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Abstract: Discussion regarding hybrid manufacturing has dominated research in recent years. By 
synergistically integrating additive and subtractive manufacturing within a single workstation, the 
relative benefits of each manufacturing strategy are leveraged. The ability to add, remove feature 
flexibly enables remanufacturing end-of-life components into a “new” part with new features and 
functionalities. However, in the remanufacturing context, the process planning for hybrid 
additive-subtractive manufacturing is still an unsolved research topic. In general, a hybrid 
remanufacturing process is signified by an alternating sequence of additive and subtractive 
operations that alternatively add and remove materials on a used part, which results in a 
non-unique process planning. For determining an optimal sequence for hybrid remanufacturing, a 
quantitative evolution mechanism is demanded. Moreover, the constraints in process planning are 
required to be considered. For example, the collision avoidance between the workpiece and the 
material-dispensing nozzle is one of the most critical limitations that affect the alternating 
sequence. To fill the gap, automated feature extraction and cost-driven process planning method for 
hybrid remanufacturing are proposed in this paper. The feature extraction, developed under the 
level set framework, can extract optimal and collision-free additive-subtractive features. Then, the 
hybrid process planning task is formulated into an integer programming model with cost 
estimations. A case study is conducted, and the results confirm the correctness and effectiveness of 
the proposed method. 
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1. Introduction  

Nowadays, the increasing developments and over-exploitation of resources outcome vast 
amount “end-of-life” products. Remanufacturing and repairing are identified as environmentally 
friendly approaches to deal with them since the energy consumption to produce a new part can be 
minimized by maintaining the intrinsic energy of the legacy part [1–3]. Repairing process is the 
correction of specified faults or restoring its original form of product. Whereas, remanufacturing, 
also called “reincarnation”, is defined as being able to produce new products directly from the 
end-of-life product [4]. In different publications, the words “remanufacturing” and “repairing” have 
been used interchangeably with blurred definitions [4–6]. In this study, the authors differentiate them 
by defining “repairing” as restoring the part to its original form and “remanufacturing” as upgrades 
the part to have different functional features.  

Recently, hybrid manufacturing (HM) system synergistically integrates additive manufacturing 
(AM) and subtractive manufacturing (SM) processes within a single workstation (Figure 1), has 
gained a lot of attention from academia and industry [7]. HM can capitalize on the strengths of 
independent techniques, whilst minimizing their disadvantages [8]. At the same time, it has the 
potentials to enable remanufacturing technologies to achieve further improvement because it can to 
remove and add features flexibly.  

 

Figure 1. The configuration of the workstation for the hybrid machine. 

Most of the single platform workstations for HM processes are integrating subtractive CNC 
machining and additive directed energy deposition (DED) [9]. There are some commercial process 
planning software tools that have already been developed for industrial hybrid systems, such as 
Siemens NX used in DMG MoriSeiki, LaserTec 65 3D, and hyperMill used in Replicator and 
Cybaman [9]. However, the major limitation of these commercial tools is the poor support for 
automation. For example, AM and SM feature recognition is manually conducted by the user’s 
knowledge. The consequence is that the process planning of complex remanufacturing problems is 
very tedious, and the quality of the derived process plan can hardly be evaluated. For this reason, an 
increasing level of interest in research on process planning for HM has been witnessed over recent 
years [9,10]. Joshi & Anand [11] developed a novel metric, called complexity score to quantify part’s 
geometric complexities for decision-making among AM, SM, and HM. Chen et al. [12] discovered 
that complex geometry might have the tool accessibility issue for the SM process, in which the cutter 
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cannot access the part’s interior. They then developed an optimization algorithm for HM process 
planning, which derived the optimal HM process plan of an arbitrary geometry that was free of 
machinability issues. They also extended the concept to address the problem for quasi-rotational 
parts with columnar features in their other works [7]. A sequence planning method for five-axis 
additive-subtractive hybrid manufacturing is also presented by [13], and it greatly reduced the 
number of tool changes between different operations. Zhu et al. [14,15] and Newman et al. [16] 
presented a hybrid process planning framework, called iAtractive, which integrates CNC machining, 
fused filament fabrication, and inspection process for plastic components with internal structures. 
Behandish et al. [17] introduced an HM process planning method that formulated HM processes 
through logic representations, which has the capability to enumerate all the feasible sequences of 
operations to find the optimal plan. ElMaraghy & Moussa [18] developed a method of process 
planning for HM that included manual feature extraction, product platform design, and process 
determination. Basinger et al. [19] outlines a feature-based advanced HM process planning system 
which use feature, tolerance and material data as inputs to construct process plans. From these 
research results, the authors identify that SM is mostly playing a role as post-machining for AM in 
the HM process. Therefore, it is complicated to be applied directly in the remanufacturing, since SM 
is not only post-machining but also including geometric forming as AM process in remanufacturing. 

Several studies have explored the potentials of AM for repairing or remanufacturing 
applications. Different aspects of AM techniques have been widely investigated, such as laser 
parameters [20], damaged volume reconstruction [21–24], energy and environmental impact 
analysis [6,25], and microstructure [26–28] and mechanical property analysis [29,30]. Recently, 
HM for repairing application is also actively investigated. Zheng et al. [22] introduced a 3D 
reconstruction and triangle intersection algorithm to identify additive repair and subtractive repair 
areas of a broken turbine surface. Hascoët et al. [31] proposed a method to automate the repairing 
process of metallic parts partially. In their practice, defects were initially machined into a surface 
cavity, and the cavity was refilled by laser metal deposition with the aid of an inspection system. An 
increasing level of development in research on HM-based repairing technology has been witnessed 
by those publications. However, in terms of remanufacturing, there are comparatively fewer studies. 
In comparison with repairing, remanufacturing requires more decision-making support [32] since the 
process planning result is not unique, and AM and SM feature extraction relies on algorithms for the 
automation process. 

Newman et al. [16] and Zhu et al. [33] features a remanufacturing framework that consisted of 
fused filament fabrication, CNC machining, and inspection. The method enabled the 
remanufacturing of an existing part or even a recycled and legacy part into a new part with new 
functional features. Le et al. [34] proposed an HM process planning for remanufacturing based on 
feature extraction and knowledge interpretation. In a subsequent study [35], they have extended the 
process planning framework by discussing the environmental impact of the proposed 
remanufacturing strategy compared with traditional approaches (material recycling, casting, and 
machining). Liu et al. [3] developed a novel design-for-remanufacturing method under a level-set 
framework, which provides a solution for upgrading broken parts. A cost-driven process planning for 
PBF-CNC remanufacturing was proposed in the algorithmic framework laid down in our previous 
work [1]. In that work, an automated additive-subtractive feature extraction method is developed and 
process planning sequencing is formulated as a cost-minimization optimization problem. However, 
there are three significant limitations: 1). this work is focusing on primitives features and free-form 
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features are not covered; 2). the inspection process for the used part or legacy part is not included; 3). 
commonly, there are defects or damaged area on the used part, the process for dealing with the 
defects should be investigated.  

