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Abstract: Discussion regarding hybrid manufacturing has dominated research in recent years. By
synergistically integrating additive and subtractive manufacturing within a single workstation, the
relative benefits of each manufacturing strategy are leveraged. The ability to add, remove feature
flexibly enables remanufacturing end-of-life components into a “new” part with new features and
functionalities. However, in the remanufacturing context, the process planning for hybrid
additive-subtractive manufacturing is still an unsolved research topic. In general, a hybrid
remanufacturing process is signified by an alternating sequence of additive and subtractive
operations that alternatively add and remove materials on a used part, which results in a
non-unique process planning. For determining an optimal sequence for hybrid remanufacturing, a
quantitative evolution mechanism is demanded. Moreover, the constraints in process planning are
required to be considered. For example, the collision avoidance between the workpiece and the
material-dispensing nozzle is one of the most critical limitations that affect the alternating
sequence. To fill the gap, automated feature extraction and cost-driven process planning method for
hybrid remanufacturing are proposed in this paper. The feature extraction, developed under the
level set framework, can extract optimal and collision-free additive-subtractive features. Then, the
hybrid process planning task is formulated into an integer programming model with cost
estimations. A case study is conducted, and the results confirm the correctness and effectiveness of
the proposed method.
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1. Introduction

Nowadays, the increasing developments and over-exploitation of resources outcome vast
amount “end-of-life” products. Remanufacturing and repairing are identified as environmentally
friendly approaches to deal with them since the energy consumption to produce a new part can be
minimized by maintaining the intrinsic energy of the legacy part [1-3]. Repairing process is the
correction of specified faults or restoring its original form of product. Whereas, remanufacturing,
also called “reincarnation”, is defined as being able to produce new products directly from the
end-of-life product [4]. In different publications, the words “remanufacturing” and “repairing” have
been used interchangeably with blurred definitions [4—6]. In this study, the authors differentiate them
by defining “repairing” as restoring the part to its original form and “remanufacturing” as upgrades
the part to have different functional features.

Recently, hybrid manufacturing (HM) system synergistically integrates additive manufacturing
(AM) and subtractive manufacturing (SM) processes within a single workstation (Figure 1), has
gained a lot of attention from academia and industry [7]. HM can capitalize on the strengths of
independent techniques, whilst minimizing their disadvantages [8]. At the same time, it has the
potentials to enable remanufacturing technologies to achieve further improvement because it can to
remove and add features flexibly.

Tool library

= Z Cutting tool

Additive nozzle §

/ : __.—Y¥ Removed material
Deposited material
=mpn > Workpiece

Figure 1. The configuration of the workstation for the hybrid machine.

Most of the single platform workstations for HM processes are integrating subtractive CNC
machining and additive directed energy deposition (DED) [9]. There are some commercial process
planning software tools that have already been developed for industrial hybrid systems, such as
Siemens NX used in DMG MoriSeiki, LaserTec 65 3D, and hyperMill used in Replicator and
Cybaman [9]. However, the major limitation of these commercial tools is the poor support for
automation. For example, AM and SM feature recognition is manually conducted by the user’s
knowledge. The consequence is that the process planning of complex remanufacturing problems is
very tedious, and the quality of the derived process plan can hardly be evaluated. For this reason, an
increasing level of interest in research on process planning for HM has been witnessed over recent
years [9,10]. Joshi & Anand [11] developed a novel metric, called complexity score to quantify part’s
geometric complexities for decision-making among AM, SM, and HM. Chen et al. [12] discovered
that complex geometry might have the tool accessibility issue for the SM process, in which the cutter
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cannot access the part’s interior. They then developed an optimization algorithm for HM process
planning, which derived the optimal HM process plan of an arbitrary geometry that was free of
machinability issues. They also extended the concept to address the problem for quasi-rotational
parts with columnar features in their other works [7]. A sequence planning method for five-axis
additive-subtractive hybrid manufacturing is also presented by [13], and it greatly reduced the
number of tool changes between different operations. Zhu et al. [14,15] and Newman et al. [16]
presented a hybrid process planning framework, called iAtractive, which integrates CNC machining,
fused filament fabrication, and inspection process for plastic components with internal structures.
Behandish et al. [17] introduced an HM process planning method that formulated HM processes
through logic representations, which has the capability to enumerate all the feasible sequences of
operations to find the optimal plan. EIMaraghy & Moussa [18] developed a method of process
planning for HM that included manual feature extraction, product platform design, and process
determination. Basinger et al. [19] outlines a feature-based advanced HM process planning system
which use feature, tolerance and material data as inputs to construct process plans. From these
research results, the authors identify that SM is mostly playing a role as post-machining for AM in
the HM process. Therefore, it is complicated to be applied directly in the remanufacturing, since SM
is not only post-machining but also including geometric forming as AM process in remanufacturing.

Several studies have explored the potentials of AM for repairing or remanufacturing
applications. Different aspects of AM techniques have been widely investigated, such as laser
parameters [20], damaged volume reconstruction [21-24], energy and environmental impact
analysis [6,25], and microstructure [26-28] and mechanical property analysis [29,30]. Recently,
HM for repairing application is also actively investigated. Zheng et al. [22] introduced a 3D
reconstruction and triangle intersection algorithm to identify additive repair and subtractive repair
areas of a broken turbine surface. Hascoét et al. [31] proposed a method to automate the repairing
process of metallic parts partially. In their practice, defects were initially machined into a surface
cavity, and the cavity was refilled by laser metal deposition with the aid of an inspection system. An
increasing level of development in research on HM-based repairing technology has been witnessed
by those publications. However, in terms of remanufacturing, there are comparatively fewer studies.
In comparison with repairing, remanufacturing requires more decision-making support [32] since the
process planning result is not unique, and AM and SM feature extraction relies on algorithms for the
automation process.

