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Abstract: Dynamic computer forensics is a popular area in computer forensics that combines network 
intrusion technology with computer forensics technology. A novel dynamic computer forensics model 
is proposed based on an artificial immune system. Simulating the artificial immune mechanism, the 
definitions of self, non-self, and immunocyte in the network transactions are given. Then, detailed 
evolution processes for immature detectors, mature detectors, and memory detectors are given. Real-
time network risk evaluation equations are constructed, which can compute the risk of each type of 
network attack. Finally, computer forensics is accomplished according to the real-time network risk. 
The immune cells dynamically capture the real-time computer system status of the invading antigen, 
including CPU utilization, memory utilization, network bandwidth utilization status, etc. Theoretical 
analysis and comparative experimental results demonstrate that the proposed model improves the real-
time efficiency and performance with low technical requirements for technicians compared with 
existing models. 
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1. Introduction 



7222 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7222–7233. 

Existing computer forensics models are mostly static. Its research and network monitoring 
technology, such as intrusion detection and real-time network risk assessment, are separated from each 
other. Effective electronic evidence can only be extracted after an attack by analyzing the fuzzy traces 
from event logs, hard disk files, and the information left in the system. However, for some highly 
skilled network intruders or hackers, the relevant logs, hard disk files, and other traces can be 
completely destroyed or modified, resulting in the ineffectiveness of measures taken afterward, even 
for the best analysis technologies [1,2]. Therefore, the combination of network intrusion technology 
and computer dynamic forensics technology, which takes evidence when the system is invaded or 
attacked, has become a focus of much research in computer forensics. 

Early real-time dynamic forensics approaches mainly used network intrusion detection systems 
(NIDS), honeypots, and other network security technologies or tools to analyze and detect real-time 
network data flow [3]. However, NIDS have a very high false negative and false positive rate, resulting 
in the inaccuracy or incomprehensibility of detection results and poor practicability. Moreover, NIDS do 
not process network data according to procedures prescribed by law and entirely rely on network data 
fragments for detection. From the legal point of view, the evidence is not complete, and the electronic 
evidence obtained by the technology does not meet the requirements of evidence collection [2]. 

Honeypots can provide some evidence for tracking the attacker and their behavior by simulating 
the vulnerability of the host and fooling the attacker with a false attack target. However, at present, 
this technology is not mature, and there is possible subjective deception. Therefore, the electronic 
evidence collected by honeypots has not been accepted as electronic legal evidence. Finally, Metasploit, 
a dynamic forensics tool, reconstructs the crime scene by memory extraction.  

From the perspective of forensics, all existing tools have certain limitations [4]. In addition, these 
forensics methods cannot identify unknown attacks. Pi et al. proposed a method to obtain evidence 
from the Internet of things equipment data using mobile terminal data [5]. Hosseini et al. reduced the 
false alarm rate and improved detection efficiency significantly by compressing network worm traffic 
through digital signal processing [6]. Talib introduced a black box test method based on functional 
scenes [7]. Mohammed et al. proposed a computer forensics method based on big data [8]. Park 
proposed a forensics method for developing a synthetic corpus [9]. Yee-Yang et al. introduced a cloud 
storage service CloudMe, which is helpful for the forensics of big data endpoints supported by cloud 
computing [10]. These methods have a certain degree of effectiveness but are not suitable for all 
computer equipment or systems, and they are difficult to deploy in practical applications. 

Network security approaches based on artificial immune systems have long been regarded as one 
of the most important and promising research directions in the academic field [11–14]. For dynamic 
forensics, Tao proposed an immune-based network monitoring model that extracts dynamic forensic 
evidence based on an immune intrusion detection system [15]. Based on dynamic clonal selection, 
Ding et al. proposed an immune system model for intrusion monitoring and dynamic forensics [4]. 
Yang et al. proposed a computer forensics method based on an artificial immune system which has 
better real-time processing capabilities and adaptability [16]. However, these dynamic forensic 
methods are all based on the “self/non-self” recognition model proposed by Forrest et al. [17], where 
data is judged to be legal or illegal, and then dynamic forensic evidence is extracted. The amount of 
electronic evidence obtained is vast and most of this is invalid due to its inability to effectively 
distinguish and measure the harm caused by different types of attacks and attack intensity. Based on 
Danger Theory, Peng et al. proposed an automatic intrusion response system model which effectively 
reduced the number of intrusion responses and the cost of the response [12]. Wojciech et al. reviewed 
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recent computer forensics technologies [18]. Qi improved the K-means clustering algorithm, and then 
applied it to locate the computer and the network intrusion crimes’ real-time forensics. In their 
simulation experiments, including their analysis in MATLAB, their method obviously improves upon 
the existing K-means clustering approach [19]. Jeferson et al. introduced the major concepts of 
computer forensics and then describe the tools and related technology used in this area [20]. They 
discuss one case study for a Linux system, which involves computer monitoring, hardware and 
software analyses, chain of custody, and steganalysis. Finally, they used the NuDetective tool and 
prepared a computer forensics report. Therefore, this aimed to show a complete criminal investigation 
so that end users can duplicate the steps described in this work with low-level techniques. Flora et al. 
proposed a new methodology to support investigators during the analysis process, correlating evidence 
found through different forensics tools. The methodology was implemented by a system which can 
add semantic assertion data generated by forensics tools during extraction processes. These assertions 
enable more effective access to relevant information and enhance the retrieval by including reasoning 
abilities [21]. Existing computer forensics systems are faced with the problems of low forensics 
efficiency and difficulties in reconstructing the attack scene. The large number of low-quality alarms 
and forensics greatly affect the burden of system administrators. 