To sum up, the research gaps and objectives of this study is the development of a method that 
provides automated feature extraction and cost-driven process planning for an integrated HM 
machine. The main contributions are list as follows: 
 Both primitive and free-form features are modelled in level set-based representations for the 

automated feature extraction which facilitate the process planning for HM remanufacturing; 
 A collision-free DED-CNC process planning method is developed, resulting in the minimal cost 

in HM remanufacturing process; 
 The defect and damaged area of the used part are considered to form a pre-machining feature in 

the process planning, which is an issue rarely addressed in the previous studies of process 
planning for remanufacturing. 
The rest of the paper is structured as follows. In Section 2, the automated additive and 

subtractive feature extraction method is presented, which includes level set function representation 
for CAD and point clouds, extraction for pre-machining feature, intersection part extraction, 
intersection part modification for collision-free remanufacturing and individual feature extraction. 
Section 3 shows the cost-driven process planning methodology for DED-CNC remanufacturing, 
which includes cost estimation for DED-CNC remanufacturing, and sequence optimization.  
Section 4 demonstrates a case study to validate the efficacy of the proposed method. Finally, a 
conclusion is given in Section 5. 

2. Additive and subtractive feature extraction 

In geometric modelling, constructive solid geometry (CSG) and boundary representation (B-rep) 
are widely adopted. With CSG modelling, a physical object can be decomposed into multiple 
primitives and a sequence of Boolean operations. With the B-rep method, the solid is bounded by a 
set of closed and directional faces, which are bounded by edges and vertices. CSG modelling has 
the merits of supporting efficient Boolean operations and topology optimization [36]. Previous 
works on feature recognition/extraction in machining process planning have been developed for 
three decades [37,38]. However, these methods cannot be applied in remanufacturing or HM 
process. The reason is that most of the current machining feature extraction methods uses boundary 
representation (B-rep) format for feature modeling because it uniquely defines the faces and their 
topological patterns [38]. However, it has issues to deal with numerical calculations between two 
solid parts by adopting B-rep models for extracting features between the used part and final part. 
Therefore, in this work, a novel feature extraction method based on the level set function that 
implicitly represents models is developed for hybrid manufacturing in remanufacturing context. 

The overall framework of the level set-based feature extraction method is presented in Figure 2. 
First the modeling history is extracted from the CAD model of the final part to be modelled in level 
set function representation (Section 2.1). The point cloud data is acquired from the used part and 
converted to be the level-set function representation (Section 2.2). Then, the pre-machining feature is 
extracted from the used part (Section 2.3). The intersection volume is then calculated by optimally 
overlapping the used part and the final part (Section 2.4). The intersection part is then modified with 
considering the collision problem and DED manufacturing constraints (Section 2.5). With The level 
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set represented intersection part. The subtractive manufacturing volume (SMV) and additive 
manufacturing volume (AMV) can be identified and the individual AFs and SFs are extracted from 
the volumes (Section 2.6).  

 

Figure 2. The flowchart of the proposed additive and subtractive feature extraction 
method for remanufacturing process. 

2.1. Level set function representation for the CAD model 

Level set function Φሺ܆ሻ	 ሺܴ௡ → ܴሻ describes the geometry in an implicit form, as shown in 
Eq (1). 

ቐ
Φሺ܆ሻ ൐ 0, ܆ ∈ Ω/߲Ω

Φሺ܆ሻ ൌ 0, ܆ ∈ ߲Ω
Φሺ܆ሻ ൏ 0, ܆ ∈ Ω/ܦ

 (1) 

where Ω/߲Ω is the material domain, ܦ/Ω is the void, ߲Ω is the structural boundary. 
In the level set function-based modelling approach, the 3D model is constructed by bounding 

the boundary surfaces, as: 

Φሺ܆ሻ ൌ minሼΦଵ,Φଶ,Φଷ, … ,Φ௡ሽ (2) 

As an example, the cube with ሺݔ଴, ,଴ݕ  ሻ as theݖܪ,ݕܪ,ݔܪ଴ሻ as the center coordinates and ሺݖ

lengths on the x,y,z axis can be represented by bounding six planer surfaces of Φଵ ൌ
ு௫

ଶ
െ

ሺݔ െ ଴ሻݔ ൌ 0,Φଶ ൌ
ு௫

ଶ
൅ ሺݔ െ ଴ሻݔ ൌ 0,Φଷ ൌ

ு௬

ଶ
െ ሺݕ െ ଴ሻݕ ൌ 0,Φସ ൌ

ு௬

ଶ
൅ ሺݕ െ ଴ሻݕ ൌ 0,Φହ ൌ

ு௭

ଶ
െ ሺݖ െ ଴ሻݖ ൌ 0,Φ଺ ൌ

ு௭

ଶ
൅ ሺݖ െ ଴ሻݖ ൌ 0, as shown in Figure 3. 
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Figure 3. An example of a discrete level set representation for a cube. 

In our previous work [1], the examples of primitive geometry (cube, sphere, cone and cylinder) 
are given. This work will focus on the level set function modelling for freeform geometries. From 
Eq (2), it can be manifested that finding the implicit forms for boundary surfaces is the most 
crucial work for the level set-based modelling approach. Algebraic techniques based on elimination 
theory enable the conversion of parametric expression to its implicit expression Φሺ܆ሻ ൌ 0 . 
Elimination theory investigates the conditions under that the sets of parametric expressions have 
common roots. The vanishing of the resultant is a necessary and sufficient condition for the 
parametric expressions to have a common non-trivial root. The implicitization of parametric 
geometry is based on the construction of these resultants.  

A freeform 2.5D geometry can be constructed by extruding its freeform profile. As an example, 
in this study, the Bezier curve is implemented to represent the freeform profile. The parametric form 
of the Bezier curve is shown as: 

ሻݑሺࡲ ൌ෍ܤ௜,௡ሺݑሻࡼഥ௜

௡

௜ୀ଴

 (3) 

where ࡲሺݑሻ ൌ ൣ ௫݂ሺݑሻ, ௬݂ሺݑሻ൧ ഥ௜ࡼ , ൌ ௜̅݌ൣ
௫, ௜̅݌

௬൧	 ሻݑ௜,௡ሺܤ , ൌ ,ሺ݊ܥ ݅ሻݑ௜ሺ1 െ ሻ௡ି௜ݑ ,ሺ݊ܥ , ݅ሻ  is the 

binomial coefficient: ܥሺ݊, ݅ሻ ൌ ௡!

௜!ሺ௡ି௜ሻ!
 , n is the degree of the curve, and i is the number of control 

points, തܲ௜௫ and തܲ௜௬	 are x and y coordinates of the control point.  

By following elimination theory, the implicit form of the Bezier curve Φୡ୳୰୴ୣሺ܆ሻ can be 
obtained by eliminating the parameter u between the parametric expressions in Eq (3) letting the 
resultant of them to be equal to zero. 

