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Abstract: The improper circulation of blood flow inside the retinal vessel is the primary source of
most of the optical disorders including partial vision loss and blindness. Accurate blood vessel seg-
mentation of the retinal image is utilized for biometric identification, computer-assisted laser surgical
procedure, automatic screening, and diagnosis of ophthalmologic diseases like Diabetic retinopathy,
Age-related macular degeneration, Hypertensive retinopathy, and so on. Proper identification of retinal
blood vessels at its early stage assists medical experts to take expedient treatment procedures which
could mitigate potential vision loss. This paper presents an efficient retinal blood vessel segmenta-
tion approach where a 4-D feature vector is constructed by the outcome of Bendlet transform, which
can capture directional information much more efficiently than the traditional wavelets. Afterward,
a bunch of ensemble classifiers is applied to find out the best possible result of whether a pixel falls
inside a vessel or non-vessel segment. The detailed and comprehensive experiments operated on two
benchmark and publicly available retinal color image databases (DRIVE and STARE) prove the effec-
tiveness of the proposed approach where the average accuracy for vessel segmentation accomplished
approximately 95%. Furthermore, in comparison with other promising works on the aforementioned
databases demonstrates the enhanced performance and robustness of the proposed method.

Keywords: Bendlets; retinal blood vessel; ensemble classifier; medical image segmentation; contrast
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1. Introduction

Among all the organs in the human body, eyes offer the most sensational feeling which provides us
with the scope to praise the beauty and to communicate with others through visual expression. Clear
vision plays a vital role in our life. However, due to different eye diseases, sometimes it becomes
crucial to maintain a healthy vision. That is why it is important to test different eye components regu-
larly. Amongst diverse components, the retina is the most important ingredient which can exhibit the
symptoms of most of the optical disorders. Different morphological properties of retinal blood vessels
including branching pattern, length, tortuosity, angular features, and diameter are the basic observation
area to detect any eye disease. Study [1] shows that hypertension can be classified by narrow arterioles
with bright reflexes. Cardiovascular disease and diabetic retinopathy can be diagnosed by bifurcation
angles and tortuosity information.

Accurate blood vessel segmentation is important as well as a challenging task for determining early
vision problems. However, different branching patterns, bad contrast, low image resolution make the
blood vessel segmentation problem cumbersome. Besides, ill-defined optic disk as well as the random
number of the hemorrhage, cotton wool spots, and microaneurysms create noises that lead to false-
positive detection. Moreover, it is more troublesome to identify the thin vessels from the background
image. Bifurcation, central light reflex, arbitrary branch crossings, contrast variation in the vessel
maps are usually the general causes for the failure of the complete isolation of retinal blood vessels
from color fundus image.

Matched Filtering [2] methodology based on the characteristics of the blood vessel was the first
significant achievement in the field of retinal blood vessel segmentation. Next, the idea of multi-scale
approach [3] was developed using a scale-space analysis of the maximum principal curvature. Later on,
utilizing morphological reconstruction and vessel centerline detection, the strategy of morphological
processing based solution was proposed [4]. Moreover, Machine learning-based techniques were also
applied to isolate the vessel tree where a handcrafted feature vector is formed before passed it to a suit-
able classifier. Nowadays, deep learning-based techniques [5] are dominating this vessel segmentation
application akin to most of the segmentation and classification tasks in computer vision.

Wavelet-based methods have already proved their effectiveness in many applications including im-
age denoising, compression, texture analysis, and edge detection. Gabor wavelet, Curvelets [6], Con-
tourlets [7], Shearlets [8] are commonly employed to detect curved like structures which are already
applied by many researchers in the application of retinal vessel segmentation. Bendlets [9] is the recent
addition to the family of wavelet-based multiscale directional transform technique which can capture
curvatures with fewer coefficient values than others.

