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Abstract: This paper proposed a novel image interpolation algorithm with an arbitrary upscaling
factor based on the spatial general autoregressive model. First, to accommodate arbitrary scale
factors, a non-integer mapping method was modulated into the spatial general autoregressive model,
which was employed to model the piecewise stationary pattern with a higher description capacity
than autoregressive models. A gradient angle guided extension method was utilized to extend the
spatial general autoregressive model, and more pixels in the neighborhood were included to estimate
the parameters of the spatial general autoregressive model. To realize the high-accuracy estimation
of the model parameters, a regularization method via an elastic network was adopted to maintain the
complexity of the object function in a reasonable state and address the overfitting problem. We also
introduced an iterative curvature method to refine the interpolation result of those image blocks with
large variances of gray intensities. Experiments on 25 images were conducted with integer and non-
integer magnification factors to systematically verify the objective and subjective measures of the
proposed method. The visual artifacts were effectively suppressed by the proposed method, and a
flexible interpolation method for arbitrary scale factors was implemented.

Keywords: image processing, arbitrary scale interpolation; autoregressive; gradient adaptive
extension; elastic network; iterative curvature.
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1. Introduction

With the rapid development of multimedia technologies, the collection and transmission of
multimedia data have become greatly convenient and easy. Meanwhile, multimedia data quality of
imaging equipment limits the wider application of machine vision inspection system. The method to
improve the image resolution through algorithms—mnamely, image interpolation, has become an active
research field in machine vision. To a certain extent, image interpolation can effectively increase the
image resolution to meet various applications, such as motion tracking and pose estimation. In
addition, image interpolation has a wide range of practical applications and commercial prospects in
remote sensing, cloud-of-thing system [1], surveillance [2,3], medical imaging [4], multimedia
processing [5,6], and consumer electronic [7] .

In the registration and fusion of non-homologous images, image size adjustment is needed.
Especially in the visual measurement process of large machined parts, due to the angle of view, the
images captured by different cameras have different dimensions [8]. This will lead to dimensional
distortion. In order to reduce visual artifacts and adapt to the requirements of arbitrary magnification,
a more flexible image interpolation method is needed. Although the visual quality of simple linear
interpolation methods is not sufficient, these methods still are widely used due to their low
computational complexity and interpolation flexibility. Linear interpolation methods include nearest-
neighbor interpolation [9,10], bilinear interpolation [11,12], bicubic interpolation [11-14], cubic spine
interpolation [15,16] and iterative linear interpolation [17,18], which predict the gray intensity of an
unknown pixel according to the distance between the unknown pixel and the reference pixels. The
pixels at the boundary, edge or texture of a low-resolution (LR) image have a greater impact on
image interpolation than those perpendicular to the edge. Therefore, an isotropic low-pass filter is
employed to weaken the high-frequency components of the edges, and the edges are consequently
smoothed, which will lead to artifacts such as blurring, ringing, checkerboard effects, edge
discontinuities and jagging.

2. Related works

In related works, contributions have been made in reducing the visual artifacts. However, those
methods are mainly suitable for integer magnification of images. Some edge-guided interpolation
algorithms have been designed to correct the artifacts stemming from isotropic filters. The explicit
methods [19,20] were developed to consider local structural information such as edges or isophotes.
However, for images containing many complex structures, an edge map estimated with these methods
tends to be unpredictable, which increases the intensity variation of the interpolation. Implicit adaptive
methods have been proposed, which embed the local structures into an objective function that can be
solved using linear or nonlinear optimization methods. These methods can model the image’s local
patterns and estimate the unknown pixels around the edges in texture-rich areas. Li and Orchard [21]
proposed an edge adaptive interpolation method according to the geometric duality of edges, named
new edge directed interpolation (NEDI). Geometric duality between the low-resolution covariance and
the high-resolution covariance, couple the pair of pixels along the same orientation, enables NEDI to
estimate the high-resolution covariance from its low-resolution counterpart with a qualitative model
characterizing the relationship between the covariance and the resolution. Because the inaccurate
estimation of covariance in texture-rich regions, jagging and color infidelity are inescapable on some
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RGB samples. Analogous to NEDI, other studies have been conducted with geometrical similarity
measurement [22-26] to improve interpolation accuracy. Chang and Kevin [27] used collaborative
representation and exploiting non-local self-similarity of natural images and introduced the external
HR information into the interpolation process. Zhang and Wu [22] proposed soft-decision adaptive
interpolation (SAI), which learnt and adapted varying pixel structures by using a piecewise
autoregressive (PAR) model in the local rectangular window of the image. To implicitly use AR models
for better solving nonlinear problems at the edges in image interpolation, irregular windows were
employed by Guo et al. [23—-25], which were extended adaptively from the root windows according to
the geometric features, such as isophotes and curvatures. The similarities between pixels were
calculated using patch-geodesic distance. Cheng et al. [28] used Fast Fourier Transformation (FFT)
multichannel interpolation to reconstruct or approximate the continuous signals from a series of
discrete points. A spatial interpolation can predict the values of the unknown points by processing the
surrounding variables with meaningful values within the same region. In our previous work [26], a
spatial general autoregressive model (SGAR), which is a uniform expression for both linear and
nonlinear AR models, was employed to implement a noise-insensitive and edge-preserving interpolator.
Although it still uses regular windows, its nonlinear description ability was improved by introducing
nonlinear terms into the model. The similarities between pixels in the image windows were implicitly
exploited by the robust parameter estimation method named generalized M-estimator.