As an example, a cubic Bezier curve is constructed by three control points: തܲ଴ ൌ ሺ0,0ሻ, തܲଵ ൌ
ሺ40,220ሻ, തܲଶ ൌ ሺ200,40ሻ and തܲଷ ൌ ሺ0,0ሻ. By implementing the elimination theory, the implicit form 
for the Bezier curve can be obtained and the contour figure is shown in Figure 4a. Then, the 2.5D 

freeform shape can be modelled by Φሺ܆ሻ ൌ min	ሺΦୡ୳୰୴ୣ, Φ୲୭୮,Φୠ୭୲୲୭୫ሻ, where Φ୲୭୮ ൌ 157.5 െ  ݖ

and Φୠ୭୲୲୭୫ ൌ ݖ െ 122.5. (see Figure 4b.)  
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(a) (b) 

Figure 4. An example of a level set representation for 2.5D Bezier curve shape: (a) the 
contour of the Bezier curve in the level set form (note: the value is divided by 10e7); (b) 
2.5D Bezier curve shape. 

  

(a) (b) 

Figure 5. An example of a level set representation for (a) Bezier surface; (b) Bezier 
shape with boundaries. 

The parametric Bezier surface is extended from Bezier curve to u and v directions, as follows:  

,ݑሺࡲ ሻݒ ൌ෍෍ܤ௜,௡ሺݑሻܤ௝,௠ሺݒሻࡼഥ௜,௝

௠

௝ୀ଴

௡

௜ୀ଴

 (4) 

where ࡲሺݑ, ሻݒ ൌ ൣ ௫݂ሺݑ, ,ሻݒ ௬݂ሺݑ, ,ሻݒ ௭݂ሺݑ, ഥ௜,௝ࡼ ሻ൧ andݒ ൌ ሾ̅݌௜,௝
௫ , ௜,௝̅݌

௬ , ௜,௝̅݌
௭ ሿ. 

Analogously, the elimination theory can help to find the implicit form for the parametric 
expression in Eq (4). A Bezier surface is modelled by 3 × 3 control points; the level set form of this 
surface is shown in Figure 5a. The Bezier shape is bounded with planar surfaces Φଵ ൌ ݔ െ
200,Φଶ ൌ 600 െ Φଷ,ݔ ൌ ݕ െ 200,Φସ ൌ 600 െ  .see Figure 5b ,ݕ

The complex geometry can be constructed through Boolean operations on the level-set 
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functions [39]. However, this representation will cause non-differentiable problems in numerical 
calculation. R-functions can combine level functions of a complex structure into a new smooth level 
set function by operations of R-conjunction ⋀ and R-disjunction ⋁, which are equivalent to 
Boolean operations ∩ and ∪ [40]. The operations of R-functions are defined as: 

Unite:	 Φଵ ∪ Φଶ ൌ maxሺΦଵ,Φଶሻ ൌ Φଵ ൅ Φଶ ൅ ඥΦଵ
ଶ ൅ Φଶ

ଶ	

Intersect:	 Φଵ ∩ Φଶ ൌ minሺΦଵ,Φଶሻ ൌ Φଵ ൅	 Φଶ െ ඥΦଵ
ଶ ൅ Φଶ

ଶ	

Subtract:	 Φଵ ∖ Φଶ ൌ minሺΦଵ,െΦଶሻ ൌ Φଵ െ Φଶ െ ඥΦଵ
ଶ ൅ Φଶ

ଶ 

(5) 

2.2. Level set function representation for point clouds 

For a given used part, data acquisition is the first step to digitalize the part to point clouds. 
Therefore, the other situation is that we have the point cloud as the geometry input. To converting the 
point cloud data to the level set function model, the surface fitting techniques can be applied to 
obtain the parameters of surfaces and these parameters are used to forming the level set function 
representations. In this study, random sample consensus (RANSAC) surface fitting [41] is employed 
for surface fitting. The pseudocode for the forming level set function representation of the point 
clouds is given in Table 1. Figure 6 provides two examples of the surface fitting for cylindrical 
surfaces and sphere from point clouds from our previous results [21]. The color scale bars indicate 
the distance of each point to the fitted surface. The parameters of fitted surfaces are utilized for 
forming the level set functions through the proposed algorithm.  

 
Φୡ୷୪୧୬ୢୣ୰ ൌ 8.13ଶ െ ሺݔ െ 3.008	 ሻଶ െ ሺݕ െ 5.014ሻ ଶ Φୱ୮୦ୣ୰ୣ ൌ 6.043ଶ െ ሺݔ െ 2.995ሻଶ െ ሺݕ െ 4.987ሻଶ െ ሺݖ െ 7.002 ሻଶ 

(a) Cylindrical surface fitting result and level set 
function 

(b) Sphere fitting result and level set function. 

Figure 6. Surface fitting results and level set functions. 

2.3. Extraction of pre-machining feature 

In the repairing process, the defects on the damaged part need to be machined into a surface 
cavity. This cavity is to be refilled by the deposition of materials to recover the local geometry of the 
part. Equivalently, in terms of the remanufacturing process, it is necessary to carve out defects from 
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the damaged part to eliminate the perturbation for the remanufacturing process planning caused by 
the defects. In this study, the authors define the machining feature to carve out defects as a 
pre-machining feature since it has a similar concept as the pre-machining in the traditional machining 
process to remove the imperfections of the stock. It is important to mention that this study is focusing 
on remanufacturing end-of-life part with small defects which do not cover the any entire features on 
the end-of-life part.  

Table 1. Pseudocode of the forming level set function representation of point clouds. 

Input: point clouds of the used part P 
Set the max distance and max angular variation for fitting 
i ൌ 1  
Remaining points P୫,୧ ← P 
For the plane fitting, cylinder fitting, cone fitting, sphere fitting, free-form surface fitting: 
            While there are enough points for supporting surface fitting in P୫,୧: 
                       Parametric surface parameters S୧ 	 ← plane fitting from P୫,୧ 
                       Converting the parametric plane to implicit function: Φ୧ ← S୧ 
                       i ൌ i ൅ 1 
                       Remove the points S୧ which fit from remaining points to form new 
remaining points P୫,୧ 
Forming the level set function representation from collected implicit functions by Boolean 
operations: Φ୳ ← ሼΦଵ,… ,Φ୧ሽ 
End 
Output: level set function representation of the used part Φ୳ 

 

Figure 7. An example of defect segmentation from point cloud by the random walks 
algorithm. 

To construct the pre-machining feature, the first step is to segment surface defects from 3D scan 
data. Many methods for surface defect segmentation have been presented in the literature [21,42,43]. 
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In this work, random walks for unorganized point cloud segmentation [42] is adopted, since it does 
not rely on strong assumptions made on the characteristics of the expected defect or the geometry of 
the surrounding area. The algorithm segments defect areas on a weighted, undirected k-nearest 
neighbour graph (k-NNG) defined by local changes in point cloud properties. Since it is not the 
contribution of the authors’ work, the detailed algorithm is not demonstrated. The interested reader 
can refer to the original work [42]. An example of the defect segmentation from point clouds by the 
random walks algorithm is shown in Figure 7. In the figure, the blue points indicate the points 
without defects and red points refer the points on the defective area. 

Different machining features can be applied to carve out the defect area. In this study, the 
authors only investigate two basic machining features for the sake of simplicity. It is trivial to extend 
the method for other machining features. The hole and rectangular pocket are shown in Figure 8, and 
the level set function to represent these features are presented in Eq (6). 