In order to solve above problems, this paper first defines the non-self and self immune cells of 
the immune system for network activities, and then proposes a computing maneuver that can reproduce 
the invasion or attack scenario to realize a real-time forensics model (ANAIM). The model combines 
the network intrusion detection and network real-time risk assessment, considers all kinds of attacks 
on the host and the overall network risk intensity in real time, and then dynamically captures the crime 
scene according to the specific risk to obtain electronic evidence. Theoretical analysis and 
experimental results demonstrate that the proposed model improves the real-time forensics efficiency 
and performance with low requirements for technicians. It provides a new and promising direction for 
computer forensics. 

The remainder of the paper is as follows: section 2 gives a theoretical model, section 3 provides 
comparative experiments and analysis, and the conclusions and future work are given in section 4. 

2. Theoretical model 

The network activity domain is defined as D = {0,1}l, in which l is a positive integer. The antigen 
set is defined as Ag D. Ag is a binary string that represents the characteristics of a network transaction 
by extracting the source and destination IP address, port number, protocol type, and part of the packet 
content from IP packets in network activities. The normal activity of a network is SelfSet Ag. The 
illegal activities or network attacks are NonselfSet, where NonselfSet Ag.SAg Ag. SAg is the antigen 
to be detected, SelfSet represents a normal network service transaction, and NonselfSet represents a 
network intrusion or attack. SelfSet∪NonselfSet=Ag, NonSelfSet∩selfSet= .  

The detector set of the immune system is defined as ID={<d, age, count, s>|d∈D, age∈N, count
∈N, s∈R }, where d is the detector’s gene from the set of existing detectors, age is the detector’s age, 
count is the number of matching detector, s is the risk of the detector, N is the set of natural numbers, 
and R is the set of real numbers. Here, the immune detector consists of mature detectors and memory 
detectors, ID = ME∪MT, and ME∩MT= . 

{ | , ( . , . )}MT x x ID y SelfSet x d y Match x count β         (1)




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{ | , ( . , . )}ME x x ID y SelfSet xd y Match xcount β         (2)

The matching relation in the network activity domain D is defined as Match = {<x, y>|x, y∈D, 
fmatch(x, y)=1}, where fmatch(x, y) is the matching degree of x and y. In the actual process, this is 
calculated by the Euclidean distance, Hamming distance, or r-continuous bits. The memory detector 
set, ME, is composed of detectors that do not match themselves, and the matching threshold of the 
antigen is greater than β. The mature detector set, MT, is composed of detectors that do not match with 
themselves, but the number of antigen matches does not reach the threshold β, which belongs to the 
set of natural numbers N. Similarly, <d, age> can be used to define the immature detector set UM, 
which can be randomly generated or by the antibody gene pool.  

UM = {<d, age>|d∈D, age∈N} (3)

Figure 1 gives the model structure and main processes [15]. The dotted arrow in the middle of 
this figure indicates the direction of cell evolution from bottom to top. First, an immature cell, UM, is 
randomly generated, and then after self-tolerance, the rest will evolve into the mature cell set, ME. For 
the mature cells, ME, if they can detect a certain number of antigens in their certain lifecycle, they will 
evolve into memory cells, MT. Otherwise, they will die. The solid arrow in the middle indicates the 
direction of detecting antigens. The arrow on the left side indicates that the memory cells, MT, first 
conduct a risk assessment, and then carry out the dynamic forensics according to the risk.  

 

Figure 1. Model structure and main processes. 