In contrast to the above interpolation strategies, the curvature-based interpolation algorithms
introduced high-order derivative information of image intensity to achieve high-accuracy interpolation
from the rough results. Giachetti and Asuni [29] proposed the iterative curvature based interpolation
(ICBI) method, which generates high-resolution (HR) pixels within the grid along the directions with
the lowest second-order derivative and subsequently updates the values of the HR pixels by minimizing
the local variations of curvature of the image intensity. However, the hole-filling strategy limits the
application with non-integer upscaling factors. Kim and Cha [30] proposed the curvature interpolation
method (CIM) based on a partial differential equation (PDE). Because it is known to tend to converge
to a piecewise constant image [31,32]. These methods share the characteristic that the final
interpolation results are modified by an iterative procedure upon the initial values provided by other
methods. It was emphasized that better interpolation accuracy was achieved, which was largely due to
the first-step interpolation method.

Therefore, an arbitrary scale factor image interpolation based on the SGAR model was used to
implement image interpolation from three aspects: image window adaptive extension by gradient
angle, model regularization by the elastic network, and refinement of the result accuracy by the
curvature constraints. The rest of the paper is structured as follows. Section 3 introduces the SGAR
model-based image interpolation method and its implementation. Experimental results and a
comparison study with some existing popular image interpolation techniques are presented in
Section 4. Section 5 contains our conclusions.

3. SGAR model-based image interpolation method and its implementation
3.1. Image description based on SGAR model

AR models are effective tools for image modeling [22-26,33—-35]. The linear AR model in
vectorization form is shown as follows.
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j}zhg(x)zeT'x (1)

n

intercept term 6o and the feature weights 61 to 6., x is the sample’s feature vector, and 4, is
the hypothesis function, using the model parameters 6.

However, the data distributions of a digital image are more complex. To better fit the image model,
the product of the pixels can be involved in the polynomial regression, which is adopted as a new
feature, such as the SGAR model that was initially explored based on Weierstrass theory for digital
image adaptive filtering in our previous work [36]. The pixels in the image follow a certain regular
pattern that indicates the direction of gray scale change. In other words, every unknown interpolated
pixel in a piecewise image can be estimated by its known adjacent neighbor with certain weights. The
original images are broken up into small fragments. Based on the stationarity assumption in piecewise
images [22], we model the fragments as a locally stationary Gaussian process. Inevitably, some
fragments with abrupt and unnatural gray scale changes are brought into the modeling process and
have negative effect on describing the pattern of the image [36]. An adaptive filter was implemented
based on the SGAR model. The new filter removed these artifacts while effectively conserving detailed
image information. This was because the SGAR model fuses both linear and nonlinear AR models into
a uniform expression[26]. However, the high-order polynomial regression model will probably overfit
the training data. Moreover, simple linear regression has the problem of underfitting. For an image
window, it could be modeled as

SIZED XpoXh S TCINEN) y RESI ROTPS o

i=l (s€ed  s;ed k=1

where y is the prediction value, 6= [90, 6,...,0 ] is the model’s parameter vector, containing the

where x(p) is the forecasted value of a pixel, x(sk) is the reference value of a pixel in the LR image,
a(p) is the modeling residuals. s is a two-dimensional vector representing the location of the specific
pixel. 4 is a set of vectors representing the location of adjacent reference pixels. The composition of
set A is discussed in section 2.3. ¢(s1, s2,..., si) is the model parameters. 7 is the order of the model,
which indicates the dimension of vector ¢. When r is 1, the SGAR model is degenerated into AR model
as is shown in Eq (3). The dimension of the vector ¢ is only 8 and consists of the eight adjacent pixels
around the anchor pixel.

x(p)= D #(s)x(s,) +a(p) 3)
s;€A
When r is 2, the SGAR model can also be rewritten as Eq (4). The dimension of vector ¢ is 44 and
consists of 8 adjacent pixels around the anchor pixel, 36 self-multiplication and product of two
different pixels are taken into consideration. We will explain how to obtain the parameters of the SGAR
model in section 2.4.

xX(p)= D #(s)x(s)+ D, D #(s,.5,)x(s,)-x(s,) +a(p) (4)

s;€A s, €A s eA
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3.2. Interpolation accommodate arbitrary scaling factor

The relationship between the coordinates of the pixels of the HR image and those of the
corresponding LR image must first be clarified.

©)

V=JX—
-

where (u, v) represents a pixel in the LR image, (i, j) represents a pixel in the HR image, and % is an
arbitrary scaling factor.
The reference pixels in the LR image of a reconstructed pixel in the HR image is determined with
the following mathematical expression.
u, =) (u,=pu) (u;=u+1
: ; (6)
vi=p) (v, =pW) |v;=v +1

where ¢(+) is a function that tends toward negative infinity, and p(-) is a function that rounds to the
nearest decimal or integer.