This paper presents an efficient and robust retinal blood vessel segmentation technique utilizing the
new multiscale directional transform methodology named Bendlets. Firstly, some preprocessing steps
have been followed to reduce some false outcomes as well as make it suitable for the feature extraction
stage. Secondly, in order to enhance the contrast of the input image morphological top-hat and bottom-
hat transform are employed which helps to detect the thin vessels more effectively. Thirdly, Bendlet
transform is applied on different scales to construct a robust feature vector. Fourthly, a small group
of ensemble classifiers is analyzed to find out the most satisfactory classifier. Finally, to improve the
accuracy a little bit more, a post-processing step is carried out to fulfill the probable gaps inside the
vessel as well as remove the isolated false candidates.
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2. Literature review

The intensity profile along the cross-section of a retinal blood vessel has the Gaussian-shaped curve.
Chaudhuri et al. [2] applied a 2-D Gaussian kernel for separating blood vessels from the background.
Based on this concept of matched filtering, Hoover et al. [10] designed a piecewise threshold probing
algorithm considering some region-based properties. Zhang et al. [11] proposed a combination of zero-
mean Gaussian and first-order derivative of the Gaussian filter which resolves some of the limitations of
previous methods. Another variation proposed by Odstrcilik et al. [12] where illumination correction
and contrast equalization were performed before matched filtering. Chakraborti et al. [13] improved
the concept of matched filtering by incorporating orientation histogram and a vesselness filter.

Martinez-Perez et al. [3] started the idea of applying the multi-scale approach in detecting vessel
from the background image by using gradient magnitude and maximum principal curvature. Vlachos
and Dermatas [14] developed a multi-scale line tracking program from different vessel properties.
Nguyen et al. [15] proposed a multi-scale line detection method where the response from eight dif-
ferent scale values is linearly combined to get the final vessel map. In another work, Yanli Hou [16]
presented a vessel tree extraction process by utilizing a multi-scale top-hat transform and multi-scale
line detection algorithm. Yue et al. [17] made a little optimization in the work of [15] where the
improved multi-scale line detector chooses the maximum line response from the available multi-scale
windows.

Mendonca and Campilho [4] established the concept of segmenting blood vessels by means of
several morphological filters such as multi-scale top-hat transform, region growing process, and multi-
scale morphological vessel reconstruction. Miri and Mahloojifar [18] applied connected component
analysis and multi-structure elements morphology by reconstruction after using curvelet transform for
retinal vessel enhancement. Fraz et al. [19] developed another unique blood vessel segmentation tech-
nique where the multidirectional morphological top-hat transform is utilized to enhance the image and
morphological bit plane slicing is employed to segment the vessel map. By using morphological com-
ponent analysis Imani et al. [20] designed another method with combining Morlet wavelet transform
and adaptive thresholding. Gao et al. [21] presented an efficient procedure for the vessel segmentation
which includes automatic random walks based on centerline extraction.

Pattern classification based methods are more popular than previous approaches. Ricci and Perfetti
[22] made a framework using a support vector machine (SVM) where the features are generated from
line detectors based on the average grey-level value of the retinal image. Martin et al. [23] assem-
bled a 7-D feature vector for each pixel representation comprised of moment invariants and grey-level
features which are trained by neural network classifier. On the other hand, Fan et al. [24] executed
a random forest classifier where the feature vector of each candidate pixel is formed from integral
channel features.

Although local image feature-based machine learning approaches are satisfactory enough, the fea-
ture vector composed of wavelet-based methods is more robust in terms of accuracy. Soares et al. [25]
developed the feature vector from a 2-D Morlet wavelet transform and trained it by a Gaussian mixture
model classifier. Xu et al. [26] included wavelet and curvelet transform technique to obtain a 12-D
feature vector that is trained by SVM. In another work, Fraz et al. [27] made a 9-D feature vector
where four features are taken from the Gabor filter response at four different scales.

Ghadiri et al. [28] utilized Non-subsampled Contourlet Transform (NSCT) to extract the vessel tree
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from the retinal fundus image. Bankhead et al. [29] proposed a wavelet transform to detect the vessel
map along with centerline refinement using spline fitting. Azzopardi et al. [30] developed a novel
algorithm for vessel segmentation using COSFIRE (Combination of Shifted Filter Response) and DoG
(Difference-of-Gaussians) filters. Moreover, Levet et al. [31] proposed applying Shearlet transform
with the hysteresis threshold strategy to segment the blood vessel from the input image. Based on elite
guided multi-objective artificial bee colony (EMOABC) technique Khomri et al. [32] designed another
unsupervised method for retinal vessel segmentation for fundus images.

After the wave of deep learning, most of the applications related to computer vision and NLP are
governed by various deep learning methods. R2U-Net [33] using U-Net and Recurrent Residual Con-
volutional Neural Network (RRCNN) is able to achieve around 97% accuracy on the STARE dataset.
A Graph Neural Network (GNN) [34] has been introduced to extract the vessel structure utilizing the
local appearance and global structure of vessels. However, their performance is not superior as the
average accuracy is 92.71% and 93.78% on DRIVE and STARE databases respectively. IterNet [36] is
another deep learning model where multiple iterations of U-Net have been performed and the accuracy
is slightly better than R2U-Net [33]. However, deep learning generally uses millions of parameters to
learn the model with lots of training data as well as requires a heavy computational load whereas our
proposed methodology uses only a limited number of filters which could run in any lightweight system.
On the other hand, if the test sample comes from a different domain usually the deep learning-based
trained model performs poorly in this case.