Newman et al. [16] and Zhu et al. [33] features a remanufacturing framework that consisted of
fused filament fabrication, CNC machining, and inspection. The method enabled the
remanufacturing of an existing part or even a recycled and legacy part into a new part with new
functional features. Le et al. [34] proposed an HM process planning for remanufacturing based on
feature extraction and knowledge interpretation. In a subsequent study [35], they have extended the
process planning framework by discussing the environmental impact of the proposed
remanufacturing strategy compared with traditional approaches (material recycling, casting, and
machining). Liu et al. [3] developed a novel design-for-remanufacturing method under a level-set
framework, which provides a solution for upgrading broken parts. A cost-driven process planning for
PBF-CNC remanufacturing was proposed in the algorithmic framework laid down in our previous
work [1]. In that work, an automated additive-subtractive feature extraction method is developed and
process planning sequencing is formulated as a cost-minimization optimization problem. However,
there are three significant limitations: 1). this work is focusing on primitives features and free-form
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features are not covered; 2). the inspection process for the used part or legacy part is not included; 3).
commonly, there are defects or damaged area on the used part, the process for dealing with the
defects should be investigated.

To sum up, the research gaps and objectives of this study is the development of a method that
provides automated feature extraction and cost-driven process planning for an integrated HM
machine. The main contributions are list as follows:

e  Both primitive and free-form features are modelled in level set-based representations for the
automated feature extraction which facilitate the process planning for HM remanufacturing;

e A collision-free DED-CNC process planning method is developed, resulting in the minimal cost
in HM remanufacturing process;

e  The defect and damaged area of the used part are considered to form a pre-machining feature in
the process planning, which is an issue rarely addressed in the previous studies of process
planning for remanufacturing.

The rest of the paper is structured as follows. In Section 2, the automated additive and
subtractive feature extraction method is presented, which includes level set function representation
for CAD and point clouds, extraction for pre-machining feature, intersection part extraction,
intersection part modification for collision-free remanufacturing and individual feature extraction.
Section 3 shows the cost-driven process planning methodology for DED-CNC remanufacturing,
which includes cost estimation for DED-CNC remanufacturing, and sequence optimization.
Section 4 demonstrates a case study to validate the efficacy of the proposed method. Finally, a
conclusion is given in Section 5.

2. Additive and subtractive feature extraction

In geometric modelling, constructive solid geometry (CSG) and boundary representation (B-rep)
are widely adopted. With CSG modelling, a physical object can be decomposed into multiple
primitives and a sequence of Boolean operations. With the B-rep method, the solid is bounded by a
set of closed and directional faces, which are bounded by edges and vertices. CSG modelling has
the merits of supporting efficient Boolean operations and topology optimization [36]. Previous
works on feature recognition/extraction in machining process planning have been developed for
three decades [37,38]. However, these methods cannot be applied in remanufacturing or HM
process. The reason is that most of the current machining feature extraction methods uses boundary
representation (B-rep) format for feature modeling because it uniquely defines the faces and their
topological patterns [38]. However, it has issues to deal with numerical calculations between two
solid parts by adopting B-rep models for extracting features between the used part and final part.
Therefore, in this work, a novel feature extraction method based on the level set function that
implicitly represents models is developed for hybrid manufacturing in remanufacturing context.

The overall framework of the level set-based feature extraction method is presented in Figure 2.
First the modeling history is extracted from the CAD model of the final part to be modelled in level
set function representation (Section 2.1). The point cloud data is acquired from the used part and
converted to be the level-set function representation (Section 2.2). Then, the pre-machining feature is
extracted from the used part (Section 2.3). The intersection volume is then calculated by optimally
overlapping the used part and the final part (Section 2.4). The intersection part is then modified with
considering the collision problem and DED manufacturing constraints (Section 2.5). With The level
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set represented intersection part. The subtractive manufacturing volume (SMV) and additive
manufacturing volume (AMV) can be identified and the individual AFs and SFs are extracted from
the volumes (Section 2.6).

SR b Section 2.2

: : Notations:
Used part | D'“" > LSF P ion for LSF: level-set function DED: direct energy depoistion|
: acquisition point clouds PBF: powder bed fusion

R SMV: subtractive manufacturing volume
Section 2.1 Section 2.3

: AMV: additive manufacturing volume
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Figure 2. The flowchart of the proposed additive and subtractive feature extraction
method for remanufacturing process.

2.1. Level set function representation for the CAD model

Level set function ®(X) (R™ — R) describes the geometry in an implicit form, as shown in
Eq (1).

dX)>0, X € Q/0Q
PX)=0, X € 00 (1)
dX) <0, X € D/Q

where (1/0Q is the material domain, D/Q is the void, 91 is the structural boundary.
In the level set function-based modelling approach, the 3D model is constructed by bounding
the boundary surfaces, as:

®(X) = min{®,, ®,, Ds, ..., D, } (2)
As an example, the cube with (xg,V,,2,) as the center coordinates and (Hx, Hy, Hz) as the
lengths on the x,y,z axis can be represented by bounding six planer surfaces of ®; = % —
(X =x) = 0,0, ==+ (x = %) =0,P3 =L = (¥ = ¥o) = 0,y =X+ (y —y) = 0,d5 =
% —(z—2p) =0,bg = % + (z — zy) = 0, as shown in Figure 3.
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Figure 3. An example of a discrete level set representation for a cube.