When 7 is 1, the product of the LR pixels and SGAR model parameter vector ¢ is regard as the
value of interpolated pixel. For the convenience of understanding, taking 1.25% interpolation as an
example, the coordinates of HR pixels are (63,22), (63,23), (64,22), (64,23), the LR reference pixels
coordinate at (52, 19), (52,20), (53,19) and (53,20) are used to interpolate the HR pixel at (63, 22),
other HR pixels interpolation schemes are shown in Figure 1:

5249 | 52,20 | 52,20 52,20 | 52,20 | 52,21
52,19 | 5330 | 52,20 52,20 | 52,20 | 52,21
53,19 | 53,20 | 5320 53,20 | 53,20 | 53,21
83,22 | 63,23
6422 | 6423
53,19 | 53,20 | 53,20 53,20 | 53,20 | 54,21
53,19 | 53,20 | 53,20 53,20 | 53,20 | 54,21
5419 | 5420 | 5420 5420 | 54,20 | 54,21

Figure 1. Pixel arrangement in interpolation process.
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When r is 2, the parameters of SGAR model are estimated by modified samples. For each sample,
it consist of an anchor pixel at the center of 3 % 3 image block, 8 LR reference pixels and 36 parameters
generated by these pixels. Then the LR pixels used in the interpolation process share the same
arrangement with the samples used in parameter estimation process.

3.3. Gradient guided model extension
The gradient guided method [20,37] was employed to adaptively extend the parameters estimation

window to increase the training dataset and ultimately improve the interpolation accuracy. The gradient
angles were calculated by the Scharr operator, which is formulated as follows.

-3 0 3 -3 -10 -3
Scharr,=| =10 0 10 |,Scharr, =(Scharr, )' =0 0 O (7)
-3 0 3 3 10 3

where Gx and Gy are the gradients of the x and y directions, respectively, according to the Scharr
operator.

G, =[3/(x=Ly+1)+10f (x,y+1)+3f (x+1y+1)]-
[3f(x=Ly=1)+10f (x,y=1)+3f (x+1y-1)] .
G, =[3f(x-Ly-1)+10f (x=1y)+3f (x-1y+1)]- ®
[3/(x+Ly—=1)+10/ (x+1p)+3f (x+1,y+1)]
Therefore, the gradient angle is
G, 180
6 = arctan (G—J 7 ©)

The gradient angle space was divided into eight regions according to an interval of 45°, and the
eight regions were placed into four groups.

[-22.5,22.5)U[157.5,202.5)
[22.5,67.5)U[202.5,247.5)
[67.5,112.5)U[247.5,292.5)
[112.5,157.5)U[292.5,337.5)

(10)

According to the gradient direction of each pixel in the LR image, the image windows involved in
modeling the image with the SGAR model would be extended in four directions as shown in Figure 2.

The gradient directions of the n pixels were grouped according to Eq (10), and the frequency of
each group was counted. The extension direction was subsequently determined according to the
maximum of the four frequencies. The number of fitting samples is determined by the gradient based
extension method. In fact, 15 samples were used in the horizontal and vertical directions, and 19
samples are used in the other two directions.
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(a) (b) (©) (d)

Figure 2. Adaptive window extension method based on gradient guidance. (a) Image
windows extended horizontally. (b) Image windows extended in the direction of 45°. (c)
Image windows extended vertically. (d) Image windows extended in the direction of 135°.

3.4. Regularized SGAR model-based on elastic network

The earlier works suggested that the patterns of the AR models containing only a linear
relationship between pixels are sufficient. The least-square (LS) method [18], which is highly sensitive
to outliers, was used to solve the parameters of the interpolation model with cross-direction constraints.
To address the noise-sensitive problem of the ordinary LS, some methods were proposed [38]. Among
them, regularization is a common method. The 11-norm and 12-norm regularization terms were added
to the objective function by Liu et al. to enhance the stability of the LS solution. The 12-norm penalty
term [27] (i.e., ridge regression) was used to regularize the objective function. Weighted ridge
regression (WRR) [19] was adopted to restrain the expansion of variance and thus achieve more
reliable estimations by modulating weights into the regression to evaluate the reliability of each sample.
In contrast to the above methods, the products of the pixels were employed to increase the description
capacity of the SGAR model to suit various digital images, and the overfitting problem was noted.

The SGAR model adopted the products of pixels as the new features, so the descriptive power of
the model was improved compared with some interpolation methods that consider only simple linear
relations [15]. Therefore, the model was especially effective for rebuilding the local nonlinear
relationship of image windows [22,23,26,35]. However, it may cause overfitting problems because of
the higher degree of freedom [26]. To address this problem, the regularization method could be used
to reduce the freedom of models and keep the complexity of the object function in a reasonable state.
Ridge regression [23,39], Lasso regression [40] and Elastic Network [41] are the three most commonly
used methods.

Therefore, the mean square error (MSE) was calculated to represent the intensity differences
between the reference pixels and the predicted pixels. The parameters of the SGAR model will
obtained by minimizing the loss function. The loss function of Elastic Network is shown as:

L(X.0.0.1)= i(GT.X(i>_y(i>)2+tazn:‘6?j‘+12;taié’f (11)
i j=1 J=1

1
m i=1

where m is the number of the samples in the dataset, # is the number of fit parameters, X(7) is the vector
combined with all features of sample 7, @ is the vector of the model parameter, y(i) is the anchor pixel
of the region, and is the original value of LR pixel at the center of 3 x 3 image block, a is the hyper-
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parameter that dominates the regularization level of the model, and ¢ is the hyper-parameter that
dominates the mixing ratio. In the experiment, the value of # was manually set to 0.5.

3.5. Regularized SGAR model-based on elastic network

The SGAR model learns the structural relationship between pixels and their neighbors in the LR
image to recover as much missing information as possible during down-sampling [42]. However, we
know that it is very difficult to recover HR images in high-frequency areas where the gray level of the
image changes rapidly, such as textures and gradients. Only a relatively small part of the missing
information can be restored. Compared with low-frequency areas, modeling of image windows with
the SGAR model in these areas is more likely to encounter the problem of insufficient generalization
ability, which makes interpolation stability difficult to control. Therefore, in these regions, a strategy
that updates the interpolated pixels by minimizing the local variation of the second derivative of the
image was adopted. By transforming the two-dimensional image plane into three-dimensional space,
the surface optimization methods [43] were employed to solve the problem of artifacts.

