conduct quantitative analyses of and research on cell components at 

the molecular level; they are conducive to the study of the pathogenesis of diseases and development 

of effective treatment programs for diseases [2]. 

Cell research is crucial in biomedicine. Cell image analysis can quickly obtain cell state 

information, which is important for the study and diagnosis of pathology. However, due to the 

diversity in the types of cells, cells are affected by cell surface tension [3], cytoplasm viscosity [4], 

cell membrane stiffness [5], and other aspects. Different cell scales, including spherical, rod-shaped, 

doughnut-shaped, and cubical, vary greatly because of the adaptation of cells to their functions. 

Cell-cell adhesion often occurs between cells [6–10] and result in cell stacking. In addition, the 

grayscale, clarity, blur, and brightness of cell images are affected by the lighting environment. 

On the basis of these cell characteristics, cells have been used for medical image recognition 

and problem analysis. With an object detection algorithm, we can achieve the automatic 

identification, classification, and positioning of medical images of cells. Hence, detection precision 

and medical diagnosis can be improved, detection tasks can be completed reliably, and the 

development of medical technology can be promoted. 

Currently, cell classification mainly utilizes methods based on nuclear features [11] and image 

clipping [12] and can be achieved with the convolutional neural network (CNN) [13]. 

Several segmentation algorithms have been developed in recent years to solve the 

aforementioned problem. Kang et al. [14] proposed a cell image segmentation method that combines 

image segmentation, multi-resolution, and Babbitt distance technologies. With a multi-scale 

framework, the low contrast problem of bright-field cell images was solved by determining the 

difference in cell and background distribution intensities. Chen et al. [15] presented a non-negative 

constrained principal component tracking model, combined the model with spectral clustering, and 

used standardized cutting as a measure of segmentation quality to realize the effective segmentation 

of bright-field cell images. 

Cell segmentation based on morphology mainly adopts the geometry or gray characteristics of 

cells to achieve cell segmentation. This method does not require cell labeling for cell images and is 

suitable for the segmentation of small data sets. However, this method relies on the consistency of 

cell images; its segmentation efficiency decreases in the presence of noise. 

Cell image segmentation based on deep learning has been introduced gradually through the 

rapid development of artificial intelligence. Ronneberger et al. [16] proposed the U-Net network, which 

can be used to solve the biomedical image segmentation problem of small data sets. Naylor et al. [17] 

utilized and compared three network structures, namely, FCN, U-Net, and mask R-CNN, to segment 

histological sections stained with H&E. They described the segmentation problem as a regression 
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task to predict the distance transformation of binarization images. Kromp et al. [18] compared and 

evaluated the segmentation performance of U-Net, U-Net with ResNet34 skeleton, Deepcell, and 

mask R-CNN. They trained and tested fluorescence core images of different samples, sample 

preparation types, marking quality, image scale, and segmentation complexity. They found that three 

of these deep learning frameworks can be used to segment fluorescence nuclear images on most 

sample preparation types and tissue sources. 

Cell segmentation based on deep learning relies on numerous annotated data sets. However, 

compared with cell segmentation based on morphology, it has higher accuracy and segmentation 

efficiency. 

In 2019, a study by Google showed that using CNN can realize the detection of breast cancer 

metastasis in lymph nodes and demonstrates ideal precision. In particular, Google introduced the 

augmented reality microscope [19] platform. This platform adopts the deep learning model; it was 

established based on TensorFlow and uses various machine learning algorithms. Hence, it can be 

utilized to solve problems in the classification, identification, and quantification of tumor cells and 

exerts a considerable influence on medical diagnosis [20]. 

On the basis of these studies, we implement the framework pertaining to Python Keras by using 

faster R-CNN [21] in blood cell recognition. The deep learning method is proven to be feasible in 

cell image classification and feature extraction of the original faster R-CNN. Network adjustment 

based on the proposed network regions of the anchor box allows the original faster R-CNN to be 

improved. 

This experiment studies the use of the object detection algorithm based on deep learning and 

aims to integrate feature extraction [22], identification of regions of interest (ROIs), classification, 

and positioning into a network model [23]. We then adjust the network in accordance with the 

characteristics of cell images in the data set to reduce human intervention in the training process. 

As shown in Figure 1, the cell that is captured in the image can be located and labeled (the 

rectangular box) using end-to-end target detection network model prediction. The category of each 

label can also be predicted. 

 

Figure 1. End-to-end cell detection framework. 