In the process of UM self-tolerance, after α number of tolerance cycles (α belongs to the set of 
natural numbers, N), the immature detectors that recognize self-antigens will be removed. Immature 
detectors will evolve into mature immune detectors. 
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Figure 2. The flowchart of the model. 

In Figure 2, the model is trained first and then carries out the detection. If an attack or intrusion 
is detected, the risk assessment is carried out. If the risk exceeds the given threshold, the forensics will 
be conducted, otherwise the detection will continue. 

2.1. Immunocyte evolution 

The evolution of immune cells in network activity can be divided into three stages. Stage I, from 
the beginning to the end of the first tolerance period α, the initial immature cell set UM (0) and self-
set SelfSet(0) should be defined, in which immature cells evolve into mature cells.  

Stage II begins from time α+1 for the evolution of mature cells into memory cells, which is the 
self-learning process. Through clonal selection, mature cells produce a variety of memory cells that 
can detect non-self-antigens, among which self-antigen cells are finally used for immature tolerance. 

Stage III is the production stage of the various parts of the immune system, from memory cells to 
the completion of system learning. This can be used for practical detection: memory cells are used for 
detection, mature cells are used for the detection of undetected antigens, and, finally, immature cells 
are used for self-tolerance through the remaining antigens. 
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2.2. Host dynamic risk calculation 

For any memory detector, from time t-1 to time t, if an invasion or attack antigen is detected, its 
risk value s will increase according to formula (4). The risk will be calculated according to this formula, 
where η1 (> 0, constant) is the initial risk value, and η2 (> 0, constant) can be taken as the cumulative 
reward factor. 

1 2. ( ) . ( 1)x s t x s t      (4)

However, if the memory detector does not detect the invasion or attack antigen for the moment, 
the risk value will be calculated according to formula (5), which indicates that the risk is decreasing. 

1( ) . ( -1)x.s t = x s t e  (5)

For the random memory cells x and y, if fmatch(x.d, y.d) = 1 is satisfied, then memory cells x and y 
have a definite similarity. The invasion or attack detected by these two kinds of memory cells could 
be the same type. 

The host network risk index (0 ≤ rk(t) ≤ 1) presents the network risk of host k for time t: rk(t) = 1 
indicates the extreme risk of the current host; rk(t) = 0 indicates that the current host is not at risk. The 
larger the rk(t) value, the higher the risk the current system faces. The immune forensics system 
analyzes and extracts the intercepted network IP packets. The host network risk assessment is carried 
out when the memory cells match the extracted packets. Due to the different network risks caused by 
various kinds of attacks on hosts, μi is set as the risk weight of class i of the network attacks or 
intrusions, and the risk rk,i of class i (1≤i≤I) of the network attacks for the host k for time t is calculated 
by formula (6), which is the product of the class i network risk and corresponding weights. 

( )

,

. ( )

2
( ) -1

1
i j

MM A tj i

k i

MM s t

r t

e




 
 
 
 
 




  

(6)

The overall network risk of the host k for time t is calculated by the following formula, which is 
the product of various network risks and corresponding weights. 
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(7)

It can be seen from the formula that the calculation of the real-time risk of the host security is 
linear with the number of memory cells, and its time-space cost is small. Therefore, it can achieve real-
time performance in practical applications. 

2.3. Risk-based dynamic forensics 

The obtained dynamic electronic evidence is as follows:  

{ , , , | , Ag, , }t x y s t N x y s         (8)

where t represents the moment when the evidence is obtained; x is the network IP packet intercepted 
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by the forensics system, which is composed of the original packet and the submitted data; x.a is 
equivalent to the evidence of the preliminary analysis and extraction (antigen presentation) of the original 
evidence, and x.b is the original evidence (original IP packet). y is the network environment for time t, 
which is equivalent to the cell status when the biological immune system captures the invading antigen, 
corresponding to the computer system process status, CPU utilization, memory utilization, network 
bandwidth utilization of the computer system, etc. s is the encryption signature of <t, x, y> in the forensics 
model. For example, in MAC (Message Authentication Code) ‘+’ connects strings. To ensure the 
authority and originality of the electronic evidence, the following is used: 

s' = Ekpriv(H(.t+.x +.y)) (9)

where <t, x, y> is first converted into a string, and the hash value h is calculated; then, the private key 
kpriv is used to encrypt the hash value h through the public key algorithm E to obtain the digital 
signature. The public key can be used to decrypt the evidence, and extract the hash digest. E is a 
signature encryption algorithm, such as DSS or RSA, kpriv represents the private key of the forensics 
model, and H is a one-way hash function. Theoretically, if kpriv is long enough, s will be more secure 
and can resist any attack. At the initial time,  is empty, and evidence will be collected according to 
the risk level with the appearance of system attacks, as shown below:  