In our previous work [1], the examples of primitive geometry (cube, sphere, cone and cylinder)
are given. This work will focus on the level set function modelling for freeform geometries. From
Eq (2), it can be manifested that finding the implicit forms for boundary surfaces is the most
crucial work for the level set-based modelling approach. Algebraic techniques based on elimination
theory enable the conversion of parametric expression to its implicit expression ®(X) =0.
Elimination theory investigates the conditions under that the sets of parametric expressions have
common roots. The vanishing of the resultant is a necessary and sufficient condition for the
parametric expressions to have a common non-trivial root. The implicitization of parametric
geometry is based on the construction of these resultants.

A freeform 2.5D geometry can be constructed by extruding its freeform profile. As an example,
in this study, the Bezier curve is implemented to represent the freeform profile. The parametric form
of the Bezier curve is shown as:

F(u) = Z By (WP, 3)

where F(u) = [f,(w),f,W)]. P;=[p{p’] . Bin(w) =Cn,Du'(1 —w)™, C(ni) is the

n!
il(n—i)!

binomial coefficient: C(n,i) = , n is the degree of the curve, and 1 is the number of control

points, P;, and Piy are x and y coordinates of the control point.

By following elimination theory, the implicit form of the Bezier curve @y e(X) can be
obtained by eliminating the parameter u between the parametric expressions in Eq (3) letting the
resultant of them to be equal to zero.

As an example, a cubic Bezier curve is constructed by three control points: Py = (0,0),P; =
(40,220), P, = (200,40) and P; = (0,0). By implementing the elimination theory, the implicit form
for the Bezier curve can be obtained and the contour figure is shown in Figure 4a. Then, the 2.5D

freeform shape can be modelled by ®(X) = min(®cyrves Prop Phottom)> Where @iy = 157.5 — z
and Pporrom = Z — 122.5. (see Figure 4b.)
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Figure 4. An example of a level set representation for 2.5D Bezier curve shape: (a) the
contour of the Bezier curve in the level set form (note: the value is divided by 10e7); (b)
2.5D Bezier curve shape.
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Figure 5. An example of a level set representation for (a) Bezier surface; (b) Bezier
shape with boundaries.

The parametric Bezier surface is extended from Bezier curve to u and v directions, as follows:

m

F(u,v) = Bin(WB;m(W)P;; “4)

n
i=0 j=0

where F(u,v) = [fx(u, v), f,(w,v), f;(u, v)] and P;; = [ﬁfj,ﬁi},’j,ﬁfj].

Analogously, the elimination theory can help to find the implicit form for the parametric
expression in Eq (4). A Bezier surface is modelled by 3 x 3 control points; the level set form of this
surface is shown in Figure 5a. The Bezier shape is bounded with planar surfaces ®; = x —
200,®, = 600 — x,d; =y —200,d, = 600 — y, see Figure 5b.

The complex geometry can be constructed through Boolean operations on the level-set
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functions [39]. However, this representation will cause non-differentiable problems in numerical
calculation. R-functions can combine level functions of a complex structure into a new smooth level
set function by operations of R-conjunction A and R-disjunction V, which are equivalent to
Boolean operations N and U [40]. The operations of R-functions are defined as:

Unite: ®; U ®, = max(dy, P,) = &, + P, + /P2 + D)2
Intersect: ®; N &, = min(d,, P,) = &, + D, — /D, + D2 (5)

SuthaCt.' (Dl \ (Dz = min((bl, —(I)z) = (1)1 — (1)2 — ‘[(_1)12 + (1)22
2.2. Level set function representation for point clouds

For a given used part, data acquisition is the first step to digitalize the part to point clouds.
Therefore, the other situation is that we have the point cloud as the geometry input. To converting the
point cloud data to the level set function model, the surface fitting techniques can be applied to
obtain the parameters of surfaces and these parameters are used to forming the level set function
representations. In this study, random sample consensus (RANSAC) surface fitting [41] is employed
for surface fitting. The pseudocode for the forming level set function representation of the point
clouds is given in Table 1. Figure 6 provides two examples of the surface fitting for cylindrical
surfaces and sphere from point clouds from our previous results [21]. The color scale bars indicate
the distance of each point to the fitted surface. The parameters of fitted surfaces are utilized for
forming the level set functions through the proposed algorithm.

0.0371mm
0.1009mm
0.0247mm
0.0740mm
P 0.0124mm
0.0000mm 0.0000mm
-0.0183mm -0.0174mm
I Rl -0.0347mm
-0.0984mm I
-0.0521mm
Peylinder = 8.13% — (x — 3.008 )2 — (y — 5.014) 2 Dyphere = 6.0432 — (x — 2.995)2 — (y — 4.987)? — (z — 7.002 )?
(a) Cylindrical surface fitting result and level set (b) Sphere fitting result and level set function.

function
Figure 6. Surface fitting results and level set functions.
2.3. Extraction of pre-machining feature
In the repairing process, the defects on the damaged part need to be machined into a surface

cavity. This cavity is to be refilled by the deposition of materials to recover the local geometry of the
part. Equivalently, in terms of the remanufacturing process, it is necessary to carve out defects from
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the damaged part to eliminate the perturbation for the remanufacturing process planning caused by
the defects. In this study, the authors define the machining feature to carve out defects as a
pre-machining feature since it has a similar concept as the pre-machining in the traditional machining
process to remove the imperfections of the stock. It is important to mention that this study is focusing
on remanufacturing end-of-life part with small defects which do not cover the any entire features on
the end-of-life part.

Table 1. Pseudocode of the forming level set function representation of point clouds.