2. Methods  

2.1. Experiment methods 

Faster R-CNN improves the extraction of candidate regions [24]. It uses CNN to obtain the 

region box and realizes end-to-end model training. Therefore, the faster R-CNN network model is 

used as the basic framework in this experiment to construct an end-to-end cell detection model. 
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The original network structure and parameters are adjusted in accordance with the 

characteristics of cell images to realize end-to-end training of the network model by using cell data 

set images. High detection precision is expected on the basis of the test set. 

2.1.1. Feature extraction network 

In literature [20], the faster R-CNN model utilizes the VGG16 [25] network as the backbone for 

feature extraction. The VGG16 network contains 13 convolutional, 13 activation, 4 pooling, and 

3 full-connection layers. In the faster R-CNN model, only the convolutional, activation, and pooling 

layers are used for feature extraction. 

However, in accordance with the characteristics of cells, we know that cells are of various types, 

and the morphological differences between cells are variable. Therefore, a detailed classification is 

required for cell detection. In addition, cell detection is often used in biomedical image analysis, 

which requires high precision. 

A deep network is advantageous in learning and expressing strong semantic information, and 

acquiring robustness to changes in the shape and position of objects is easy. However, as the number 

of network layers increases, convergence difficulties arise, and the network performance deteriorates 

with the deepening of the network. We know that ResNet [8] can solve such a problem. ResNet uses 

a residual learning module, as shown in Figure 2, to help the network achieve identity mapping. 

When the internal features of a certain layer of the network have been optimized, the network after 

that layer does not change the features. 

In the residual learning module [24], the output of shallow network 
1f  is superimposed with 

the output of deep network 
2f  as the input of deeper network 3f . When shallow network 

1f  is 

optimal, the output of 
2f  approaches 0 to ensure that the loss does not increase and realize constant 

mapping of the network.
 

 

Figure 2. Residual learning module. 

Therefore, in accordance with literature [8], this experiment changed the feature extraction 

network to ResNet50 and processed the data and images by using a deeper CNN to improve the 

model effect and enhance the precision of cell detection. 

2.1.2. Anchor box design 

The feature can be regarded as a 256-channel image with a scale of 51 × 39. For each position 

of the image, 9 possible candidate windows are considered; the three areas are 128 × 128, 256 × 256, 

and 512 × 512, and each area is divided into 3 aspect ratios, namely, 2:1, 1:2, and 1:1. These 
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candidate windows are called anchors. The author introduced the multi-scale methods commonly 

used in detection (detecting targets of various sizes) through these anchors. 

 

Figure 3. Comparison of the anchor box before and after adjustment. 

For these 51 × 39 positions and 51 × 39 × 9 anchors, the following shows the calculation steps 

for each position: 

(a) Let k be the number of anchors corresponding to a single position. At k = 9, the area suggestion 

function is completed by adding a 3 × 3 sliding window operation and two convolutional layers. 

(b) The first convolutional layer encodes each sliding window position of the feature map into a 

feature vector, and the second convolutional layer outputs k area scores for each sliding window 

position, indicating the probability that the anchor at that position is an object. The total output 

length of this part is 2 × k (one anchor corresponds to two outputs: the probability of being an object 

+ the probability of not being an object) and k regression recommendations (frame regression). One 

anchor corresponds to four frame regression parameters. Therefore, the total output length of the box 

regression part is 4 × k, and performing non-maximum suppression on the score area or the output 

score Top-N (300 in the text) area tells the detection network which areas should be paid attention to. 

Essentially, it implements the selective functions of Search, EdgeBoxes, and other methods. 

In the training stage of the RPN network, the feature images are scanned by sliding windows, 

and different anchor boxes of a specified scale and proportion are obtained in the center of each 

sliding window. This anchor box participates in the regression operation of boundary boxes to obtain 

candidate regions. Therefore, in the training stage of the RPN network, increasing the anchor box 

size is beneficial for detecting objects with large scale differences. By observing the shape of the 

detected target, the anchor box length and width can be adjusted to an appropriate proportion, which 

is conducive to improving the final detection precision. Increasing or decreasing the number of 

anchors has a certain effect on time performance. 