  

(a) Hole (b) Rectangular pocket 

Figure 8. Hole and recetnagular pocket features. 

Hole:	 Φ ൌ min ቄሾܴଶ െ ሺݔ െ ଴ሻଶݔ െ ሺݕ െ ,଴ሻଶሿݕ
ு

ଶ
െ ሺݖ െ ,଴ሻݖ

ு

ଶ
൅ ሺݖ െ ଴ሻݖ ቅ	

Rectangular	pocket:	 Φ ൌ min ቄு௫
ଶ
െ ሺݔ െ ,଴ሻݔ

ு௫

ଶ
൅ ሺݔ െ ,଴ሻݔ

ு௬

ଶ
െ ሺݕ െ ,଴ሻݕ

ு௬

ଶ
൅

ሺݕ െ ,଴ሻݕ
ு௭

ଶ
െ ሺݖ െ ,଴ሻݖ

ு௭

ଶ
൅ ሺݖ െ  ଴ሻቅݖ

(6) 

It is worth investigating the type and parameters of the machining feature, which leads to 
minimal materials being carved out. Meanwhile, the machining feature must remove all the defects. 
The problem can be mathematically formulated as a constrained optimization problem. For a given 
machining feature, the optimization problem is solving the optimal parameters. The objective 
function is minimizing the volume of the given machining feature by integrating dݔdݕdݖ in the 
material domain, referred to Eq (7). 

min.	 	 	 ݂ሺ܉ሻ ൌ නHሺΦሺ܆,  (7) ݖ݀ݕ݀ݔሻሻ݀܉

where Hሺሻ is the Heaviside function,  Φሺሻ is the level set function for the given machining feature, 
܆ ൌ ሺݔ, ,ݕ ܉ ,ሻݖ ൌ ሺܽଵ, … , ܽ௡ሻ which indicates the parameters for the given machining feature. 

To satisfy the condition that all defects are removed, the defective points need to be enclosed by 
the machining feature. Assuming there are defect points ሺ࢖ଵ, ,ଶ࢖ … ,  ெሻ, M series of constraints are࢖
formulated as in Eq (8) and the schematic plot is presented in Figure 9. 
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࢙. ࢚.	 	 g୧ሺ܉ሻ ൌ Φሺܘ୧, ሻ܉ ൒ 0, i ∈ ሼ1,… ,Mሽ (8) 

 

Figure 9. Schematic plot: the defective points are enclosed by the boundary of the 
pre-machining feature. 

Lagrange formulation of this problem is written as: 

ࣦሺܽଵ, … , ܽ௡, ,ଵߣ … , ,௡ߣ ,ଵߟ … , ௡ሻߟ ൌ ݂ሺܽଵ, … , ܽ௡ሻ െ෍ߣ௜

ெ

௜ୀଵ

ሼ݃௜ሺܽଵ, … , ܽ௡ሻ െ  ௜ଶሽ (9)ߟ

where ߣ௜ is the i-th Lagrange multiplier and ߟ௜ is the i-th slack variable.  

The sensitivity 
డࣦ

డ௔భ
 of the Lagrange formulation is derived through Eq (10); others can be 

calculated similarly.  
߲݂
߲ܽଵ

ൌ න
߲HሺΦሺ܆, ሻሻࢇ

߲Φ
߲Φ
߲ܽଵ

݀Ω ൌ නߜሺΦሺ܆, ሻሻࢇ
߲Φ
߲ܽଵ

݀Ω (10) 

where ߜ is the Dirac delta function. 
This problem can be solved with a gradient-based optimization solver by updating the variables 

ܽଵ, … , ܽ௡, ,ଵߣ … , ,௡ߣ ,ଵߟ … ,   .௡ with their corresponding sensitivityߟ
Examples of the optimal parameters of a hole and a rectangular pocket features are illustrated in 

Figure 10. From the two pre-machining features, the minimal volume of the feature can be 
determined. In this example, the hole feature has a volume of 3.657	 mmଷ and rectangular pocket 
has the volume of 4.3665	 mmଷ. Therefore, the hole feature is optimal for pre-machining.  

2.4. Intersection part extraction 

As the level set function of the used part and final part are formulated, the relative position 
needs to be identified between two solid models to prepare for feature extraction. The objective is to 
maximize the overlapping material volume because the cost of AM is strongly affected by the 
volume of the new material to deposit. 
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Figure 10. Examples of hole and rectangular features for defective points. 

Φ௨ and Φ௙ are the level set functions of the used part and the final part, respectively, within 

the global coordinate system ܆ ൌ ሺݔ, ,ݕ  .෩ is a local coordinate system attached to the used part܆ .ሻݖ
Through Eq (11), an optimization problem can be formulated to figure out the translation and 
rotation of the local coordinate system (܆෩) needed to maximize the overlapping volume between Φ௨ 
and Φ௙.  

൤܆
෩
1
൨ ൌ ൤ࢠ܀ሺߠ௫ሻ࢟܀൫ߠ௬൯࢞܀ሺߠ௭ሻ ,௫ݐሺ܂ ,௬ݐ ௭ሻݐ

૙ 1
൨ ቂ܆
1
ቃ (11) 

where ࢞܀,	 ,࢟܀ ,௫ߠ are the rotation matrix along x,y,z direction with the variables of ࢠ܀ ,௭ߠ  is ܂ ,௬ߠ

the translation matrix with the variables of ݐ௫, ,௬ݐ  .௭ݐ
The used part Φ௜ሺߠ௫, ,௭ߠ ,௬ߠ ,௫ݐ ,௬ݐ  ௭ሻ has translation variables and rotation variables. The finalݐ

part is fixed by Φ௙. The intersection part (Φ௜) is the intersection of the used part and the final part, 
given as:  

Φ୧ሺߠ௫, ,௭ߠ ,௬ߠ ,௫ݐ ,௬ݐ ௭ሻݐ ൌ Φ୳ሺߠ௫, ,௭ߠ ,௬ߠ ,௫ݐ ,௬ݐ ௭ሻݐ ∩ Φ୤ ൌ min൫Φ୳൫ߠ௫, ,௭ߠ ,௬ߠ ,௫ݐ ,௬ݐ ,௭൯ݐ Φ୤൯ (12) 

The maximization optimization problem can be formulated of maximizing the intersection part 
by optimizing	 the	 variables	 ,௫ߠ ,௭ߠ ,௬ߠ ,௫ݐ ,௬ݐ 	௭ݐ , through in Eq (13): 

min.	 	 	 ݂൫ߠ௫, ,௭ߠ ,௬ߠ ,௫ݐ ,௬ݐ ௭൯ݐ ൌ െනHሺΦ୧ሺ܆, ,௫ߠ ,௭ߠ ,௬ߠ ,௫ݐ ,௬ݐ ௭ሻሻݐ ݀Ω (13) 

The sensitivity 
డ௙

డ୲ೣ
 of the objective function is derived through Eq (14); others can be 

calculated similarly.  
∂݂
∂t୶

ൌ െන
∂HሺΦ୧ሺߠ௫, ,௭ߠ ,௬ߠ ,௫ݐ ,௬ݐ ௭ሻሻݐ

∂Φ୧

∂Φ୧

௫ݐ∂
dΩ ൌ െනδሺΦ୧ሺߠ௫, ,௭ߠ ,௬ߠ ,௫ݐ ,௬ݐ ௭ሻሻݐ

∂Φ୧

∂t୶
	 ݀Ω (14) 

This problem can be solved with a gradient-based optimization solver. In the gradient-based 
optimization algorithm, the ሺߠ௫, ,௭ߠ ,௬ߠ ,௫ݐ ,௬ݐ 	௭ሻݐ  = (0,0,0,0,0,0) is set as the initial values. 
Generally, to prevent a local optimum issue, a multi-start strategy is suggested, i.e., to parallelly run 
the optimization program with a different initial guess of variables. 