3. Proposed method

The proposed complete work flow for retinal blood vessel segmentation is illustrated in Figure
1 where the proposed method uses the following basic steps: (1) Pre-processing, (2) Retinal Vessel
Enhancement, (3) Feature Extraction using Bendlets, (4) Classification, and (5) Post Processing.

Figure 1. Steps of the proposed system

3.1. Pre-processing

Retinal fundus images generally prone to noise, lighting variations, and poor contrast [23]. In order
to obtain a better classification result the following actions are executed: (1) Green channel extraction,

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7751–7771.



7755

(2) Central light reflex diminution, and (3) Extension of the border.

(1) Green Channel Extraction: The green channel provides the best view for blood vessels com-
pared to other two channels [35]. For this reason, the conversion of RGB color image to Gray-
scale image is performed by considering the green plane only, as shown in Figure 2(a).

(2) Central Light Reflex Diminution: Due to lighting variation, some blood vessels may contain a
light streak through the central area of the blood vessel which is known as central light reflex. As a
result, the middle portion of the vessel and the background become similar thus creates some false
results. To eliminate this central light reflex morphological opening is employed with a two-pixel
radius disk-shaped structuring element. The parameter of disk size is kept to the possible lowest
value otherwise it could merge the nearest vessels. An example is shown in Figure 2(b),(c) where
the effect of central light reflex and its elimination with the help of opening filtering operation is
illustrated respectively.

(3) Extension of Border: The circular-shaped border of the inverted green channel image is ex-
panded to take aside unenvied border effects by the algorithm used in [25]. Otherwise, the output
image produces some false-positive results along the border area. Here, an iterative strategy has
been followed where the mean value of the pixel’s neighbors inside the aperture is operated to
replace the pixels outside the aperture. As a result, an artificially increasing area can be seen
along the border, as shown in Figure 2(d).

3.2. Retinal vessel enhancement

The method designed by Kushol et al. [37, 38] using morphological operators has been employed
to enhance the contrast of the retinal image. At first, the original input image is added with the resul-
tant image of the top-hat transform. Simultaneously, the outcome of the morphological bottom-hat is
deducted from the initial image. Equation (3.1) expresses the morphological operations performed to
enhance the contrast of the image.

Aenhance = A + Atop−hat − Abottom−hat (3.1)

The major contribution of this work is the automatic selection of the structuring element (SE) by means
of edge content (EC) based contrast matrix which is computed by the gradient magnitude value. The
characteristics of EC with respect to SE is shown in Figure 3 where the graph indicates incrementing
the value of SE also results in an increased value of EC at the beginning. However, after a certain
period of iterations, the incrementing behavior stops and provides the best contrast-enhanced image.

3.3. Bendlets

Traditional wavelet-based methods can detect point singularities as well as they are useful for mul-
tiresolution and proper localization properties. However, they have weaknesses in the case of optimal
edge representation. Since the elements are not highly anisotropic it could not yield optimal geometric
structure or curved singularities. In order to obtain the curve singularities and hyperplane singularities
in higher dimensions, Candes and Donoho first designed curvelet transform [6]. Curvelet elements
can be constructed by a parabolic dilation or scale parameter a(0 < a < 1), a location or translation
parameter t, and an orientation θ to a shaped function ψ as shown in Eqs (3.2) and (3.3):

ψa,θ,t(x) = a−3/4 ψ(DaRθ(x − t)) (3.2)
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Figure 2. Output images from pre-processing step, (a) gray-scale image conversion from
green channel extraction, (b) Central light reflex inside vessel, (c) reduction of central light
reflex by morphological opening, and (d) Extension of the border.