In the study that proposed the faster R-CNN method, the author describes the anchor box as 

follows: ―The anchor point is located at the center of the sliding window in question and is related to 

a scale and aspect ratio. By default, we use 3 scales and 3 aspect ratios, and k = 9 anchor points are 

generated at each sliding position.‖ That is, the value is selected according to the data set. On the 

basis of the morphology of biological blood cells, we know that red blood cells are double-concave 

and disc-shaped, white blood cells are colorless and nucleated spherical, platelets are very small 

(with a diameter of 2–4 μm) and biconvex flat discs, and eosinophils are spherical. That is, most 

blood cells are spherical. An important feature of a sphere or a circle is that the distance from any 
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point on the circumference to the center of the circle is a radius r, that is, during the sliding process 

of the window, the length-to-width ratio of the blood cell is approximately 1:1. Moreover, Figure 3 

indicates that the area of the candidate frame determines the area of the sliding window to be 

detected, and the total output length of the frame regression part is 4 × k. Thus, when the scale of the 

candidate frame changes, the area of the sliding window also changes; when the ratio and scale of the 

candidate frame change, the total output length of the frame regression part also changes. We 

reduced the area of the preset candidate frame in accordance with the characteristics of the small 

platelet volume. 

Organisms have cells of different sizes and shapes, but the size differences of cells of the same 

kind are usually small. In this experiment, we adjusted the number, scale, and aspect ratio of the 

anchor box in accordance with different cell sizes. The design of the anchor box is expected to 

improve the performance of network detection of large and small objects. 

3. Experiment 

3.1. Data set 

A data-enhanced public blood cell data set was used in this study. The original data set contains 

364 blood cell pictures, and the pixel size of each picture is 640 × 480. The data set has three 

categories, namely, red blood cells (RBCs), white blood cells (WBCs), and platelets. Several 

database samples are shown in Figure 4. 

 

Figure 4. Database samples. 
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Through careful collation of the data set, we found that the data set has the following 

characteristics. 

(a) In the actual composition of human blood, RBCs outnumber other blood cells. Therefore, in 

the data image, RBSs are attached to one another and tend to overlap, whereas WBCs and platelets 

usually exist discretely. 

(b) Given that different cells often have different shapes, the data images show that large-scale 

color differences exist among the three types of cells, but the differences between cells of the same 

type are small. The platelet size is the smallest, and the WBC size is the largest. 

(c) The images in this data set are biomedical images collected in the laboratory by using 

professional medical image acquisition equipment. Therefore, the brightness and darkness of each 

image are similar, minimally affected by the environment, and have a high degree of similarity. The 

image background is consistent and relatively simple. 

(d) Incomplete cell images exist at the edge of the image due to the limitation in the field of 

vision or image clipping. 

(e) The number of images in the data set is small, and the number of samples is limited. 

In addition to the 364 blood cell images in the original image data file, each image is also 

matched with a mark file to mark the position and category information in the corresponding blood 

cell image.  

To prevent the model from overfitting and increase the amount of data in the data set, we 

enhanced the data set by randomly cropping the image data, flipping left and right, color dithering, 

rotating, and zooming. We enhanced the data set to 10,000 and matched the corresponding marked 

files. 

3.2. Experimental environment 

This experiment was based on the Keras deep learning framework, and we used the Ubuntu 

16.04.6 system in our program. The GPU model was based on NVIDIA RTX2080 Ti. The 

experiment also used the softmax optimizer. The error was divided into RPN and fast RCNN losses, 

and the final loss was the sum of the two. 

3.3. Experimental strategy 

The faster R-CNN model with ResNet50 as the backbone was used for training. The MAP of the 

model was tested on the test set. The time performance was analyzed, and the advantages and 

disadvantages of the model were identified.  

3.3.1. Experiments based on static pictures 

Specific experimental strategies were implemented as follows: 

(a) In the training stage, the model was iterated 1000 times on the training set, with a learning 

rate of 0.0001. In the RPN network, the anchor box size had default values of 128, 256, and 512, and 

the length and width ratios were 1:1, 1:2, and 2:1, respectively. In addition, the IOU intersection ratio 

between the regression box and the real box was set as the background when it was less than 0.3 and 
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set as the foreground when it was greater than 0.7. The maximum and minimum thresholds of the 

regression box classification score were set to 0.5 and 0.1, respectively. 

(b) By observing the image characteristics of the data set, we found that the cell morphology 

was mostly round. Therefore, on the basis of (a), the length/width ratio of the anchor box was 

modified to 1:1 to reduce the number of anchor boxes. 

(c) On the basis of (a), the anchor box size was increased and adjusted to [16,32,64,128,256]. 

The results of the three groups of experiments were compared to determine the influence of 

different anchor box adjustment strategies on the cell detection results. 

3.3.2. Experiments based on dynamic video 

Using weight files trained in the experiments based on static pictures, we inputted blood cell 

video at a rate of 5 frames per second, performed cell recognition operations on the video, and took 

screenshots of the recognition image results every second to determine the effect of video detection 

of cell flow. 