Input: point clouds of the used part P
Set the max distance and max angular variation for fitting
i=1
Remaining points Pp,; « P
For the plane fitting, cylinder fitting, cone fitting, sphere fitting, free-form surface fitting:
While there are enough points for supporting surface fitting in Py, ;:
Parametric surface parameters S; « plane fitting from Py ;
Converting the parametric plane to implicit function: ®; « S;
i=i+1
Remove the points S; which fit from remaining points to form new
remaining points Py, ;
Forming the level set function representation from collected implicit functions by Boolean
operations: @, « {4, ..., D;}
End
Output: level set function representation of the used part @,

Figure 7. An example of defect segmentation from point cloud by the random walks
algorithm.

To construct the pre-machining feature, the first step is to segment surface defects from 3D scan
data. Many methods for surface defect segmentation have been presented in the literature [21,42,43].

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7274-7301.
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In this work, random walks for unorganized point cloud segmentation [42] is adopted, since it does
not rely on strong assumptions made on the characteristics of the expected defect or the geometry of
the surrounding area. The algorithm segments defect areas on a weighted, undirected k-nearest
neighbour graph (k-NNG) defined by local changes in point cloud properties. Since it is not the
contribution of the authors’ work, the detailed algorithm is not demonstrated. The interested reader
can refer to the original work [42]. An example of the defect segmentation from point clouds by the
random walks algorithm is shown in Figure 7. In the figure, the blue points indicate the points
without defects and red points refer the points on the defective area.

Different machining features can be applied to carve out the defect area. In this study, the
authors only investigate two basic machining features for the sake of simplicity. It is trivial to extend
the method for other machining features. The hole and rectangular pocket are shown in Figure 8, and
the level set function to represent these features are presented in Eq (6).

&

(a) Hole (b) Rectangular pocket

Figure 8. Hole and recetnagular pocket features.

Hole: & = min {[R? = (x = x0)? = (v = y0)?L.5 — (2= 2). 5 + (2~ 20) }
Rectangular pocket: ® = min {% — (x — xo),% + (x — xo),% -(y- yo),% + (6)

Y = Yo = = (z = 20), 2 + (2 = 20) }

It is worth investigating the type and parameters of the machining feature, which leads to
minimal materials being carved out. Meanwhile, the machining feature must remove all the defects.
The problem can be mathematically formulated as a constrained optimization problem. For a given
machining feature, the optimization problem is solving the optimal parameters. The objective
function is minimizing the volume of the given machining feature by integrating dxdydz in the
material domain, referred to Eq (7).

min. fQ) = f H(®(X,a))dxdydz (7

where H() is the Heaviside function, @() is the level set function for the given machining feature,
X=(xy2), a=(ay,..,a,) which indicates the parameters for the given machining feature.

To satisfy the condition that all defects are removed, the defective points need to be enclosed by
the machining feature. Assuming there are defect points (p4,Ps, ---, Py ), M series of constraints are
formulated as in Eq (8) and the schematic plot is presented in Figure 9.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7274-7301.
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s.t. gi(a) =d(p;a) =0, ie{l,.., M} (8)
d(X,a) <0
Defective point
®(p;,a) =0
Boundary of the pre-
machining feature
X, a)=0

Figure 9. Schematic plot: the defective points are enclosed by the boundary of the
pre-machining feature.

Lagrange formulation of this problem is written as:

M
L(al' ey an'/llﬁ "'tﬂ'n' UEY "'rnn) = f(a1: L) an) - Z /11' {gi(alr ey an) - 771'2} (9)
i=1

where A; is the i-th Lagrange multiplier and 7; is the i-th slack variable.

The sensitivity ;TL of the Lagrange formulation is derived through Eq (10); others can be
1

calculated similarly.
of [O0H(®(X a)) 0P
da; b  da
where § is the Dirac delta function.

This problem can be solved with a gradient-based optimization solver by updating the variables
Ay, ey Ay Aqy eony Ay M1, oo, Ny With their corresponding sensitivity.

Examples of the optimal parameters of a hole and a rectangular pocket features are illustrated in
Figure 10. From the two pre-machining features, the minimal volume of the feature can be
determined. In this example, the hole feature has a volume of 3.657 mm? and rectangular pocket
has the volume of 4.3665 mm?3. Therefore, the hole feature is optimal for pre-machining.

oD
dQ =f§(d>(X,a))£dQ (10)

1

2.4. Intersection part extraction

As the level set function of the used part and final part are formulated, the relative position
needs to be identified between two solid models to prepare for feature extraction. The objective is to
maximize the overlapping material volume because the cost of AM is strongly affected by the
volume of the new material to deposit.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7274-7301.
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Defective points

Rectangular pocket

/

-16.2
-16.4
-16.6

Figure 10. Examples of hole and rectangular features for defective points.

®,, and @, are the level set functions of the used part and the final part, respectively, within
the global coordinate system X = (x,y,z). X is a local coordinate system attached to the used part.
Through Eq (11), an optimization problem can be formulated to figure out the translation and

rotation of the local coordinate system (X) needed to maximize the overlapping volume between ®,,
and ®,.
f

[ﬂ _ [Rz(ex)Ry(ey)Rx(ez) T(ty ty, tz)] m

0 1 (11)

where Ry, Ry, R, are the rotation matrix along x,y,z direction with the variables of 6,,0,,60,, T is

the translation matrix with the variables of ty, t,, t,.