Da =

(
1/a 0
0 1/

√
a

)
(3.3)

Here, Da is a parabolic scaling matrix and Rθ is a rotation by θ radians.
Another multiscale directional transform Shearlets also follows the basic principles of wavelets ex-

cept the isotropic dilation is replaced by anisotropic dilation and shearing. One of the unique character-
istics of shearlets is the use of shearing to control directional decision, in contrast to rotation practiced
by curvelets. Shearlet elements can be represented by ψa,s,t where a, s, t are the dilation, shearing, and
translation variable respectively and can be expressed by Eqs (3.4)–(3.6):

ψa,s,t(x) = a−3/4 ψ(A−1
a S −1

s (x − t)) (3.4)

Aa =

(
a 0
0
√

a

)
, a > 0 (3.5)

S s =

(
1 s
0 1

)
, s ε R (3.6)

Here, Aa is a scaling (or dilation) matrix and S s represents shear matrix.
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Figure 3. Statistics of different SE size and corresponding EC value for two images of
STARE and DRIVE dataset.

Bendlets can be referred to an extended or second-order shearlet system considering bending as an
extra parameter. The basic difference of bendlets compared to classical shearlets appears in α-scaling.
If a > 0 and 0 ≤ α < ∞ the α-scaling operation is denoted by Eq (3.7):

Aa,α :=
(
a 0
0 aα

)
(3.7)

Here, the variable α expresses the scaling anisotropy. For instance, the value of α = 1 indicates
isotropic scaling whereas the value of α = 1/2 means parabolic scaling, and α = 0 leads to pure direc-
tional scaling. Bendlets can accurately determine direction, location, and curvature of a discontinuity
curve with an anisotropic scaling of 1/3 < α < 1/2.

For l ε N and r = (r1, ...., rl)Tε Rl the l–th order shearing operator S (l)
r : R2 → R2 is represented by

Eq (3.8):

S (l)
r :=

(
1

∑l
m=1 rmxm−1

2
0 1

)
(x1, x2)T (3.8)

Here, for l = 1 generates an typical shearing matrix and for l = 2 the operator contains the charac-
teristics of both shearing and bending.

If ψ ε L2(R2), l ε N, α > 0. then a unitary expression of the higher-order shearlet groups S(l, α) have
the natural representation shown in Eq (3.9):

π(l,α)(a, s, t)ψ = α−(l+α)/2ψ(A−1
a,αS (l)

−s(. − t)) (3.9)

The parameters a, s, and t indicate scale, shear (orientation), and location variable respectively. So,
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the l–th order α –shearlet system is denoted as Eq (3.10):

S Hl,α
ψ = {π(l,α)(a, s, t)ψ|(a, s, t) ε Sl,α} (3.10)

When l = 2 , the above equation is considered as second-order shearlet transform or bendlet trans-
form. So the bendlet system can be expressed as Eq (3.11) where b takes the role of bending as an
extra parameter.

BS (α)
ψ = S H(2,α)

ψ = {ψa,s,b,t|(a, s, b, t) ε S(2,α) (3.11)

Bendlets are different from other directional multiscale transforms because of this extra bending
parameter which helps to detect curve singularities more efficiently. The shape of bendlet atoms or
elements varies according to different parameter values which are depicted in Figure 4 to Figgure 7.
In Figure 4(a), Figure 6(b),(c), and Figure 7(a) coefficient values are close to zero because a small
amount of edge energy is included in bendlet area. In Figure 4(c), Figure 5(c), and Figure 7(b) bendlet
coefficients are moderately high because of the large area of edge energy are enclosed in bendlet. The
coefficient response from Figure 6(a) is very high due to entire bendlet frame is enclosed with the edge
energy.

Figure 4. Bendlets with fixed scale, shear, and location but varying bending.

Figure 5. Bendlets with fixed bending, shear, and location but varying scale.

Figure 6. Bendlets with fixed scale, shear, and bending but varying location.

In the case of blood vessel segmentation from the retinal fundus image, the aim is to extract vessel-
like structure. As we can see from a retinal image, the most occupied region of the image is taken by
vessels and they usually do not follow any specific direction. All the time the vessels are changing
their direction abruptly and form curved like edge throughout the whole image. Traditional directional
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Figure 7. Bendlets with fixed scale, location, and bending but varying shear.