3.4. Experimental results and analysis 

3.4.1. Mean average precision 

Mean average precision (MAP), the average accuracy of the main set, is the sum of the average 

accuracies of all subjects. MAP is a single-value indicator that reflects the performance of the system 

on all related documents. The higher the number of related documents retrieved by the system is (the 

higher the rank is), the higher MAP is. If the system does not return relevant documents, then the 

accuracy rate defaults to 0. 

MAP is an indicator commonly used in object detection to evaluate the quality of a model. MAP 

is the average precision value of multiple verification set individuals, and it is used as an indicator to 

measure the accuracy of object detection. The following briefly introduces the calculation method of 

this indicator. Two calculation methods can be applied to MAP. First, the interval [0,1][0,1][0,1] is 

divided, where Recall is divided into 11 equal parts, namely, 1,9.0,,2.0,1.0,0ecall R . Each value 

of ir  is taken as the lower limit corresponding to a Recall value greater than or equal to threshold 

ir  in the statistical table. Precision’s maximum value is ip , so we have 11 Precision values, namely, 

}p,,p,{p 1010  . Then, 

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Second, the area under the PR curve is directly calculated as AP, and MAP is the average of the 

AP values. This study uses the second method to calculate MAP. 

3.4.2. Precision 

To comprehensively evaluate the impact of the proposed improvement strategies on detection 

accuracy, this experiment used ResNet50 as the main engine, and multiple comparative tests were 

conducted to verify the effectiveness of the improvement strategies and evaluate the model. The 

experimental results are shown in Table 1. 

Table 1. Comparative experiment on different improvement strategies. 

 Anchor box number Anchor box dimension Anchor box ratio MAP 

No. 1 9 [128,256,512] 1:1,1:2,2:1 93.94% 

No. 2 3 [128,256,512] 1:1 94.25% 

No. 3 15 [16,32,64,128,256] 1:1,1:2,2:1 90.98% 

 

Figure 5. Curves of detection accuracy variation. 
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As indicated in Table 1, the ResNet50-based faster R-CNN model was adopted without 

adjusting the anchor box, and its MAP was 93.94%. When the number of anchor boxes was modified, 

the ratio of the adjusted anchor box was 1:1, and MAP was 94.25%, which was 0.31% higher than 

that of the original model. When the anchor box size was adjusted, MAP decreased to 90.98% in 

comparison with that of the original model. 

We marked the algorithm after adjusting the proportion of the anchor box as the improved 

Algorithm 1 and the algorithm after adjusting the anchor box scale as the improved Algorithm 2. 

Figure 5 shows the curves of detection accuracy variation under the different experimental strategies. 

Before and after adjusting the anchor box, in the case of epoch, the accuracy of the three had a 

certain difference in the rate of increase. When the ratio of the anchor box was adjusted, the rate of 

increase in accuracy was the fastest, but it was the slowest when the scale of the anchor box was 

adjusted. Adjusting the anchor box ratio improved the time performance and recognition accuracy of 

the algorithm. Combined with the recognition accuracy of a single type, after adjusting the scale of 

the anchor box, the accuracy increased slowly, and the recognition of small objects showed higher 

accuracy. 

3.4.3. Time performance 

To compare the time performance of different methods, we compared the detection time required to 

complete the detection of 70 blood cells on the test set by using the ResNet50-based faster R-CNN model 

with a modified anchor box scale and proportion. The results are shown in Table 2. 

Table 2. Time performance analysis. 

Method Mean test time(s) Total test time(s) 

Faster R-CNN（ResNet50） 0.852 59.681 

Faster R-CNN（ResNet50+Reduce the anchor box） 0.747 52.312 

Faster R-CNN（ResNet50+Add anchor box） 2.507 175.473 

As shown in Table 2, the cell data set was detected using the ResNet50-based faster R-CNN 

model. When the anchor box was not adjusted, the average detection time of each image was 0.852 s, 

and the detection cost of all 70 test sets was 59.681 s. When the anchor box was adjusted and the 

number of the anchor box was reduced, the detection time of each image was 0.747 s on the average, 

which was 0.105 s less than that of the original model. The detection time of all data sets was 52.312 s, 

which was 7.369 s less than that of the original model. The model test speed decreased significantly 

by adjusting the scale and increasing the number of the anchor box. The average detection time for 

each picture was 2.507 s, and the test cost of all test sets was 175.473 s. 