List 1. The process of iterative curvature method.
1: Input U(7, )
Calculate The second-order derivatives of U(i, j) in 8-directions

d=U(-1))+U(i+1,)))/2-U(G,))

d,=U(,j-D+U(@,j+1)/2-U(,))
d,=U@G-Lj-)+UG+1j+1)/2-U(,J)

d,=U@(-1j+D)+U@i+1,j-1))/2-U(,))

2:
d,=U(i-1,/)+UG,j-1)-U@-1,j-1)-U(,))
d,=U@{-1)j)+U(G,j+)-U@+1,j-1D)-U(,))
d,=U(@,j-D+U@+1,))-U@i+]1,j-1)-U(,))
d,=U(, j+)+U@G+1,j)-U@G+1,j+)-U(,))
3: If d,>Threshold ,then d, € A which is a set.
4: d, =min (|dk ), where d, € A, k=12,...m, mis the element numbers of A4.
5: Update U(i, j): U(i,j) = U(i,j) + dm
6: Repeat steps 1-5 until the stopping rules: 1) Set A is an empty set or 2) the

maximum iterations were reached.
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An analogous filtering-based method proposed by Gong et al. [43] was explored to reduce the
regularization part of the variational energy while guaranteeing non-increasing total energy. That is,
the iterative curvature method was modulated into SGAR mode. The second-order derivatives of p(i,
j) on the HR image were calculated in eight different directions, as shown in Figure 3, and were used
as an approximation of the curvatures. The eight second-order derivatives were thresholded, and a set
consisting of the thresholded second-order derivatives was obtained. P(i, j) was updated according to
the absolute minimum of the elements of the set. The second-order derivatives of the digital image
window were calculated repeatedly until the curvature of p (i, j) in all directions was below the
threshold or the maximum iterations were reached. The curvatures around p (i, j) gradually adapted to
the directions that shared a similar curvature change tendency. Thus, the accuracy of the interpolation
results obtained in the first step was improved with the following algorithm process in List 1.

OO 000 OO OO0
OO OO OWO OwWO
OO0 000 OO0 OO0
ertirectiél.> %)riz dir (&)T)he dir&ﬁ)on 0&13)5o 8T>he di<re§0n 6
0@@@&’0@@@@0

OO0 000 000 00O

(g) The bottom left (h) The bottom right
corner corner.

O O

(e) The top left corner. (f) The top right corner

Figure 3. Curvature descriptions of 3 % 3 region in 8§ different directions.
4. Results and discussions

Experiments were carried out on a dataset provided by ICBI [29] with different magnification
factors to systematically verify the performance of the proposed method in terms of objective
measurements, subjective visual effect and computational cost. For thoroughness and fairness, the
chosen dataset contains images with different resolutions and various objects—animals, flowers and
buildings—with a wide range of color and natural textures, which include typical and unique digital
images for interpolation research.
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Table 1. Comparison of 1.7x magnification interpolation results with four non-integer