Figure 11 demonstrates an example of the intersection part extraction. The used part and the 
final part are represented by its level set function Φ௨ and Φ௙ respectively. Eq (13) helps to find the 
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optimal transformation to transform  Φ௨  to Φ෩௨  with the optimized rotation angle (ߠ௫ ൌ
െ90௢, ௬ߠ ൌ 0௢, ௭ߠ ൌ 0௢) and translation (ݐ௫ ൌ െ20.1, ௬ݐ ൌ െ110.7, ௭ݐ ൌ 15). The intersection part 

Φ௜ can be obtained by Φ෩௨ ∩ Φ௙. 

 

Figure 11. An illustration of the intersection part extraction: (a) the original used part 

Φ௨ and final part Φ௙; (b) the transformed used part Φ෩௨ and final part Φ௙; (c) the 

intersection part Φ௜. 

2.5. Intersection part modification for collision-free remanufacturing 

The geometry of intersection part geometry is not generally acceptable for AM processes. 
Figure 12 provides an illustration of collision problems in the DED process, and the material 
deposition nozzles may have collisions with the intersection part. Therefore, it is crucial to modify 
the intersection part by analyzing the tool accessibility constraints of the DED process. 

 

Figure 12. DED nozzle induced collisions. 

Initially, the intersection part and DED nozzle are formulated as Φ௜ and Φ௡ by the level-set 
representation, respectively. In addition, the deposited material volume by AM is represented as 
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Φௗ ൌ Φ௙/Φ௜ , as shown in Figure 13. The voxel representations for Φ௜ , Φ௡  and Φௗ  are 
computing by applying Heaviside functions ௜ܸ ൌ HሺΦ௜ሻ, ௡ܸ ൌ HሺΦ௜ሻ, and ௗܸ ൌ HሺΦௗሻ, separately.  

  

(a) (b) 

Figure 13. Representations in the DED nozzle collision problem: (a) The level-set 
representations for DED nozzle, deposition material and intersection part; (b) 3D voxel 
representation for DED nozzle. 

As far as the collision detection is concerned, the collision-free rigid motion of the DED nozzle 
in rigid motion needs to be calculated. In this study, dilation as a morphology operation is adopted to 
analyze the spatial planning of the DED nozzle. As one of the basic operations in mathematical 
morphology, dilation operation ⊕ is defined as: 

ܤ⊕ܣ ൌራܣ௕
௕∈஻

 (15) 

where ܣ௕  represents the solid ܣ transformed by a rigid transformation ܾ, ܤ is a structuring 
element, which is termed filters. For level set function represented models, the dilation operation is 
expressed as: 

Φ஺ ⊕Φ஻ ൌ ራ Φ஺

஍ಳሺ௕ሻஹ଴

ሺܾሻ (16) 

For the DED process, the materials are deposited on the deposition volume layer by layer, 
which indicates that the tip of the deposition nozzle requires going through each point of the 
deposition volume (Figure 14a). It is crucial to mention that in a practical case, the vertical distance 
between the tip of the DED nozzle and the deposition area is not zero. The vertical distance is 
assumed to be zero for the sake of simplifying in explaining the proposed method. The technical 
implantation of the approach will be discussed with considering the vertical distance later in this 
section. It is meaningful to explore all motions of the DED nozzle to deposit the materials in the 
deposition volume. In the proposed method, the motions of the DED nozzle during deposition is 
calculated by dilating the deposition volume by the DED nozzle: Φ௠ ൌ Φ௡ ⊕Φௗ, and the authors 
define Φ௠ as motion space of the DED nozzle, as presented in Figure 14b. 
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Theorem: 
The modified intersection part Φ෩௜ can be derived from: Φ෩௜ ൌ Φ௜ ∖ Φ௠ ൌ Φ௜ ∖ ሺΦ௡ ⊕Φௗሻ, 

which leads no collision with the DED nozzle in operation, as shown in Figure 14d. 
Proof: 
In the condition of no collision occurring during deposition, Φ෩௜ ∩ Φ෩௠ ൌ ∅  is required to be 

satisfied, where Φ෩௠ is the new motion space derived from the modified intersection part Φ෩௠ ൌ
Φ௡ ⊕Φ෩ௗ. Φ෩௠ can be expanded into: 

Φ෩௠ ൌ Φ௡ ⊕ ൫Φ௙\Φ෩௜൯ ൌ Φ௡ ⊕ ቀΦ௙ ∩ ൫െΦ෩௜൯ቁ ൌ Φ௡ ⊕ ቀΦ௙ ∩ ሺെሺΦ௜ ∩ ሺെΦ௠ሻሻሻቁ   (17) 

where Φ௙  indicates the level set function of the final part. According to the associativity, 
commutativity of Boolean operation and distribution of dilation, Eq (17) can be rearranged as: 

Φ෩௠ ൌ ሺΦ௡ ⊕Φௗሻ ∩ ሺΦ௡ ⊕Φ௠ሻ   (18) 

Therefore, no collusion condition is derived as: 

Φ෩௜ ∩ Φ෩௠ ൌ Φ௜ ∩ ሺെΦ௠ሻ ∩ ሺΦ௡ ⊕Φௗሻ ∩ ሺΦ௡ ⊕Φ௠ሻ (19) 

Since Φ௡ ⊕Φௗ ൌ Φ௠ , ሺെΦ௠ሻ ∩ ሺΦ௡ ⊕Φௗሻ ൌ ∅. So, Φ෩௜ ∩ Φ෩௠ ൌ Φ௜ ∩ ∅ ∩ ሺΦ௡ ⊕Φ௠ሻ. Due 
to the annihilator law for ∩, Φ෩௜ ∩ Φ෩௠ ൌ ∅. 

 

  

(a) Motions of the DED nozzle during deposition (b) motion space of the DED nozzle 

 
 

(c) motions space and original intersection part (d) modified intersection part 

Figure 14. Modification of the intersection part. 

The authors develop an algorithm to implement the proposed method for discrete level set 
function representations, also considering the vertical distance (d) between the nozzle tip and 
deposition area. The pseudocode for the proposed algorithm is presented in Table 2. An example of 
the implantation of the proposed method is shown in Figure 15. Figure 15a presents the original 
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intersection part and Figure 15b shows deposition volume derived from the original intersection part 
by Φ௙\Φ௜. The motion space calculated from Eq (16) is shown in Figure 15c, and Figure 15d gives 

the modified intersection part Φ෩௜. 