3.4.4. Detection effect diagram 

Figure 6 shows the detection effect of the faster R-CNN model on the same cell image under the 

strategies of unchanged anchor box, adjusted proportion of anchor box, and adjusted scale of anchor 
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box. Comparison of the detection effects indicated that the ratio of the adjusted anchor box was 1:1. 

The detection of stacked cells was not obvious, but the discrete cells were easy to detect. With an 

increased anchor box size [16,32,64,128,256], small target platelets and stacked cells could be easily 

detected. 

 

Figure 6. Inspection effect before and after anchor box adjustment. 

Figure 7 shows the results of video stream detection. The method also had a strong effect on cell 

video stream detection, which was almost similar to static picture detection. 

 

Figure 7. Cell flow video detection results. 

3.4.5. Loss function comparison 

Figure 8 shows the loss function curves of the different experimental strategies. Before and after 

adjusting the anchor box, in the case of epoch, the drop rate of the three did not differ much. 
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However, the loss when the anchor box ratio was adjusted decreased relative to when the ratio was 

not adjusted. After the scale, the time required to reach the corresponding level increased slightly. 

 

Figure 8. Loss function curves of the different experimental strategies. 

3.4.6. Experimental analysis 

The experimental results of the three experimental strategies of not adjusting the anchor box, 

adjusting the scale of the anchor box, and adjusting the proportion of the anchor box revealed the 

following points. 

(a) Adjusting the anchor box ratio of 1:1 in accordance with the cell morphology ratio features 

greatly improved the detection speed and accuracy while reducing the number of generated anchor 

boxes. However, when the detection effect image was observed, the performance in detecting stacked 

cells was poor when the anchor box ratio was adjusted to 1:1. Morphology-based analytical methods, 

such as the watershed algorithm, can be considered in subsequent studies to improve the detection 

performance in stacked cells. 

(b) The detection effect image showed that modification of the anchor box scale resulted in the 

detection of numerous small targets, such as platelets, and exhibited good performance in detecting 

stacked cells. However, due to the increase in the number of anchor boxes, the detection took a long 

time. In addition, the labels of cell data sets are often obtained through manual labeling, and the 

precision of labeling depends on the professionalism of workers who are responsible for the marking 

work. Moreover, small targets are often difficult to observe, resulting in a low precision of platelet 

labeling in cell data sets. Therefore, modification of the anchor box scale does not perform well in 

terms of accuracy. 

4. Discussions 

When the anchor box ratio is adjusted from the default 1:1, 1:2, and 2:1 to 1:1 in accordance 

with the morphological characteristics of cells, the cell shape becomes relatively fixed. Hence, after 
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the anchor box ratio is adjusted to the data used in the experiment, the anchor box only needs to 

search one scale when traversing the image, and this feature increases the search speed. Given that 

the focus is on the part of the search that is in line with the target graphics features, the method’s 

recognition of cells is improved in the same round in terms of accuracy, thereby improving MAP. 

The time performance experiment shows that the improved anchor box ratio can enhance MAP and 

time performance to a certain extent. The ratio of the anchor box is adjusted to [16,32,64,128,256] to 

detect small target platelets that are difficult to detect. The number of anchor boxes increases 

accordingly due to the increase in the ratio. The reduced computing power decreases MAP and time 

performance. At the same time, due to the addition of small scales, the resolution of small objects 

and cell stacks is clear, making the detection of small target platelets and stacked RBCs easy.  

This study proposes a method to improve the efficiency of blood cell and incomplete cell stack 

detection in medical images. The method optimizes the network structure to extract cell features 

effectively and appropriately reduces the time performance of model detection.  

5. Conclusions 

This study proposes an improved model of faster R-CNN for specific problems in blood cell 

detection. Experimental results show that the improved anchor box ratio can enhance MAP and time 

performance. After adjusting the size of the anchor box, the performance in MAP and time is reduced 

to a certain extent, but small targets and accumulated RBCs can be easily detected. Detection in a 

cell flow video can also achieve relatively good MAP and time performance. 

Owing to the limitation in the data set sample and time, the experimental model still has a large 

room for improvement in terms of test precision and time performance. In view of these problems, 

on the basis of the training model for large data sets, labels can be added in the future to improve the 

test accuracy and obtain a more applicable training model. By using a large number of data sets, 

anchor box design, multi-scale feature fusion, watershed algorithm, and other methods could also be 

adopted to improve the detection precision for cells of different scales and stacked cells. 

With the introduction of new algorithms and the acquisition of massive data sets in the future, 

this method has the potential to become an important part of medical image analysis in cell 

segmentation. In addition to cell recognition, the framework could be extended to other areas related 

to image object recognition. 
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