( ) { | ( . , . , . ', . ',

                    ( ) ( ) }
new

m m m,i m,i

t ψ ψ ψ t t ψ x x  ψ y y ψ s s

r t r t

 
 

       

  
 (10)

When obtaining evidence for new(t), one of two possible results will be reported. When the overall 
risk value rm(t) of the host exceeds the given threshold, this indicates that the overall risk degree of the 
host against the attack has seriously affected the normal operation of the host, θm. When the network 
risk rm,i(t) of the host against the class i attack exceeds the given threshold, θm,i, then it shows that the 
class i attack and its variants detected by the host have risks that affect normal operation, which calls 
for real-time forensics. 

There are two purposes for setting the risk threshold value in the model. On the one hand, it 
evaluates the real-time network risk of all detected attacks and similar attacks, so as to associate all 
attack information, reduce the false alarm, and capture the real-time operation of the system when the 
system is at risk, thus providing important information for the reproduction of attacks. In addition, 
many intrusion behaviors with low risk are ignored, which improves the low efficiency of the existing 
dynamic forensics model relying on the intrusion detection system and improving the efficiency and 
quality of dynamic forensics. The forensic system adopts an intrusion tolerance strategy, and low-risk 
intrusions are ignored to reduce the number of alarms. In this way, the proposed model adopts a 
strategy of intrusion tolerance, and low-risk intrusion will not affect the normal running of the 
computer. 

3. Experiments 

The experimentation was carried out in the Data Recovery Laboratory of Neijiang Normal 
University, a Sichuan Provincial Key Laboratory. The experimental environment provided is a 1000 
m local area network with 50 computers connected to the Internet through a class C IP address 
210.41.176.*. The server operating system is CentOS 7.6. The server provides email, WWW, FTP and 
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VPN services. The forensic system is also deployed on the server. The antigens in the network activities 
have a fixed length and are composed of 256-bit binary strings describing network transaction 
characteristics, such as source and destination IP addresses, protocol types, port numbers and packet 
contents extracted from IP packets. In the experimentation, the tolerance period of the antigen is set to 
α = 50 h, the activation parameter of the memory cell is set to β = 15; the matching relationship is 
calculated by r-continuous bit matching with r = 8. For the risk calculation parameters, η1 is set to 
0.001 and η2 is set to 0.9998. The forensics risk thresholds θm and θm,i are set to 0.3. This level of risk 
will not affect the normal operation of the system. These parameters have been demonstrated to be 
effective in [15,23], therefore similar repeated experiments will not be conducted in this paper. 

3.1. Real-time network risk assessment experiment 

The immune-based intrusion detection system has good self-learning, is self-adaptive and diverse, 
and has good detection performance for unknown attacks. In order to verify that the model is effective 
for evaluating network risks, we carry out the TCP reset attack on the network, a common DDoS attack. 
The attack intensity curve and real-time risk curve of the model evaluation are shown in Figure 3 below. 
It can be seen in the figure that from 0 to 8 seconds, the intensity of the network attack increases, and 
the corresponding network risk is also on the rise. From 9 to 12 seconds, the intensity of the network 
attack decreased rapidly, and the risk decreases correspondingly. 

 

Figure 3. The intensity and network real-time risk curve of the TCP reset attack. 

In order to further verify the effectiveness of the model for real-time risk assessment, a LAND 
attack is launched on the network. By constructing and sending packets with the same source address 
and target address, network equipment without a corresponding protection mechanism will be 
paralyzed. From the experimental results in Figure 4 below, it can be seen that when the network attack 
intensity increases, the real-time risk curve of the network will decrease. When the network attack 
intensity decreases, the real-time risk curve of the network decreases correspondingly, and the real-
time risk curve of the network and the attack intensity also demonstrate a good consistency. 
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Figure 4. The intensity and network real-time risk curve of the LAND attack. 

From the above two attack experiments it can be concluded that the real-time risk curve of the 
model is consistent with the network attack intensity, which shows that the model can effectively 
evaluate the real-time security of the whole network. 

3.2. Comparative experiments 

 

Figure 5. The number of comparisons of effective evidence. 
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compare it with the AINM [15] and Ding [23], which are based on the “self/non-self” recognition 
model proposed by Forrest [17]; however, Ding’s model extends this model. The simulation is 
designed to generate forensics based on the identification of the attack or non-attack. The experimental 
results are shown in Figure 5 above. 