The used part ®;(6y,60,,0,,ty,t,,t,) has translation variables and rotation variables. The final
part is fixed by ®;. The intersection part (®;) is the intersection of the used part and the final part,
given as:

Di(Ox, 07, 0y, by, ty, t,) = Py(0y, 05,0y, by, 1y, t,) N P = min(Dy(6,,60,,0,,t,,8),8,), Pf)  (12)

The maximization optimization problem can be formulated of maximizing the intersection part
by optimizing the variables 6,,6,,0,,t,,t,,t, , through in Eq (13):

min.  f(6y,60,,0,,tt),t;) = — f H(®;(X, 0y, 6,0y, t, Ly, £,)) dQ (13)

The sensitivity ;Tf of the objective function is derived through Eq (14); others can be

calculated similarly.

of IH(D;(0x, 05, Oy, Ly, £y, ) DD, oD,
o j 3% I do = — f 8(D;(By, 05,0, t, Ly, tZ))a—tX dQ (14

This problem can be solved with a gradient-based optimization solver. In the gradient-based
optimization algorithm, the (6y,0,,0,,t,t,,t;) = (0,0,0,0,0,0) is set as the initial values.

Generally, to prevent a local optimum issue, a multi-start strategy is suggested, i.e., to parallelly run
the optimization program with a different initial guess of variables.

Figure 11 demonstrates an example of the intersection part extraction. The used part and the
final part are represented by its level set function @,, and @ respectively. Eq (13) helps to find the

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7274-7301.



7286

optimal transformation to transform @, to @, with the optimized rotation angle (6, =
—90°,60,, = 0°,6, = 0°) and translation (t, = —20.1,t, = —110.7,t, = 15). The intersection part

®; can be obtained by &, N Dy

R,R,R, T =
[ TR P, n@p
@, — , =
Transformation Intersection
200 200 q)l'
2000
i 50 150
. 100 w 100
50 50
50
o L]
L]
300 d)f w (pf 200 =
300
o) 300 A 200 0 200
200 100 2 100
00 : 100 100
, L 100 # [ X % oo
[ X
(a) (b) (c)

Figure 11. An illustration of the intersection part extraction: (a) the original used part
®,, and final part ®; (b) the transformed used part ®,, and final part @f; (c) the
intersection part ;.
2.5. Intersection part modification for collision-free remanufacturing
The geometry of intersection part geometry is not generally acceptable for AM processes.
Figure 12 provides an illustration of collision problems in the DED process, and the material

deposition nozzles may have collisions with the intersection part. Therefore, it is crucial to modify
the intersection part by analyzing the tool accessibility constraints of the DED process.

DED nozzle

Collisions

Intersection part

Figure 12. DED nozzle induced collisions.

Initially, the intersection part and DED nozzle are formulated as ®; and &, by the level-set
representation, respectively. In addition, the deposited material volume by AM is represented as

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7274-7301.
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&y = ®f/P;, as shown in Figure 13. The voxel representations for ®;, @, and @, are
computing by applying Heaviside functions V; = H(®;), V,, = H(®;), and V; = H(®,), separately.

DED noozle

0 50

100 150 200 259 300 350 0 Y
X

(a) (b)

Figure 13. Representations in the DED nozzle collision problem: (a) The level-set
representations for DED nozzle, deposition material and intersection part; (b) 3D voxel
representation for DED nozzle.

As far as the collision detection is concerned, the collision-free rigid motion of the DED nozzle
in rigid motion needs to be calculated. In this study, dilation as a morphology operation is adopted to
analyze the spatial planning of the DED nozzle. As one of the basic operations in mathematical
morphology, dilation operation @ is defined as:

498 =| Ja, (15)

where A, represents the solid A transformed by a rigid transformation b, B is a structuring
element, which is termed filters. For level set function represented models, the dilation operation is
expressed as:

b, D P = U @, (b) (16)
®p(b)=0

For the DED process, the materials are deposited on the deposition volume layer by layer,
which indicates that the tip of the deposition nozzle requires going through each point of the
deposition volume (Figure 14a). It is crucial to mention that in a practical case, the vertical distance
between the tip of the DED nozzle and the deposition area is not zero. The vertical distance is
assumed to be zero for the sake of simplifying in explaining the proposed method. The technical
implantation of the approach will be discussed with considering the vertical distance later in this
section. It is meaningful to explore all motions of the DED nozzle to deposit the materials in the
deposition volume. In the proposed method, the motions of the DED nozzle during deposition is
calculated by dilating the deposition volume by the DED nozzle: ®,, = ®,, @ &4, and the authors
define &,, as motion space of the DED nozzle, as presented in Figure 14b.
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Theorem:

The modified intersection part ®; can be derived from: ®; = ®; \ ®,, = ®; \ (P, D P,),
which leads no collision with the DED nozzle in operation, as shown in Figure 14d.

Proof:

In the condition of no collision occurring during deposition, ®; N ®,, = @ is required to be
satisfied, where ®,, is the new motion space derived from the modified intersection part ®,, =
®, @ ;. P, can be expanded into:

B = 0 © (O\B) = @, @ (01 (=8)) = 0, & (O N (—(@: 0 (—0,)))  (17)

where @f indicates the level set function of the final part. According to the associativity,
commutativity of Boolean operation and distribution of dilation, Eq (17) can be rearranged as:

&r)m = (®, @ ©y) N (D), B Dp) (18)
Therefore, no collusion condition is derived as:
EIV)i n &r)m =0, N (=) N (D), B Py) N (P, D Pr) (19)

Since ®,, @ ¢, = P,,, (—P,,) N (P, D Py) =0. So, D;ND,, =D, NG N (P, D P,,). Due
to the annihilator law for N, ®; N &, = @.