Figure 8. Capturing vessel-like curve with wavelets, curvelets, and bendlets. (a) Huge
amount of wavelet coefficients are required to detect the vessel whereas with (b) few
curvelet/shearlet coefficients are needed. Further reduction is possible in the number of co-
efficients with (c) bendlets.

wavelets can detect these types of curvature with their elements coefficient response value. As the
shape of these elements is a square-like structure, it requires a huge amount of coefficient response
to fully capture all the vessels as well as increases the noise inside the image. On the other hand,
curvelet and shearlet transform create parabolic rectangular-shaped element according to the parabolic
scaling principle length2 ∼ width. As a result, few coefficients are required to fully detect the vessels
of an image. Further reduction is possible in the number of coefficients with Bendlets where shearlet
elements are bent in different directions by adding one extra parameter bending b. One comparison
among traditional wavelets, curvelets, and Bendlets with the number of elements required to capture
a little amount of vessel-like region is shown in Figure 8 where we can see wavelet needs around 15
coefficient values, curvelet needs 5 coefficient values and bendlet requires only 3 coefficient values to
fully detect the curved region.

3.4. Feature extraction using Bendlets

After applying the bendlet transform, soft thresholding is performed on the coefficient values to
retain the large response of the image. Because of the curve like the structure of the bendlet elements,
a high response is produced whenever the process finds any vessel-related shape. For different scale
values, different reconstructed output images can be obtained by utilizing bendlet transform. However,
the scale value of 3, 4, and 5 generate significantly accurate output while reducing unnecessary noise
from the background image. Finally, a feature vector of size four is constructed with three different
aforementioned scale values of bendlet and another one is taken by subtracting the background from
the enhanced image using an averaging filter of size 10 × 10. These four features can be expressed in
Eqs (3.12)–(3.15):

f1(x, y) = Isub(x, y) (3.12)

f2(x, y) = I scale=3
bendlet (x, y) (3.13)

f3(x, y) = I scale=4
bendlet (x, y) (3.14)
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f4(x, y) = I scale=5
bendlet (x, y) (3.15)

Here, Isub(x, y) is the pixel value obtained by subtracting the original enhanced image with average
filtered image and Ibendlet(x, y) is the reconstructed image with modified bendlet coefficient values for a
given scale information. The individual output for each of these features is shown in Figure 9.

Figure 9. Individual output of each of the features. (a) Output after performing average
filter operation, (b) Reconstructed image after applying Bendlet transform with scale = 3, (c)
Bendlet transform with scale = 4, and (d) Bendlet transform with scale = 5.

3.5. Classification

In the feature development stage, each pixel from an input image is characterized by a vector in a
4-D feature space as Eq (3.16):

F(x, y) = [ f1(x, y), f2(x, y), f3(x, y), f4(x, y)] (3.16)

The purpose of classification stage is to assign one candidate pixel to either Cv(vessel) or Cnv(non−
vessel) class. An efficient and frequently used method in machine learning is ensemble classifiers that
combine multiple individual learning models to yield an aggregate model. The major advantage of an
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ensemble classifier is having the ability to avoid the mistakes of a single classification model. In a given
data set, one individual learning model may result in an over-fitting problem in a specific portion of the
data whereas another model can overcome this limitation thus increasing the prediction performance.
Moreover, there are mainly two types of ensemble models which are Bagging (subsampling the training
data) and Boosting (re-learning with different weights on misclassified instances).

• Bagging (Bootstrap Aggregation):
To reduce the problem of overfitting as well as variance the Bagging or Bootstrap aggregation of
sample data can be used primarily. However, the Bagging concept is mostly applied in decision
tree methods. Each weak learner in Bootstrap aggregation contains equal weight and it trains
individual models from the training set by randomly selecting a subset. For instance, to achieve
high accuracy in terms of classification performance the random forest method combines random
decision trees with bagging.
• Boosting:

Boosting is a weighted average approach that can be utilized for mitigating bias as well as vari-
ance. Boosting algorithms are formed by multiple weak learners which are combined to become
a final powerful learner. The weight of each weak learner is recalculated in order to overcome
the problem of increased weight from the misclassification result. From the knowledge of previ-
ous mislabeled classifiers, the Boosting algorithms generally assemble the learners sequentially.
Basically, the overall classification performance can be enhanced by weighing earlier mislabeled
examples with higher weight.

Among established Ensemble-aggregation methods, we have experimented five prominent classifiers.
They are AdaBoostM1, LogitBoost, GentleBoost, RUSBoost, and Bag. The Decision Tree type weak
learner is used in the ensemble process where the number of ensemble learning cycles is 200.

3.6. Post processing

The resultant image acquired from the classification stage exhibits two common pitfalls. Firstly,
the vessel map may contain a few discontinuous line segments due to some obstacles. Secondly, some
isolated points could arise because of some pathological objects. The following two steps will solve
these predicaments as much as possible and enhance the accuracy a little bit.