methods.
Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed
MSE 81.207 228.335 75.005 77.776 59.349
PSNR 29.035 24.545 29.380 29.222 30.397
Zebra 1.7% SSIM 0.924 0.864 0.929 0.920 0.926
FSIM 0.9817 0.9512 0.9791 0.9772 0.9877
CcC 0.9935 0.9810 0.9939 0.9939 0.9952
MSE 104.015 231.486 91.697 107.383 79.586
PSNR 27.960 24.486 28.507 27.821 29.122
Bench 1.7x SSIM 0.920 0.864 0.928 0.913 0.925
FSIM 0.9760 0.9499 0.9761 0.9705 0.9847
CcC 0.9891 0.9749 0.9903 0.9889 0.9916
MSE 71.808 156.785 61.920 74.543 63.665
PSNR 29.569 26.178 30.212 29.407 30.092
Bird 1.7x SSIM 0.914 0.847 0.920 0.907 0916
FSIM 0.9802 0.9511 0.9814 0.9753 0.9868
cC 0.9921 0.9824 0.9932 0.9919 0.9929
MSE 44.927 104.802 42.651 45.213 36.236
PSNR 31.606 27.927 31.831 31.578 32.539
Clock 1.7x SSIM 0.961 0.932 0.964 0.959 0.962
FSIM 0.9875 0.9693 0.9862 0.9841 0.9921
cC 0.9950 0.9880 0.9952 0.9950 0.9959
MSE 97.058 249.318 87.326 95.717 74.768
PSNR 28.260 24.163 28.719 28.321 29.394
Butterfly 1 1.7% SSIM 0.939 0.875 0.946 0.936 0.947
FSIM 0.9849 0.9600 0.9836 0.9806 0.9904
cC 0.9929 0.9813 0.9936 0.9932 0.9945
MSE 37.375 106.105 29.757 36.878 26.581
PSNR 32.405 27.873 33.395 32.463 33.885
Bee 1.7% SSIM 0.964 0.916 0.970 0.964 0.970
FSIM 0.9916 0.9696 0.9907 0.9895 0.9952
CcC 0.9961 0.9886 0.9968 0.9962 0.9972
MSE 77.964 183.253 72.883 78.882 62.649
PSNR 29.212 25.500 29.505 29.161 30.162
Carrousel 1.7x SSIM 0.952 0.913 0.955 0.949 0.953
FSIM 0.9823 0.9592 0.9809 0.9786 0.9882
CcC 0.9948 0.9877 0.9951 0.9948 0.9958
MSE 27.130 75.759 23.167 26.798 18.957
PSNR 33.796 29.336 34.482 33.850 35.353
Sunflower 1.7x SSIM 0.963 0.932 0.967 0.960 0.964
FSIM 0.9907 0.9763 0.9906 0.9883 0.9945
CcC 0.9980 0.9945 0.9983 0.9981 0.9986
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Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed
MSE 13.923 34.978 13314 13.920 10.774
PSNR 36.694 32.693 36.888 36.694 37.807
Puppet 1.7x SSIM 0.967 0.938 0.970 0.966 0.970
FSIM 0.9932 0.9813 0.9913 0.9915 0.9958
CC 0.9975 0.9937 0.9976 0.9975 0.9981
MSE 38.275 83.231 39.204 40.307 33.764
PSNR 32.302 28.928 32.197 32.077 32.846
Eagle 1.7x SSIM 0.945 0.905 0.946 0.942 0.945
FSIM 0.9907 0.9746 0.9880 0.9885 0.9932
CcC 0.9958 0.9908 0.9957 0.9956 0.9963
MSE 34.092 73.470 31.319 35.503 32.320
PSNR 32.804 29.470 33.173 32.628 33.036
Sheep 1.7x SSIM 0.939 0.885 0.947 0.934 0.941
FSIM 0.9909 0.9721 0.9903 0.9885 0.9941
CcC 0.9963 0.9919 0.9966 0.9961 0.9965
MSE 20.370 62.295 18.833 18.987 14.790
PSNR 35.041 30.186 35.382 35.346 36.431
Giraffe 1.7x SSIM 0.969 0.929 0.973 0.969 0.972
FSIM 0.9927 0.9719 0.9905 0.9908 0.9957
CC 0.9977 0.9930 0.9979 0.9979 0.9983
MSE 102.932 201.494 101.077 107.526 102.251
PSNR 28.005 25.088 28.084 27.816 28.034
Tiger 1.7x SSIM 0.878 0.806 0.883 0.867 0.874
FSIM 0.9852 0.9578 0.9816 0.9820 0.9892
CcC 0.9851 0.9702 0.9853 0.9846 0.9851
MSE 33.662 62.693 31.593 35.278 34.880
PSNR 32.859 30.159 33.135 32.656 32.705
Cat 1.7x SSIM 0.917 0.867 0.923 0.910 0.912
FSIM 0.9886 0.9687 0.9883 0.9861 0.9914
CC 0.9851 0.9702 0.9853 0.9846 0.9851
MSE 84.518 158.135 68.741 88.767 66.554
PSNR 28.861 26.141 29.759 28.648 29.899
Guitar 1.7x SSIM 0.932 0.896 0.941 0.925 0.938
FSIM 0.9833 0.9659 0.9854 0.9784 0.9914
CC 0.9927 0.9863 0.9931 0.9924 0.9924
MSE 22.511 52.164 20.837 22.784 18.960
PSNR 34.607 30.957 34.942 34.554 35.353
Dragonfly 1.7x SSIM 0.968 0.942 0.971 0.967 0.969
FSIM 0.9931 0.9804 0.9917 0.9913 0.9957
CcC 0.9924 0.9877 0.9947 0.9932 0.9949
MSE 62.413 139.430 57.258 64.413 55.518
PSNR 30.178 26.687 30.552 30.041 30.687
Church 1.7x SSIM 0.935 0.879 0.940 0.931 0.938
FSIM 0.9784 0.9458 0.9759 0.9729 0.9848
CC 0.9970 0.9930 0.9972 0.9970 0.9975

Continued on next page
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Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed
MSE 37.601 79.741 35.826 39.162 35.180
PSNR 32.379 29.114 32.589 32.202 32.668
Tower 1.7% SSIM 0.943 0.906 0.946 0.938 0.940
FSIM 0.9793 0.9497 0.9765 0.9750 0.9844
CC 0.9927 0.9834 0.9933 0.9925 0.9935
MSE 66.696 178.208 66.707 66.773 48.798
PSNR 29.890 25.622 29.889 29.885 31.247
Butterfly 2 1.7x SSIM 0.961 0.919 0.965 0.959 0.966
FSIM 0.9855 0.9561 0.9802 0.9818 0.9910
CC 0.9953 0.9900 0.9955 0.9951 0.9956
MSE 74.397 146.167 68.578 78.266 74.777
PSNR 29.415 26.482 29.769 29.195 29.393
House 1.7x SSIM 0913 0.866 0.919 0.905 0.904
FSIM 0.9757 0.9447 0.9746 0.9695 0.9811
CC 0.9908 0.9745 0.9906 0.9910 0.9932
MSE 61.003 116.098 58.801 64.213 61.114
PSNR 30.277 27.483 30.437 30.055 30.269
Lion 1.7x SSIM 0.884 0.812 0.889 0.872 0.880
FSIM 0.9849 0.9613 0.9835 0.9809 0.9894
CcC 0.9892 0.9785 0.9900 0.9888 0.9891
MSE 245.082 492.326 221.710 254.356 226.619
PSNR 24.238 21.208 24.673 24.076 24.578
Stained Glass 1.7x SSIM 0.871 0.797 0.879 0.858 0.867
FSIM 0.9570 0.9198 0.9591 0.9467 0.9726
CcC 0.9907 0.9821 0.9910 0.9903 0.9907
MSE 66.784 150.067 63.122 67.522 56.865
PSNR 29.884 26.368 30.129 29.836 30.582
Colorful 1.7% SSIM 0.923 0.873 0.927 0.919 0.922
FSIM 0.9880 0.9702 0.9869 0.9853 0.9917
cC 0.9809 0.9602 0.9826 0.9805 0.9821
MSE 89.945 181.939 82.357 94.110 79.896
PSNR 28.591 25.532 28.974 28.394 29.106
Newspaper 1.7x SSIM 0.917 0.868 0.924 0911 0.920
FSIM 0.9827 0.9579 0.9804 0.9782 0.9885
cC 0.9881 0.9754 0.9891 0.9877 0.9894
MSE 176.331 335.015 180.833 187.125 191.301
PSNR 25.668 22.880 25.558 25.409 25314
Wheel 1.7x SSIM 0.827 0.738 0.826 0.807 0.802
FSIM 0.9701 0.9253 0.9611 0.9648 0.9743
CcC 0.9908 0.9745 0.9906 0.9910 0.9932