  

(a) original intersection part (b) deposition volume 

(c) motion space (d) modified intersection part. 

Figure 15. An example for the intersection part modification method. 

Table 2. Pseudocode of the algorithm. 

Input: discrete level set function Φ௡, Φௗ and Φ௜; vertical distance d 
Φ௠ ← 0 with size of Φௗ 
[x, y, z] = index of Φௗ ൐ 0 in x,y,z directions 
The position of the tip is obtained from Φ௡ as x_tip, y_tip, z_tip 
For i = 1 to size of x direction: 
            Move on x direction M୶ = x (i) - x_tip 

            Move on y direction M୷ = y (i) - y_tip 

            Move on z direction M୸ = z (i) - z_tip + d 

            New position of DED nozzle Φ௡෤  = translating the Φௗ over M୶,M୷,M୸ 

            Φ௠ ൌ Φ௠ ∪ Φ௡෤ ൌ max	ሺΦ௠,Φ௡෤ሻ 
End 
Output: discrete level set function of modified intersection part Φ෩௜ ൌ Φ௜\Φ௠ ൌ min	ሺΦ௜, െΦ௠ሻ 
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2.6. Individual feature extraction 

As the modified intersection part has been calculated, a subtractive manufacturing volume 
(SMV) and an additive manufacturing volume (AMV) can be calculated in their level set function 
representations as: 

Φୗ୊୚ ൌ Φ௨ ∖ Φ෩௜ 

Φ୅୊୚ ൌ Φ௙ ∖ Φ෩௜   
(20) 

Individual features are required to be recognized and extracted from SMV and AMV. The 
research of CSG-based feature recognition has been developed from the 1990s , but this technique 
did not go far primarily due to the non-uniqueness of CSG trees [38]. Recently, there are some 
research efforts have been devoted to address non-uniqueness problems in CSG and show the 
strength in recognize sophisticated machining features by 3D convolution neuron network [44,45]. 
Therefore, developing a new machining feature recognition method is not a contribution to this study. 
The level set function representation of SFV is converted into 3D voxel grid information Vୗ୊ୋ by 
Heaviside function	 H, and then subtractive features (SFs) can be extracted by any CSG-based 
feature recognition techniques; see Eq (21).  

Vୗ୊୚ ൌ HሺΦୗ୊୚ሻ → ሼSFଵ, SFଶ, SFଷ, . . . SF௡ሽ (21) 

AFV comprises both additive features (AFs) and SFs. In the AM process, leaving a sufficient 
over-thickness to have a finishing operation is vital for meeting the tolerance and surface roughness 
requirements. The over-thickness value is estimated by the required specifications of the final feature, 
the surface roughness generated by the AM processes and the machining conditions [34]. With 

considering over-thickness, the modified additive feature volume (AFV) is modified. The level set 

function representation of  AFV can be derived via Eq (22), where t represents the over-thickness 

value. The residual subtractive feature volume is obtained via Eq (23). Similarly, the individual SFs 
could be recognized by a CSG-based feature recognition method by Eq (24). 

Φ୅୊୚ ൌ ሺΦ୅୊୚ ൅ tሻ ∖ Φ෩୧ (22) 

Φୗ୊୚ ൌ Φ୅୊୚ ∖ Φ୅୊୚ (23) 

Φୗ୊୚ → ሼSF௡ାଵ, SF௡ାଶ, SF௡ାଷ, . . . SF௡ା௠ሽ (24) 

3. Cost-driven process planning for remanufacturing 

A large number of AFs and SFs are obtained from the proposed feature extraction method. Each 
feature represents an operation in the AM or SM process. Under considering the topological 
relationship of different features, the sequences of some operations are forced. Therefore, precedence 
constraints between operations are required to formulated to respect the hybrid additive-subtractive 
manufacturing rules. The precedence constraints are comprehensively summarized, and interested 
readers can refer to [1,34]. 
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Although precedence constraints are formulated, some residual process sequences are still 
undermined. In order to develop the process planning problem into a process sequence optimization, 
the cost for each operation/feature is required to be estimated. With precedence constraints between 
features and cost model for each feature, an integer programming model is formulated to calculate 
the optimal process plan that minimizes the overall remanufacturing cost.  

3.1. Cost estimation for DED and CNC machining process 

The motivation of the cost estimation for this study is approximating the cost models for the 
integer programming model to determine the optimal process plan, rather than exploring the 
precise cost for each operation. Although there are numbers of publications are relevant to cost 
estimation for the subtractive and additive manufacturing process [46–48], few researchers focus 
on the constructing cost model for hybrid additive-subtractive manufacturing system, explicitly 
considering the change cost between two different operations. Therefore, in this section, rough 
and fast estimations are given for SFs and AFs, and the change costs between various features are 
also introduced. 

3.1.1. Cost of SF 

The total cost comprises operation cost and tool cost as: 

Cୗ୊ ൌ C୦୦ ∗ tୗ୊ ൅ C୲୭୭୪ ∗ n୲୭୭୪ (25) 

where Cୗ୊ is the total cost of an SF, C୦୦ is the hourly operation cost for HM machine operation, 
tୗ୊ is the machining time for the SF, C୲୭୭୪ is the cost of each cutting tool, and n୲୭୭୪ is the number 
of tool changes. Most commercial CAM software systems can estimate the machining time  tୗ୊ by 
dividing the tool path in the milling process by the programmed feed rate.  

3.1.2. Cost of AF 

The cost of AF is determined by the machine cost and material consumption cost, see Eq (26).  

C୅୊ ൌ C୦୦ ∗ t୅୊ ൅ C୫ି୅୊ (26) 

where C୅୊ is the total cost of an AF, C୦୦ is the hourly operation cost for HM machine operation, 
t୅୊ is the building time of the AF, and C୫ି୅୊ is the cost of material consumption.  

The cost of material consumption in DED process is approximately calculated from the volume 
of the feature and its support structure, as: 

C୫ି୅୊ ൌ
ሺV୅୊ߩ ൅ V୅୊ିୱߩሻ

ߤ
C୫ୟ୲ୣ୰୧ୟ୪
୳୬୧୲  (27) 

where,	 V୅୊ and ୅ܸ୊ିୱ refer to the volume of the building part and support structure, ߩ is the 
material density, ߩ is the material density of the support structure, and C୫ୟ୲ୣ୰୧ୟ୪

୳୬୧୲  indicates the 
price per unit of material. In DED process, complex gas flow leads a diffusion of powder 
distribution, which results the low powder efficiency because some powder cannot reach to the 
meltpool. Powder efficiency rate ߤ varies between different machines, and in this research the 
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value is referred to [49,50], as 70%. 
For the DED process, the building time t୅୊ estimation adopted an analytical build time model 

which is proposed in [51], and the general equation is: 

t୅୊ ൌ Deposition	 Time ൅ Rapid Movements Time (28) 

This model uses G-code of the part as input and an algorithm extracts the kinematic 
characteristics of the nozzle to estimate very accurate build time results, since the acceleration and 
deceleration of the machine head is considered. 