In Figure 5, it can be seen that the number of dynamic forensics of the AINM model is 3496, 2814 
(80.5%) for false attacks and 682 (19.5%) for real attacks, while the total number obtained by the 
ANAIM model is only 20; of these, 9 (45%) are false alarms and 11 (55%) are real attacks. For Ding’s 
model, 2986 are false alarms, 2350 (78.7%) are false attacks, and 636 (21.2%) are real attacks. Ding’s 
model improves the efficiency, but ANAIM has greatly improved the forensics performance. It is 
evident that the ANAIM model dramatically improves the accuracy and efficiency compared with the 
AINM model. The other models can obtain the same results, but the efficiency is much lower than 
ANAIM. The greatest significance is that ANAIM combines similar alarms and greatly reduces the 
number of alarms. System administrators can then focus on analyzing this aggregated alarm 
information. 

3.3. Dynamic forensics instance 

Simulation results show that the ANAIM model can effectively distinguish and measure the harm 
caused by different types of attacks and their corresponding intensity, and the effectiveness and amount 
of electronic evidence obtained are better than the “self/non-self” model. In order to reflect the dynamic 
nature of model forensics, Table 1 gives an example of dynamic forensics in which ANAIM can capture 
dynamic real-time network activity, network flow, and connection and CPU utilization while the static 
forensics model does not. 

Table 1. Instances of ANAIM forensics. 

Time Sept. 12, 2019  19:48:45 
Network 
activity 

TCP 127.0.0.1:2514 127.0.0.1:1110 ESTABLISHED 
TCP 210.41.176.XXX:2516 192.168.0.1:80 ESTABLISHED 
TCP 192.168.0.117:1194 192.168.0.1:80 SYN_RECV 
TCP 192.168.0.117:4556 192.168.01.:80 SYN_ RECV 
TCP 192.168.0.117:4559 192.168.0.1:80 SYN_ RECV 
TCP 192.168.0.117:4562 192.168.0.1:80 SYN_ RECV 
TCP 192.168.0.117:4568 192.168.0.1:80 SYN_ RECV 
TCP 192.168.0.117:4574 192.168.0.1:80 SYN_ RECV 

… 
Network connection 7412 
Network flow 63242 Packets/s 
CPU utilization 10.3% user, 84.3% system, 0.0% nice, 5.4% idle 
Swap 471294K av, 2457813K used, 95896K free, 112715K cached 
Memory 220311K av, 1777208K used, 25895K free, 68398K buff  
process httpd, ids, mysqld,  top…32 processes 
…. … 

Analysis of the simulation results shows that the ANAIM model can extract first-hand evidence 
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of the attack or intrusion scene clearly and accurately, and the electronic evidence is strong in 
persuasiveness, which can provide sufficient evidence for the reconstruction or restoration of the 
network attack or intrusion scene. This does not require professional computer expertise for the 
forensics personnel. 

4. Discussions 

Traditional static computer forensics technology mainly accomplishes the task by recovering and 
reconstructing residual attack information in the system, then sorting out all the file information in the 
computer to be verified, and extracting data for information mining or automatic analysis of the 
residual information. Finally, all the extracted data will be expressed in a form that can be understood 
by analysts, followed by data visualization and further analysis. Traditional static technology cannot 
accurately extract real-time evidence to describe the time of a specific attack and its surrounding 
environment and other detailed aspects; therefore, the extracted evidence is not persuasive. In addition, 
there is a high demand for the technological expertise and experience of forensics personnel. As a 
result, existing dynamic forensics methods are not useful due to immature technology and limited 
forensic tools [4,15,16]. 

Dynamic computer forensics technology can be combined with network intrusion detection. It can 
automatically and completely record the time, place, and process of the intrusion and the state of the 
whole network environment before and after the intrusion. A dynamic computer forensics mechanism 
can reproduce the whole intrusion process by organically integrating and sorting this information. This 
mechanism is better than the static forensics approach for obtaining evidence. It has advantages in the 
aspects of place, time and environment. 

5. Conclusions 

This paper proposes a dynamic forensics model based on artificial immune systems by 
reproducing the attack scene. The model can accurately and quantitatively calculate the host type and 
overall risk in real time and extract dynamic forensic evidence in accordance with the real-time risk. 
The forensics results can express the attack scene well with high efficiency, strong real-time 
performance, and low technical requirements for forensics personnel, providing a new direction for 
computer forensics. More experiments will be conducted in future work and the theoretical model will 
be further improved. More interesting and better results can be expected to be achieved.  
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