Comparisons of non-integer factors are studied with bicubic interpolation, bilinear interpolation,
nearest neighbor interpolation and AREA interpolation. These methods are well-established in Open
Source Computer Vision Library (OpenCV). The mean square error (MSE), peak signal to noise ratio
(PSNR), structural similarity index (SSIM), feather similarity index (FSIM) and Correlation
coefficient (CC) were used to evaluate the result of the interpolation algorithm. The experiments are
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conducted in non-integer interpolation factors to substantiate the performance of proposed method in
arbitrary scaling. In 1.7% and 2.2x enlargement, images with 512 x 512 pixels are resized into 435 x
435 pixels and 563 x 563 pixels with bicubic method, and used as the reference for computing the
MSE, PSNR and SSIM index. The images with 256 x 256 pixels are enlarged to the same size by
proposed method and other four conventional non-integer interpolation methods. The experimental
results are tabulated in Tables 1 and 2.

Table 2. Comparison of 2.2x magnification interpolation results with four non-integer

methods.
Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed
MSE 88.816 206.365 50.628 76.558 46.788
PSNR 28.646 24.984 31.087 29.291 31.429
Zebra 2.2x SSIM 0.903 0.848 0.922 0.902 0.925
FSIM 0.8965 0.8323 0.8975 0.8956 0.8975
CcC 0.94262 0.97264 0.97502 0.97506 0.97513
MSE 109.459 208.750 74.247 106.305 64.341
PSNR 27.738 24.935 29.424 27.865 30.046
Bench 2.2x SSIM 0.906 0.858 0.923 0.901 0.928
FSIM 0.8993 0.8463 0.9026 0.8963 0.9030
CcC 0.93808 0.96811 0.97060 0.97168 0.97178
MSE 75.389 142.926 53.552 74.440 49.275
PSNR 29.358 26.580 30.843 29.413 31.205
Bird 2.2x SSIM 0.898 0.839 0.921 0.893 0.926
FSIM 0.8986 0.8398 0.9022 0.8959 0.9022
CcC 0.95257 0.97605 0.97802 0.97807 0.97807
MSE 47.199 95.372 31.825 44.876 28.044
PSNR 31.391 28.337 33.103 31.611 33.652
Clock 2.2x SSIM 0.956 0.931 0.965 0.955 0.966
FSIM 0.9432 0.9102 0.9449 0.9420 0.9452
CC 0.98293 0.98430 0.98424 0.98428 0.94669
MSE 103.625 228.543 61.539 94.279 56.611
PSNR 27.976 24.541 30.239 28.387 30.602
Butterfly 1 2.2% SSIM 0.924 0.866 0.949 0.924 0.951
FSIM 0.9154 0.8609 0.9174 0.9142 0.9174
CcC 0.97389 0.97616 0.97630 0.97641 0.96715
MSE 40.711 93.276 22.502 36.456 20.329
PSNR 32.034 28.433 34.609 32.513 35.050
Bee 2.2% SSIM 0.954 0.912 0.972 0.958 0.973
FSIM 0.9389 0.8971 0.9398 0.9385 0.9397
CcC 0.98425 0.98562 0.98565 0.98569 0.98569