3.1.3. Cost of change 

For the hybrid additive-subtractive system, the AM/SM operations are switching by changing 
different tools. It is crucial to discuss the cost of change between two consecutive operations since it 
is costly due to frequent tool changing. Besides the tool change cost, the re-orientation of the 
workpiece also results in costs. In this study, CR and CT represent indexes of the re-orientation cost, 
and the tool change cost, respectively. The details of the calculation are given below. 
1) Re-orientation cost: 

While the orientation of the workpiece is switched in the HM machine, a re-orientation change 
occurs that requires workpiece fixing and laser calibration. 

CR ൌ C୦୦ ∗ t୰ୣ (29) 

For the index of feature i, j ∈ F ൌ ሼ1,2, . . . , Fሽ,  the index of cost for orientation CR is formed 
by grouping the cost of orientation between any two features.  
2) Tool change cost: 

For HM machine the tool change cost is formulated as: 

CT ൌ C୦୦ ∗ t୲ୡ (30) 

Similarly, the index of tool change cost CT is constructed by grouping the cost of tool change 
cost between any two features. 

  
(a) precedence-constrained model (b) optimal model 

Figure 16. Directed graphs representation. 

3.2. Sequence optimization 

As the cost model for each feature, change cost, and precedence constraints are obtained. The 
process sequence optimization problem is formulated as an integer programming model and solved 
by branch and fathoming algorithm [52]. In a directed graph visualization of the model, a node 
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represents a feature/operation and the cost model for them is calculated from Section 4.1.1 and 4.1.2, 
and the directed line indicates the precedence relation between two features/operations and the change 
costs are derived from Section 4.1.3. As an example, AFs (AF1 and AF2) and SFs (SF1,SF2, SF3) 
are extracted from the proposed feature recognition method. The cost for each node is calculated and 
the change cost between any two nodes are formulated. The precedence constraints are applied to 
these nodes initially as dash lines (Figure 16a). With the optimization of the integer programming 
model, the output is a sequence of operations that results in minimal cost (Figure 16b). 

  
(a) (b) 

Figure 17. Tests part: (a) point cloud of the used part (b) CAD model final part. 

Modelling history: 
Φ௙భ ൌ maxሺΦୡ୳ୠୣଵ, Φୡ୳ୠୣଶ, Φ୤୰ୣୣሻ 

Φ௙మ ൌ min	ሺΦ௙భ, െΦୡ୷୪ଵ, െΦୡ୷୪ଵ, െΦୡ୷୪ଵሻ 

Φ௙ ൌ min	ሺΦ௙మ, െΦୡ୳ୠୣଷ, െΦୡ୳ୠୣସሻ 
Notations: 
Φୡ୳ୠୣ: level set function for cube; 

Φୡ୷୪: level set function for cylinder; 

Φୡ୷୪: level set function for cylinder; 

Φ୤୰ୣୣ: level set function for freeform feature; 
Φ௙: level set function for final part. 

Figure 18. Level set representation for the final part. 

4. Case study 

In this section, the proposed method is verified by the correctness and efficiency of a virtual 
case study.  

Figure 17a shows the point cloud scanned from the used part, which is required to be 
remanufactured. Figure 17b represents the CAD model of the final part, which has different 
functionalities compared to the used part. Especially, the final part has primitive features and 2.5D 
freeform feature. 

The level set function for the final part is built from the CAD modelling on a design domain 
of size 150 × 150 × 150 with grid size ∆ݔ (0.5 mm), as Figure 18 shown. In the figure, the 
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modelling history is also given, and the mathematical formulation of each level set function is 
provided in the Appendix. 

In terms of the used part, the RANSAC surface fitting technique is adapted and the max 
distance and angular distance variants are set as 0.002 m and 5 degrees, respectively. The surface 
fitting results are shown in Figure 19a. By implementing the k-NNG-based defect identification 
method, the defect points are differentiated from the point clouds Figure 19b. The level set function 
for the used part is constructed in Figure 20a with modelling history: Φ௨ ൌ
min	ሺΦୡ୳ୠୣଵ, െΦୡ୳ୠୣଶ, െΦୡ୳ୠୣଷ, െΦୡ୳ୠୣସሻ	 and formulations for each level set functions are given in 
the Appendix. The optimal pre-machining feature can be obtained from the defect points, and the 
used part is updated with the pre-machining feature, as shown in Figure 20b. 

(a) Surface fitting results 
(b) defect area (red points) from point clouds of 

the used part. 

Figure 19. Surface fitting results and defect area identification. 

 

(a) Level set representation for the used part (b) updated used part with pre-machining feature

Figure 20. Level set representations for the used part and updated used part. 

Table 3. The optimal translation and rotation for test parts. 

 Translation (mm) Rotation (°) 

 ௭ߠ ௬ߠ ௫ߠ ௭ݐ ௬ݐ ௫ݐ

Optimal variables: 4.07 4.21 −1.33 0 0 0 
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The proposed intersection part extraction algorithm is applied to find the relative position 
between the used part and the final part. The optimization results of the translation and rotation 
variables are listed in Table 3 and the output of the intersection part is shown in Figure 21. 

(a) Optimal intersection part (b) convergence history of the intersection part 
maximization 

Figure 21. The results of optimal intersection part. 

 

(a) DED nozzle (b) deposition volume 

  

(c) motion space of DED nozzle (d) modified intersection part 

Figure 22. The processes of the intersection part modification.  
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For the next step, the intersection part is modified by considering the collision problem in the 
DED process. The DED nozzle is modelled in level set function as shown in Figure 22a and the 
vertical distance d is set as 10 mm. Figure 22b shows the deposition volume, which is obtained by 
subtracting the final part by the original intersection part. The motion space that represents all possible 
motions of the DED nozzle during deposition is derived from the proposed algorithm (Table 2); see 
Figure 22c. The result of the modified intersection part through subtracting the original intersection 
part by motion space is presented in Figure 22d. 

By subtracting the final part and the used part by the modified intersection part, SFV and AFV 
can be collected, respectively. Then, each SF and AF are extracted, as presented in Figure 23. With 
respecting hybrid manufacturing rules, precedence constraints are applied to all features.  

The parameters and machine resources that are used in the cost estimation are listed in Table 4. 
In this study, Ti-6Al-4V is used as the material for the DED process. The sequence optimization 
problem is solved by a branch-and-bound solver and the optimized process plans are presented in 
Table 5, and the optimal remanufacturing plan costs $ 1835.24. 

 

Figure 23. The results of SFs and AFs extraction from SFV and AFV. 

Table 4. Manufacturing parameters and manufacturing resources for cost estimation. 

Manufacturing parameters Manufacturing resources 

Parameter Notation Value Tool ID Tool type Diameter (mm) 

Machine cost /hour C୦୦ 100 $/h T1 End mill 20 

Each tool cost C୲୭୭୪ 5 $ T2 End mill 10 

Density 4.43 ߩ ݇g/dm3 T3 End mill 5 

Support structure ratio 0.4 ߩ/ߩ T4 Drill 5 

Unit price of the metal powder C୫ୟ୲ୣ୰୧ୟ୪
୳୬୧୲  450 $/kg T5 Drill 10 

Re-orientation time t୰ୣ 0.35 h T6 DED  - 

Tool change time t୲ୡ 0.17 h    
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Table 5. Optimal process plan. 