@, B Py

Motion of the DED nozzle

Deposition volume

(a) Motions of the DED nozzle during deposition (b) motion space of the DED nozzle

Motion space:®,,

Pl

Modified intersection part:®;

Original intersection part:®;

(c) motions space and original intersection part (d) modified intersection part
Figure 14. Modification of the intersection part.
The authors develop an algorithm to implement the proposed method for discrete level set
function representations, also considering the vertical distance (d) between the nozzle tip and
deposition area. The pseudocode for the proposed algorithm is presented in Table 2. An example of

the implantation of the proposed method is shown in Figure 15. Figure 15a presents the original
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intersection part and Figure 15b shows deposition volume derived from the original intersection part
by @;\®;. The motion space calculated from Eq (16) is shown in Figure 15¢, and Figure 15d gives

the modified intersection part ®;.
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(d) modified intersection part.

oo

Figure 15. An example for the intersection part modification method.

Table 2. Pseudocode of the algorithm.

Input: discrete level set function ®,,, ®; and d;; vertical distance d

@, < 0 with size of &y

[x,y, z] =index of ®; > 0 in x,y,z directions

The position of the tip is obtained from @, as x_tip,y tip, z tip

Fori=1 to size of x direction:

Move on x direction My =x (i) - x_tip
Move on y direction My =y (i) -y _tip

Move on z direction M, =z (1) -z tip+d

New position of DED nozzle ®j; = translating the ®; over My, My, M,

d,, = D, UD; = max(P,,, Ps)

End

Output: discrete level set function of modified intersection part ®; = ®;\®,, = min(®;, —D,,)
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2.6. Individual feature extraction

As the modified intersection part has been calculated, a subtractive manufacturing volume
(SMV) and an additive manufacturing volume (AMYV) can be calculated in their level set function
representations as:

Dgpy = Py \ Py
Dppy = ‘Df \ a)i (29)

Individual features are required to be recognized and extracted from SMV and AMV. The
research of CSG-based feature recognition has been developed from the 1990s , but this technique
did not go far primarily due to the non-uniqueness of CSG trees [38]. Recently, there are some
research efforts have been devoted to address non-uniqueness problems in CSG and show the
strength in recognize sophisticated machining features by 3D convolution neuron network [44,45].
Therefore, developing a new machining feature recognition method is not a contribution to this study.
The level set function representation of SFV is converted into 3D voxel grid information Vggg by
Heaviside function H, and then subtractive features (SFs) can be extracted by any CSG-based
feature recognition techniques; see Eq (21).

VSFV == H(CI)SFV) d {SFl, SFz, SF3, . SFn} (21)

AFV comprises both additive features (AFs) and SFs. In the AM process, leaving a sufficient
over-thickness to have a finishing operation is vital for meeting the tolerance and surface roughness
requirements. The over-thickness value is estimated by the required specifications of the final feature,
the surface roughness generated by the AM processes and the machining conditions [34]. With

considering over-thickness, the modified additive feature volume (AFV) is modified. The level set

function representation of AFV can be derived via Eq (22), where t represents the over-thickness

value. The residual subtractive feature volume is obtained via Eq (23). Similarly, the individual SFs
could be recognized by a CSG-based feature recognition method by Eq (24).

Dary = (Parv +) \ B (22)
Oy = Pz \ Pary (23)
q)ﬁ - {SFn+1; Sl:“n+21 Sl::n+31 v SFn+m} (24)

3. Cost-driven process planning for remanufacturing

A large number of AFs and SFs are obtained from the proposed feature extraction method. Each
feature represents an operation in the AM or SM process. Under considering the topological
relationship of different features, the sequences of some operations are forced. Therefore, precedence
constraints between operations are required to formulated to respect the hybrid additive-subtractive
manufacturing rules. The precedence constraints are comprehensively summarized, and interested
readers can refer to [1,34].
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Although precedence constraints are formulated, some residual process sequences are still
undermined. In order to develop the process planning problem into a process sequence optimization,
the cost for each operation/feature is required to be estimated. With precedence constraints between
features and cost model for each feature, an integer programming model is formulated to calculate
the optimal process plan that minimizes the overall remanufacturing cost.

3.1. Cost estimation for DED and CNC machining process

The motivation of the cost estimation for this study is approximating the cost models for the
integer programming model to determine the optimal process plan, rather than exploring the
precise cost for each operation. Although there are numbers of publications are relevant to cost
estimation for the subtractive and additive manufacturing process [46—48], few researchers focus
on the constructing cost model for hybrid additive-subtractive manufacturing system, explicitly
considering the change cost between two different operations. Therefore, in this section, rough
and fast estimations are given for SFs and AFs, and the change costs between various features are
also introduced.

3.1.1. Costof SF

The total cost comprises operation cost and tool cost as:

Csp = Chn * tsp+ Crool * Ngool (25)

where Cgp is the total cost of an SF, Cy, is the hourly operation cost for HM machine operation,
tsr 1s the machining time for the SF, C;,,; 1s the cost of each cutting tool, and n;,,; is the number
of tool changes. Most commercial CAM software systems can estimate the machining time tgg by
dividing the tool path in the milling process by the programmed feed rate.

3.1.2. Cost of AF

The cost of AF is determined by the machine cost and material consumption cost, see Eq (26).
Car = Chn * tar + Ci-ar (26)

where Cpp is the total cost of an AF, Cy, is the hourly operation cost for HM machine operation,
tar 1s the building time of the AF, and C,,_f is the cost of material consumption.
The cost of material consumption in DED process is approximately calculated from the volume
of the feature and its support structure, as:
(VarP + Var-sP) it

Cm—AF = m Cmaterial (27)

where, Var and Vjp_g refer to the volume of the building part and support structure, p is the
material density, p is the material density of the support structure, and CUMt . indicates the
price per unit of material. In DED process, complex gas flow leads a diffusion of powder
distribution, which results the low powder efficiency because some powder cannot reach to the

meltpool. Powder efficiency rate p varies between different machines, and in this research the
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value is referred to [49,50], as 70%.
For the DED process, the building time tar estimation adopted an analytical build time model
which is proposed in [51], and the general equation is:

tar = Deposition Time + Rapid Movements Time (28)

This model uses G-code of the part as input and an algorithm extracts the kinematic
characteristics of the nozzle to estimate very accurate build time results, since the acceleration and
deceleration of the machine head is considered.