Continued on next page
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Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed
MSE 81.653 166.234 55.864 77.604 49.037
PSNR 29.011 25.924 30.660 29.232 31.226
Carrousel 2.2x SSIM 0.943 0.909 0.954 0.942 0.956
FSIM 0.9189 0.8715 0.9202 0.9176 0.9200
CC 0.96606 0.98261 0.98406 0.98396 0.98402
MSE 29.199 66.942 16.333 26.295 14.375
PSNR 33.477 29.874 36.000 33.932 36.555
Sunflower 2.2% SSIM 0.958 0.932 0.967 0.957 0.968
FSIM 0.9525 0.9226 0.9530 0.9519 0.9530
CC 0.98441 0.99236 0.99301 0.99304 0.99305
MSE 14.994 31.026 9.121 13.794 8.177
PSNR 36.372 33.214 38.530 36.734 39.005
Puppet 2.2% SSIM 0.962 0.936 0.972 0.962 0.973
FSIM 0.9582 0.9342 0.9593 0.9573 0.9591
CC 0.98381 0.99165 0.99240 0.99247 0.99247
MSE 38.812 73.190 30.466 39.360 26.828
PSNR 32.241 29.486 33.293 32.180 33.845
Eagle 2.2x SSIM 0.939 0.905 0.947 0.936 0.949
FSIM 0.9490 0.9227 0.9496 0.9487 0.9494
CC 0.97598 0.98676 0.98786 0.98733 0.98732
MSE 35.217 65.627 26.054 35.116 24.500
PSNR 32.663 29.960 33.972 32.676 34.239
Sheep 2.2x SSIM 0.929 0.883 0.948 0.926 0.950
FSIM 0.9389 0.9011 0.9415 0.9372 0.9410
CC 0.97840 0.98865 0.98950 0.98944 0.98945
MSE 22.205 53.935 12.282 18.577 11.382
PSNR 34.666 30.812 37.238 35.441 37.569
Giraffe 2.2x SSIM 0.959 0.923 0.972 0.963 0.973
FSIM 0.9408 0.8983 0.9416 0.9405 0.9415
CcC 0.97902 0.98989 0.99078 0.99074 0.99079
MSE 104.056 182.616 89.693 105.770 82.569
PSNR 27.958 25.515 28.603 27.887 28.963
Tiger 2.2x SSIM 0.858 0.793 0.874 0.846 0.880
FSIM 0.9147 0.8711 0.9171 0.9134 0.9167
CC 0.92847 0.95987 0.96311 0.96260 0.96287
MSE 34.597 57.043 30.381 35.208 28.759
PSNR 32.740 30.569 33.305 32.664 33.543
Cat 2.2% SSIM 0.904 0.861 0.916 0.898 0.918
FSIM 0.9368 0.9007 0.9391 0.9355 0.9385
CC 0.96745 0.98197 0.98320 0.98325 0.98326
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Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed
MSE 87.945 147.489 62.059 88.695 52.371
PSNR 28.689 26.443 30.203 28.652 30.940
Guitar 2.2x SSIM 0.923 0.891 0.939 0.917 0.944
FSIM 0.9292 0.8952 0.9369 0.9246 0.9376
cC 0.97516 0.98627 0.98703 0.98839 0.98857
MSE 23.496 46.874 15.687 22.488 14.230
PSNR 34.421 31.421 36.175 34.611 36.599
Dragonfly 2.2% SSIM 0.963 0.940 0.971 0.963 0.972
FSIM 0.9635 0.9400 0.9648 0.9627 0.9646
CC 0.98166 0.99039 0.99118 0.99121 0.99124
MSE 64.442 126.812 46.051 63.768 42.204
PSNR 30.039 27.099 31.498 30.085 31.877
Church 2.2% SSIM 0.925 0.878 0.942 0.922 0.945
FSIM 0.8850 0.8210 0.8870 0.8844 0.8864
CC 0.95441 0.97650 0.97845 0.97832 0.97838
MSE 38.860 71.499 29.564 38.900 26.737
PSNR 32.236 29.588 33.423 32.231 33.860
Tower 2.2x SSIM 0.938 0.907 0.946 0.932 0.948
FSIM 0.8976 0.8486 0.8989 0.8968 0.8985
CcC 0.97411 0.98649 0.98745 0.98758 0.98760
MSE 70.169 157.232 41.024 65.577 36.018
PSNR 29.669 26.165 32.000 29.963 32.566
Butterfly 2 2.2x SSIM 0.951 0.914 0.967 0.952 0.969
FSIM 0.9107 0.8601 0.9119 0.9095 0.9119
CC 0.92690 0.96274 0.96583 0.96551 0.96565
MSE 101.537 130.791 61.677 77.698 57.183
PSNR 28.065 26.965 30.230 29.227 30.558
House 2.2x SSIM 0.880 0.861 0.912 0.893 0.913
FSIM 0.8872 0.8298 0.8904 0.8857 0.8897
CcC 0.94697 0.97134 0.97348 0.97367 0.97358
MSE 62.116 104.635 51.312 63.442 47.896
PSNR 30.199 27.934 31.029 30.107 31.328
Lion 2.2x SSIM 0.866 0.803 0.887 0.854 0.891
FSIM 0.9146 0.8718 0.9184 0.9121 0.9176
cC 0.95686 0.97589 0.97759 0.97748 0.97759
MSE 253.151 445.729 198.079 252.215 181.234
PSNR 24.097 21.640 25.162 24.113 25.548
Stained Glass 2.2% SSIM 0.851 0.789 0.871 0.837 0.875
FSIM 0.8532 0.7783 0.8610 0.8473 0.8601
CC 0.90247 0.94826 0.95220 0.95272 0.95295
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Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed
MSE 70.714 137.821 50.291 67.007 46.159
PSNR 29.636 26.738 31.116 29.870 31.488
Colorful 2.2x SSIM 0.906 0.861 0919 0.904 0.922
FSIM 0.9347 0.8934 0.9360 0.9339 0.9356
CcC 0.96315 0.98112 0.98265 0.98278 0.98282
MSE 92.886 166.308 71.003 93.358 63.312
PSNR 28.451 25.922 29.618 28.429 30.116
Newspaper 2.2x SSIM 0.904 0.859 0.919 0.899 0.924
FSIM 0.9132 0.8684 0.9161 0.9105 0.9165
CcC 0.93967 0.96737 0.96981 0.97002 0.97009
MSE 180.859 297.585 158.770 188.328 148.868
PSNR 25.557 23.395 26.123 25.382 26.403
Wheel 2.2x SSIM 0.799 0.725 0.815 0.776 0.817
FSIM 0.8580 0.8014 0.8615 0.8559 0.8607
CC 0.81563 0.89332 0.90193 0.90154 0.90170

Figure 4. Images used in the experiments.