3.6.1. Filling the gap inside vessel map

After performing the classification process, some broken vessel segments can be observed which
reduces the accuracy of the outcome. To link the broken segments along the vessel pixels, a multiscale
line detection algorithm is applied. A window size of 15 ∗ 15 is considered for each pixel position
where 12 lines of length L are oriented at 12 distinct orientations (with an interval of 150). Three
different values 7, 11, and 15 are taken for the value of L which are linearly combined as proposed
in Nguyen et al. [15] to yield the connected vessel tree. Figure 10 depicts the performance of before
taking advantage of the line detection scheme and after employing the algorithm.

3.6.2. Irrelevant noise removal

Here, the area of each connected region is measured with the help of morphological area open
operation. The accumulation of pixels connected will be removed from the final output if the value of

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7751–7771.



7762

Figure 10. A part of output image (a) after classification process and (b) after performing
multiscale line detection process.

that region is beneath 40 pixels. One sample output after executing the area open operation is given in
Figure 11.

Figure 11. Output of isolated irrelevant object removal stage (a) Before morphological area
open operation and (b) after operating morphological area open function.

4. Experimental analysis

The proposed method doesn’t require any heavy computational power. The implementation of the
proposed idea has been performed in MATLAB R2015a by @2.20 GHz processor consist of 8.00
GB RAM and without any GPU involvement. Two openly accessible benchmark databases are utilized
which are DRIVE [39] and STARE [10] database to assess the algorithmic performance of the proposed
approach. Moreover, to demonstrate the robustness of our approach a comparative analysis has been
incorporated in the latter part of this section.

4.1. Data set

The DRIVE (Digital Retinal Images for Vessel Extraction) dataset has been formulated from a di-
abetic retinopathy diagnosis program of 400 subjects. With the help of medical experts, 40 ground
truth images are created where the first half of the pictures are selected as test subjects and the remain-
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ing half of the photographs are chosen for training purposes. On the other hand, the development of
the database STARE (STructured Analysis of the Retina) is performed at the University of California.
It consists of 20 retinal color photos where two sets of ground truth are designed by two different
pathological experts. Here, the first 50% of the images are acknowledged as the training set and the
later 50% of the pictures are recognized as test data in our experiment. The overall summary of the
aforementioned two datasets is represented in Table 1.

Table 1. Summary of DRIVE and STARE dataset.

Image Information DRIVE STARE
Number of image

40 20
with Ground truth

Camera used Canon CR5 non-mydriatic 3CCD TopConTRV-50
Field of View (FOV) 45 degree 35 degree

Image size 565 x 584 pixels 605 x 700 pixels
Image format TIF PPM

Bits per color channel 8 8
Number of pathology image 7 10

4.2. Performance Measures

Four types of scenarios can be observed in a two class categorization problem. They are:
(1) True Positive (TP): correct identification
(2) True Negative (TN): correct rejection
(3) False Positive (FP): incorrect identification
(4) False Negative (FN): incorrect rejection
The fundamental statistical measures Sensitivity (recall), Specificity (true negative rate), Precision

(positive predictive value), and Accuracy are evaluated to assess the binary classification performance
based on these scenarios. In healthcare diagnosis, sensitivity (true positive rate or recall), is the correct
identification of samples with the disease whereas specificity (true negative rate) is the correct identifi-
cation of samples without the disease. Precision (Positive Predictive Value) is the amount of identified
items that are relevant and high precision means that an algorithm returned substantially more relevant
results than irrelevant. The Accuracy is the fraction of the total number of truly identified pixels and the
number of pixels present in the FOV. Sensitivity (Sn), Specificity (Sp), Precision (Pr), and Accuracy
(Acc) are measured by Eqs (4.1)–(4.4) respectively.

S ensitivity, S n =
T P

T P + FN
(4.1)

S peci f icity, S p =
T N

T N + FP
(4.2)

Precision, Pr =
T P

T P + FP
(4.3)

Accuracy, Acc =
T P + T N

T P + T N + FP + FN
(4.4)

Table 2 shows the relationship of vessel classification with the above mentioned four events.
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Table 2. Vessel Classification outcome.