3.1.3.  Cost of change

For the hybrid additive-subtractive system, the AM/SM operations are switching by changing
different tools. It is crucial to discuss the cost of change between two consecutive operations since it
is costly due to frequent tool changing. Besides the tool change cost, the re-orientation of the
workpiece also results in costs. In this study, CR and CT represent indexes of the re-orientation cost,
and the tool change cost, respectively. The details of the calculation are given below.

1) Re-orientation cost:

While the orientation of the workpiece is switched in the HM machine, a re-orientation change

occurs that requires workpiece fixing and laser calibration.

CR = Chh * tre (29)

For the index of feature i,j € F = {1,2,...,F}, the index of cost for orientation CR is formed
by grouping the cost of orientation between any two features.
2) Tool change cost:

For HM machine the tool change cost is formulated as:

CT = Chh * ttc (30)

Similarly, the index of tool change cost CT is constructed by grouping the cost of tool change
cost between any two features.

(o) @) ®
(1) )

(a) precedence-constrained model (b) optimal model

Figure 16. Directed graphs representation.
3.2. Sequence optimization

As the cost model for each feature, change cost, and precedence constraints are obtained. The
process sequence optimization problem is formulated as an integer programming model and solved
by branch and fathoming algorithm [52]. In a directed graph visualization of the model, a node
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represents a feature/operation and the cost model for them is calculated from Section 4.1.1 and 4.1.2,
and the directed line indicates the precedence relation between two features/operations and the change
costs are derived from Section 4.1.3. As an example, AFs (AF1 and AF2) and SFs (SF1,SF2, SF3)
are extracted from the proposed feature recognition method. The cost for each node is calculated and
the change cost between any two nodes are formulated. The precedence constraints are applied to
these nodes initially as dash lines (Figure 16a). With the optimization of the integer programming
model, the output is a sequence of operations that results in minimal cost (Figure 16b).

(2) (b)

Figure 17. Tests part: (a) point cloud of the used part (b) CAD model final part.

300 - Modelling history:
250 ch1 = max(q)cubell chubeZ' cI)free)
=0 Deube: Py, = min(q)fl’ ~ Py, = Peyins _q)cyll)
Drree .
~ 150 - \ f ch = mln(q)fzi _chubeSJ _q)cube4-)
100 Fey Notations:
— Doy @ .upe: level set function for cube;
50
®@yp: level set function for cylinder;
0-
0 ~

®@yp: level set function for cylinder;

@y level set function for freeform feature;
®p: level set function for final part.

Figure 18. Level set representation for the final part.
4. Case study

In this section, the proposed method is verified by the correctness and efficiency of a virtual
case study.

Figure 17a shows the point cloud scanned from the used part, which is required to be
remanufactured. Figure 17b represents the CAD model of the final part, which has different
functionalities compared to the used part. Especially, the final part has primitive features and 2.5D
freeform feature.

The level set function for the final part is built from the CAD modelling on a design domain
of size 150 x 150 x 150 with grid size Ax (0.5 mm), as Figure 18 shown. In the figure, the
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modelling history is also given, and the mathematical formulation of each level set function is
provided in the Appendix.

In terms of the used part, the RANSAC surface fitting technique is adapted and the max
distance and angular distance variants are set as 0.002 m and 5 degrees, respectively. The surface
fitting results are shown in Figure 19a. By implementing the k-NNG-based defect identification
method, the defect points are differentiated from the point clouds Figure 19b. The level set function
for the wused part is constructed in Figure 20a with modelling history: &, =
min(®cypet, —Peubezs —Peubes —Pcuvesa) and formulations for each level set functions are given in
the Appendix. The optimal pre-machining feature can be obtained from the defect points, and the
used part is updated with the pre-machining feature, as shown in Figure 20b.

EE 200 -150

(b) defect area (red points) from point clouds of
the used part.

(a) Surface fitting results

Figure 19. Surface fitting results and defect area identification.

200 300 -
250- 250
Peubez
200- e 200
Peubes

N 150 - N 150

100 - 100 4 300

50 - )
300 50
0 ~ <
0 T~ 200 0~
100 ~— ~_ ; cubel 0
e 100
~~ 200
X 300 0 Y X 300 0 ’
(a) Level set representation for the used part (b) updated used part with pre-machining feature
Figure 20. Level set representations for the used part and updated used part.
Table 3. The optimal translation and rotation for test parts.
Translation (mm) Rotation (°)
tx ty tz ex 031 92
Optimal variables: 4.07 4.21 -1.33 0 0
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The proposed intersection part extraction algorithm is applied to find the relative position
between the used part and the final part. The optimization results of the translation and rotation
variables are listed in Table 3 and the output of the intersection part is shown in Figure 21.

300
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150

100

50

300

200

100 200

y 0 o X

(a) Optimal intersection part

A1x10° 4 \

2x10° \

Objective
//‘

3x10° 4

Iteration

(b) convergence history of the intersection part

maximization

Figure 21. The results of optimal intersection part.
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Figure 22. The processes of the intersection part modification.
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For the next step, the intersection part is modified by considering the collision problem in the
DED process. The DED nozzle is modelled in level set function as shown in Figure 22a and the
vertical distance d is set as 10 mm. Figure 22b shows the deposition volume, which is obtained by
subtracting the final part by the original intersection part. The motion space that represents all possible
motions of the DED nozzle during deposition is derived from the proposed algorithm (Table 2); see
Figure 22c. The result of the modified intersection part through subtracting the original intersection
part by motion space is presented in Figure 22d.