Sequence 1 2 3 4 5 7 8 9 10 11 12 

Features SF1 SF2 AF1 SF9 AF2 SF5 SF8 SF3 SF6 SF7 SF4 

Machine M1 M1 M2 M1 M2 M1 M1 M1 M1 M1 M1 

TAD + z + z + z + z + z + y + x + x + y + y + y 

Tool T1 T1 T6 T2 T6 T4 T4 T4 T2 T3 T3 

5. Conclusions 

Nowadays, the combination of AM and SM in a single workstation is emerging to provide a 
more flexible and productive and capable manufacturing approach comparing with traditional 
manufacturing strategies. Because it utilizes the merits of AM and SM to add and remove features 
flexibly, HM has the potentials to raise remanufacturing technology to a higher level. In this study, 
taking to account the benefits of the HM process, hybrid DED-CNC manufacturing technology in a 
single workstation is investigated to remanufacture an end of life part (used part) to a new part (final 
part) with new functionalities, avoiding the material recycling process.  

This paper has demonstrated a novel feature extraction algorithm and a cost-driven process 
planning method for hybrid DED-CNC manufacturing in a remanufacturing context. Specifically, 
starting from point clouds for the used part and a solid CAD model for the final part, geometry 
modeling is performed to transform the input to level set representations. Also, the defects on the 
used part are investigated and an optimal pre-machining feature is derived from the proposed method 
and applied to remove the perturbation caused by the defects. The feature extraction method, 
developed under the level set framework, is proposed as an automated process to extract the AM and 
SM features for remanufacturing process planning, which addresses the numerical calculation 
between two solid models. Moreover, the collision problems of DED nozzle during deposition are 
considered and this method provides collision-free motions. With the carefully developed hybrid 
DED-CNC cost model, the process planning work is converted to an -integer programming model as 
an optimization problem. Finally, the optimal process plan can be determined by solving the 
optimization problem. 

For future work, there are more research works need to be done to expand the current 
methodology. A practical case study is required to validate the work presented in this paper. In the 
next stage, the relevant use case can be remanufacturing for high-value component, such as mold, die, 
and turbine blade. Moreover, in the present study, the AM and SM processes are considered as a 
3-axis type. However, the feature extraction and process planning problems for multi-axis capability 
need to be addressed. In addition, the fixture design, AM support structures [53] in the real cases 
need to be investigated in the future work. In the metal additive manufacturing, the residual 
deformation is a significant problem and it also may affect the feature extraction and process 
planning, so it can also be explored in the further studies. 
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Appendix 

Level set functions for the final part: 

Φୡ୳ୠୣଵ ൌ min	ሺ120	 െ 	 ,ݔ 	ݕ െ 	 30, 110	 െ 	 ,ݕ 	ݕ െ 	 40, 25	 െ 	 ,ݖ 	ݖ െ 	 10ሻ; 

Φୡ୳ୠୣଶ ൌ min	ሺ111	 െ 	 ,ݔ 	ݔ െ 	 39, 98.5	 െ 	 ,ݕ 	ݕ െ 	 51.5, 35	 െ 	 ,ݖ 	ݖ െ 	 25ሻ; 

Φୡ୳ୠୣଷ ൌ min	ሺ89.5	 െ 	 ,ݔ 	ݔ െ 	 60.5, 45	 െ 	 ,ݕ 	ݕ െ 	 40, 21.75	 െ 	 ,ݖ 	ݖ െ 	 13.25ሻ; 

Φୡ୳ୠୣସ ൌ min	ሺ89.5	 െ 	 ,ݔ 	ݔ െ 	 60.5, 59	 െ 	 ,ݕ 	ݕ െ 	 60.5, 32	 െ 	 ,ݖ 	ݖ െ 	 28ሻ; 

Φୡ୷୪ଵ ൌ min	ሼ6.25	 െ	 ሺݖ	 െ 	 30ሻଶ െ	 ሺݕ	 െ 	 75ሻଶ, 114.75 െ ,ݔ ݔ െ 104.75ሽ; 

Φୡ୷୪ଶ ൌ min	ሼ25	 െ	 ሺݖ	 െ 	 17.5ሻଶ 	 െ 	 ሺݕ	 െ 	 75ሻଶ, 120	 െ 	 ,ݔ 	ݔ െ 	 105ሽ; 

Φୡ୷୪ଷ ൌ min	ሼ6.25	 െ	 ሺݖ	 െ 	 17.5ሻଶ 	 െ 	 ሺݔ	 െ 	 68ሻଶ, 50	 െ 	 ,ݕ 	ݕ െ 	 45ሽ; 

Φୡ୷୪ସ ൌ min	ሼ6.25	 െ	 ሺݖ	 െ 	 17.5ሻଶ 	 െ 	 ሺݔ	 െ 	 82ሻଶ, 50	 െ 	 ,ݕ 	ݕ െ 	 45ሽ; 

Φ୤୰ୣୣ ൌ min	ሼെሺݔ െ 55ሻଷ ൅ ሺݔ െ 55ሻଶ ∗ ሺ18 ∗ ሺݕ െ 55ሻ ൅ 19200ሻ ൅ ሺݔ െ 55ሻ ∗ ሺ108 ∗ ሺݕ െ
55ሻଶ െ 46080 ∗ ሺݕ െ 55ሻ ൅ 216 ∗ ሺݕ െ 55ሻଷ ൅ 15360 ∗ ሺݕ െ 55ሻଶ, ݔ ൅ ݕ െ 110,83 െ ,ݖ ݖ െ 68ሽ. 

Level set functions for the used part: 

Φୡ୳ୠୣଵ ൌ min	ሺ	 125	 െ 	 ,ݔ 	ݔ െ 	 25, 112.5	 െ 	 ,ݕ 	ݕ െ 	 37.5, 37.5	 െ 	 ,ݖ 	ݖ െ 	 12.5ሻ; 

Φୡ୳ୠୣଶ ൌ min	ሺ115	 െ 	 ,ݔ 	ݔ െ 	 35, 102.5	 െ 	 ,ݕ 	ݕ െ 	 47.5, 37.5	 െ 	 ,ݖ 	ݖ െ 	 32.5ሻ; 

Φୡ୳ୠୣଷ ൌ min	ሺ70	 െ 	 ,ݔ 	ݔ െ 	 40, 87.5	 െ 	 ,ݕ 	ݕ െ 	 52.5, 32.5	 െ 	 ,ݖ 	ݖ െ 	 27.5ሻ; 

Φୡ୳ୠୣସ ൌ min	ሺ110	 െ 	 ,ݔ 	ݔ െ 	 80, 87.5	 െ 	 ,ݕ 	ݕ െ 	 52.5, 32.5	 െ 	 ,ݖ 	ݖ െ 	 27.5ሻ. 
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