Vessel pixels Background pixels
in ground-truth in ground-truth

Vessel classified True Positive (TP) False Positive (FP)
Vessel not classified False Negative (FN) True Negative (TN)

4.3. Performance method evaluation

Firstly, the proposed method is assessed by the images of DRIVE database. In the first part of
the evaluation, the algorithm is trained by the 20 train set images with 5 established aforementioned
ensemble classifiers. Next, a similar feature vector is also designed for the test set images and applied
for the classification result with trained data. All ensemble classifiers produce almost similar results
in terms of sensitivity, specificity, precision, and accuracy. However, AdaBoost slightly outperforms
among other classifiers, and for that reason, the individual performance measures of each of the images
of DRIVE dataset represented in Figure 12 is based on the outcome of the AdaBoost classifier. The
average sensitivity, specificity, precision, and accuracy achieved in this database are 0.7588, 0.9748,
0.8226, and 0.9456 respectively.

Secondly, the same approach is also performed in the case of STARE dataset where the average
sensitivity, specificity, precision, and accuracy achieved are 0.7798, 0.9746, 0.7956, and 0.9528 re-
spectively. The detailed result of the individual image is represented in Figure 13.

Figure 12. Graphical performance analysis on DRIVE Database test set images.

4.4. Comparison of segmentation results with different ensemble classifiers

A bunch of ensemble classifier is experimented to find the most accurate result of the blood vessel
segmentation. They are AdaBoost, LogitBoost, GentleBoost, RUSBoost, and Bag. Table 3 depicts
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Figure 13. Graphical performance analysis on STARE Database test set images.

the complete result of these classifiers based on Average Sn, Sp, Pr, and Acc on DRIVE and STARE
database. RUSBoost achieves the highest score on both datasets for Sensitivity whereas AdaBoost
and LogitBoost receive the best rate for Specificity and Precision on STARE and DRIVE respectively.
Overall, considering the performance of Accuracy AdaBoost clearly outweighs other classifiers in our
application and thus employed in our final evaluation assessment.

Table 3. Comparison of proposed method with different ensemble classifiers.

Ensemble Classifier Dataset Avg. Sn Avg. Sp Avg. Pr Avg. Acc

AdaBoostM1
DRIVE 0.7588 0.9748 0.8226 0.9456
STARE 0.7798 0.9746 0.7956 0.9528

LogitBoost
DRIVE 0.7374 0.9777 0.8361 0.9453
STARE 0.7949 0.9712 0.7748 0.9508

GentleBoost
DRIVE 0.7605 0.9728 0.8122 0.9442
STARE 0.7954 0.9706 0.7709 0.9502

RUSBoost
DRIVE 0.7941 0.9660 0.7844 0.9428
STARE 0.8397 0.9569 0.7105 0.9429

Bag
DRIVE 0.7595 0.9722 0.8085 0.9435
STARE 0.8021 0.9685 0.7650 0.9488

4.5. Comparison to other methods

Our proposed model is also compared with some auspicious existing works. The comparison of our
methodology to other recent methods is shown in Tables 4 and 5 for DRIVE and STARE databases
respectively. For a better comparison view, the list is grouped according to the categorization of the
literature review section with the ascending order of the publication year. Average Sensitivity (Sn),
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Table 4. Performance comparison of retinal blood vessel segmentation methods on DRIVE
database.

No Category Techniques
Avg. Avg. Avg.
Sn Sp Acc

1 Chaudhuri [2] 0.2663 0.9901 0.8773
2 Matched Zhang [11] 0.7120 0.9724 0.9382
3 Filter Odstrcilik [12] 0.7120 0.9724 0.9382
4 Chakraborti [13] 0.7205 0.9579 0.9370
5 Vlachos [14] 0.747 0.955 0.929
6 Multi-scale Nguyen [15] 0.7322 0.9659 0.9407
7 approach Hou [16] 0.7354 0.9691 0.9415
8 Yue [17] 0.7528 0.9731 0.9447
9 Morphological Mendonca [4] 0.7344 0.9764 0.9452

10 processing Miri [18] 0.7352 0.9795 0.9458
11 processing Fraz [19] 0.7152 0.9759 0.9430
12 Pattern Soares [25] 0.7332 0.9782 0.9461
13 classification Xu [26] 0.7760 − 0.9328
14 (Wavelet-based) Fraz [27] 0.7406 0.9807 0.9480
15 Pattern classification Marin [23] 0.7067 0.9801 0.9452
16 (Image Feature-based) Fan [24] 0.7179 0.9749 0.9414
17 Other Ghadiri [28] 0.2663 0.9901 0.8773
18 Wavelet/ Bankhead [29] 0.7027 − 0.9371
19 Filter-based Azzopardi [30] 0.7655 0.9704 0.9442
20 Approach Levet [31] 0.728 0.971 0.940
21 Proposed Method 0.7588 0.9748 0.9456

Specificity (Sp), and Accuracy (Acc) are the performance metrics examined for the comparative anal-
ysis.