By subtracting the final part and the used part by the modified intersection part, SFV and AFV
can be collected, respectively. Then, each SF and AF are extracted, as presented in Figure 23. With
respecting hybrid manufacturing rules, precedence constraints are applied to all features.

The parameters and machine resources that are used in the cost estimation are listed in Table 4.
In this study, Ti-6Al-4V is used as the material for the DED process. The sequence optimization
problem is solved by a branch-and-bound solver and the optimized process plans are presented in
Table 5, and the optimal remanufacturing plan costs $ 1835.24.

AFV

@ <&
' Kt

\ <« SF6
S5 4
SFZ"‘\“\. ] SF9 ’i\/;\: SF7
SF

SF1

AF1

Figure 23. The results of SFs and AFs extraction from SFV and AFV.

Table 4. Manufacturing parameters and manufacturing resources for cost estimation.

Manufacturing parameters Manufacturing resources
Parameter Notation Value Tool ID Tool type Diameter (mm)
Machine cost /hour Chh 100 $/h Tl End mill 20
Each tool cost Ctool 5% T2 End mill 10
Density p 443 kg/dm’ T3 End mill
Support structure ratio p/p 0.4 T4 Drill
Unit price of the metal powder unmit 450 $/kg T5 Drill 10
Re-orientation time tre 035h T6 DED -
Tool change time tec 0.17h
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Table 5. Optimal process plan.

Sequence 1 2 3 4 5 7 8 9 10 11 12
Features SF1 SF2 AF1 SF9 AF2 SF5 SF8 SF3 SF6 SE7 SF4
Machine Ml Ml M2 Ml M2 Ml Ml MIl Ml Ml Ml
TAD +z +z +z +z +z +y + X +x +y +y +y
Tool T1 T1 T6 T2 T6 T4 T4 T4 T2 T3 T3

5. Conclusions

Nowadays, the combination of AM and SM in a single workstation is emerging to provide a
more flexible and productive and capable manufacturing approach comparing with traditional
manufacturing strategies. Because it utilizes the merits of AM and SM to add and remove features
flexibly, HM has the potentials to raise remanufacturing technology to a higher level. In this study,
taking to account the benefits of the HM process, hybrid DED-CNC manufacturing technology in a
single workstation is investigated to remanufacture an end of life part (used part) to a new part (final
part) with new functionalities, avoiding the material recycling process.

This paper has demonstrated a novel feature extraction algorithm and a cost-driven process
planning method for hybrid DED-CNC manufacturing in a remanufacturing context. Specifically,
starting from point clouds for the used part and a solid CAD model for the final part, geometry
modeling is performed to transform the input to level set representations. Also, the defects on the
used part are investigated and an optimal pre-machining feature is derived from the proposed method
and applied to remove the perturbation caused by the defects. The feature extraction method,
developed under the level set framework, is proposed as an automated process to extract the AM and
SM features for remanufacturing process planning, which addresses the numerical calculation
between two solid models. Moreover, the collision problems of DED nozzle during deposition are
considered and this method provides collision-free motions. With the carefully developed hybrid
DED-CNC cost model, the process planning work is converted to an -integer programming model as
an optimization problem. Finally, the optimal process plan can be determined by solving the
optimization problem.

For future work, there are more research works need to be done to expand the current
methodology. A practical case study is required to validate the work presented in this paper. In the
next stage, the relevant use case can be remanufacturing for high-value component, such as mold, die,
and turbine blade. Moreover, in the present study, the AM and SM processes are considered as a
3-axis type. However, the feature extraction and process planning problems for multi-axis capability
need to be addressed. In addition, the fixture design, AM support structures [53] in the real cases
need to be investigated in the future work. In the metal additive manufacturing, the residual
deformation is a significant problem and it also may affect the feature extraction and process
planning, so it can also be explored in the further studies.
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Appendix

Level set functions for the final part:

®.yper = min(120 — x,y — 30,110 — y,y — 40,25 — z,z — 10);
®.ypez = min(111 - x,x — 39,985 — y,y — 51535 — z,z — 25);

@D ype3 = min(89.5 — x,x — 605,45 — y,y — 40,21.75 — z,z — 13.25);
®.ypes = min(89.5 — x,x — 605,59 — y,y — 605,32 — z,z — 28);

®eyi; =min{6.25 — (z — 30)>— (y — 75)?114.75 —x,x — 104.75};
ey = min{25 — (z — 17.5)> — (y — 75)%,120 — x,x — 105};
P13 = min{6.25 — (z — 17.5)> — (x — 68)%,50 — y,y — 45}

Py = min{6.25 — (z — 17.5)> — (x — 82)%,50 — y,y — 45}

Dfree = min{—(x — 55)3 + (x — 55)% * (18 = (y — 55) + 19200) + (x — 55) = (108 = (y —
55)% — 46080 = (y — 55) + 216 * (y — 55)3 + 15360 * (y — 55)%,x + y — 110,83 — z,z — 68}.
Level set functions for the used part:

®.yper = min( 125 — x,x — 25,1125 - y,y — 375,375 — z,z — 12.5);

®.ypez = min(115 — x,x — 35,1025 — y,y — 475,375 — zz — 32.5);

®.ype3 = min(70 — x,x — 40,875 — y,y — 525,325 — z,z — 27.5);

®.ypes = min(110 — x,x — 80,875 — y,y — 525,325 — zz — 27.5).
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