However, our proposed method is compared with some promising research work in terms of cross-
training evaluation which also represents the robustness of our algorithm. In the case of cross-training
experiment, the test data is completely taken from a different dataset or domain. Table 6 illustrates the
comparative average accuracy analysis where the DRIVE test set images are evaluated after training
with STARE dataset images and vice versa. Furthermore, ten abnormal images of STARE database
are experimented separately and achieved an acceptable score in performance measures. A relative
comparison with some recent works is also noted in Table 7 as well as one output result of a pathology
image after performing the execution on Matlab is depicted in Figure 14. Figure 14(c),(d) are the
output of shearlet and bendlet transform respectively where we can comprehend the latter image can
detect more thin vessels from the background image.

5. Conclusion and future work

Automatic and proper retinal blood vessel segmentation leads to the solution for various optic dis-
eases. As day by day, the number of patients and the necessity of the vessel segmentation is increasing,
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Table 5. Performance comparison of retinal blood vessel segmentation methods on STARE
database.

No Category Techniques
Avg. Avg. Avg.
Sn Sp Acc

1 Chaudhuri [2] 0.2846 0.9873 0.9142
2 Matched Zhang [11] 0.7177 0.9753 0.9484
3 Filter Odstrcilik [12] 0.7847 0.9512 0.9341
4 Chakraborti [13] 0.6786 0.9586 0.9379
5 Multi-scale Vlachos [14] 0.747 0.955 0.929
6 approach Nguyen [15] 0.7317 0.9613 0.9324
7 Hou [16] 0.7348 0.9652 0.9336
8 Morphological Mendonca [4] 0.6996 0.9730 0.9440
9 processing Fraz [19] 0.7311 0.9680 0.9442
10 Gao [21] 0.7581 0.9550 0.9401
11 Pattern classification Soares [25] 0.7207 0.9747 0.9479
12 (Wavelet-based) Fraz [27] 0.7548 0.9763 0.9534
13 Pattern classification Marin [23] 0.6944 0.9819 0.9526
14 (Image Feature-based) Fan [24] 0.6996 0.9787 0.9488
15 Other Wavelet/ Azzopardi [30] 0.7716 0.9701 0.9497
16 Filter-based approach Levet [31] 0.7321 0.9634 0.9412
17 Proposed Method 0.7798 0.9746 0.9528

Table 6. Performance comparison of results with cross training in terms of Avg. Accuracy.

Method
DRIVE (Training STARE (Training

on STARE) on DRIVE)
Soares [25] 0.9397 0.9327
Fraz [27] 0.9456 0.9493
Ricci [22] 0.9266 0.9464
Marin [23] 0.9448 0.9528

Proposed Method 0.9450 0.9487

Table 7. Performance comparison of results on abnormal retinas (STARE database).

Method Avg. Sn Avg. Sp Avg. Acc
Zhang [11] 0.7166 0.9673 0.9439

Saffarzadeh [40] 0.7166 0.9672 0.9438
Mendonca [4] 0.6801 0.9694 0.9426

Soares [25] 0.7181 0.9765 0.9500
Fraz [27] 0.7262 0.9764 0.9511

Proposed Method 0.7406 0.9728 0.9452
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Figure 14. Original image from STARE (a), ground truth (b), output of Shearlet approach
(c) and output of proposed method (d).

an automated system can be an alternative to the manual system. Due to different sizes and shapes,
it is very challenging to develop an automated system. Introducing Bendlets successfully for the first
time in the domain of medical imaging opens the potentiality to use a comparable strategy in a lot of
increasingly complex clinical applications. Moreover, analyzing and comparing the group of ensemble
classifiers help to decide the best option for training and testing any new dataset images. In the future,
we want to extend our research to develop an automated segmentation system for other problems such
as 3D MR brain images. Different object detection in the optical images like hemorrhage, exudates,
optic disc, cotton wool spots as well as Artery-venous classification, measurement of tortuosity, vessel
width, branching angle could be some important topics of interest which could ameliorate the au-
tonomous diagnosis of retinal images. Later on, 3D shape analysis of individual objects and predicting
the growth rate of disease could be some advanced focus of the future study. It can also be explored for
the disease of Alzheimer’s and Amyotrophic Lateral Sclerosis (ALS). But to investigate, researchers
need to collect robust clinical datasets at first.
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