In 1.7x interpolation experiment of 25 images, our method obtains best MES index in 17 of 25
images, best PSNR index among 18 of 25 interpolated HR images, best SSIM index in 4 of 25 images,
best FSIM index in 19 of 25 images and best CC index in 17 of 25 images. In 2.2x interpolation
experiment, proposed method achieved best performance over MSE, PSNR and SSIM index in all
of 25 images, best FSIM index in 9 of 25 images and best CC index in 15 of 25 images.

In comparison with other edge-directed methods NEDI [21], improved NEDI (i-NEDI) [34] and
ICBI [29] are invited to evaluate the result of the interpolation algorithm. All of 25 images with 512 x
512 pixels are the references for computing the MSE, PSNR and SSIM, the 25 images with 256 x 256
pixels are enlarged by propose method and other interpolation methods. In order to prevent the pixel-
shift in ICBI and our proposed method, the left-top 511 x 511 part of original images (and the results
of other methods) is used to compute the MSE, PSNR and SSIM. The experimental results are
tabulated in Table 3.
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Table 3. Comparison of 2% magnification interpolation results with four excellent

methods.
Image Scale Criterion NEDI Bicubic i-NEDI ICBI SGAR Proposed
MSE 151.503 148.421 152.44 144.954 146.616 145.153
PSNR 26.327 26.416 26.3 26.518 26.469 26.513
Zebra 2% SSIM 0.863 0.869 0.866 0.872 0.871 0.872
FSIM 0.9547 0.9510 0.9512 0.9523 0.9522 0.9519
CC 0.9876 0.9880 0.9876 0.9874 0.9881 0.9878
MSE 161.811 157.186 147.207 145.943 147.807 146.195
PSNR 26.041 26.167 26.452 26.489 26.434 26.481
Bench 2% SSIM 0.869 0.876 0.883 0.883 0.882 0.883
FSIM 0.9533 0.9510 0.9526 0.9531 0.9532 0.9525
CcC 0.9880 0.9843 0.9827 0.9842 0.9847 0.9832
MSE 117.786 114.073 116.195 112.192 112.748 110911
PSNR 27.42 27.559 27.479 27.631 27.610 27.681
Bird 2x SSIM 0.857 0.867 0.867 0.873 0.873 0.873
FSIM 0.9521 0.9533 0.9529 0.9532 0.9534 0.9530
CcC 0.9843 0.9874 0.9868 0.9869 0.9874 0.9872
MSE 80.781 77.446 75.958 74.529 75.464 74.407
PSNR 29.058 29.241 29.325 29.408 29.353 29.415
Clock 2x SSIM 0.936 0.938 0.942 0.941 0.940 0.940
FSIM 0.9721 0.9703 0.9719 0.9713 0.9712 0.9709
CC 0.9875 0.9915 0.9908 0.9914 0.9919 0.9912
MSE 168.61 162.884 172.659 159.534 161.906 157.403
PSNR 25.862 26.012 25.759 26.102 26.038 26.161
Butterfly 1 2% SSIM 0.884 0.891 0.886 0.893 0.891 0.895
FSIM 0.9622 0.9604 0.9611 0.9615 0.9608 0.9609
cC 0.9915 0.9880 0.9873 0.9870 0.9881 0.9877
MSE 61.689 60.26 63.025 57.927 58.620 56.663
PSNR 30.229 30.331 30.136 30.502 30.450 30.598
Bee 2% SSIM 0.907 0.925 0.908 0.913 0911 0.929
FSIM 0.9733 0.9719 0.9711 0.9723 0.9719 0.9719
CC 0.9881 0.9937 0.9932 0.9932 0.9932 0.9938
MSE 130.863 126.369 127.243 123.344 124.221 120.354
PSNR 26.963 27.114 27.084 27.22 27.189 27.326
Carrousel 2% SSIM 0.913 0.920 0.920 0.920 0.919 0.924
FSIM 0.9618 0.9628 0.9635 0.9628 0.9634 0.9634
CC 0.9911 0.9915 0.9914 0.9916 0.9916 0.9918
MSE 50.277 42.696 44.174 41.959 42.132 38.675
PSNR 31.117 31.827 31.679 31.903 31.885 32.256
Sunflower 2% SSIM 0916 0.934 0.918 0.919 0.918 0.940
FSIM 0.9788 0.9775 0.9782 0.9785 0.9782 0.9781
CC 0.9963 0.9968 0.9968 0.9969 0.9968 0.9971
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Image Scale Criterion NEDI Bicubic i-NEDI ICBI SGAR Proposed
MSE 23.822 21.949 21.833 20.907 21.189 21.05
PSNR 34.361 34.717 34.74 34.928 34.870 34.898
Puppet 2% SSIM 0.944 0.949 0.948 0.950 0.949 0.951
FSIM 0.9813 0.9806 0.9805 0.9808 0.9810 0.9805
CcC 0.9958 0.9961 0.9961 0.9963 0.9963 0.9963
MSE 67.783 65.684 64.984 64.385 65.075 64.216
PSNR 29.82 29.956 30.003 30.043 29.997 30.054
Eagle 2% SSIM 0.905 0.909 0.910 0.911 0.910 0.911
FSIM 0.9758 0.9756 0.9753 0.9755 0.9757 0.9753
CcC 0.9926 0.9928 0.9929 0.9929 0.9929 0.9929
MSE 77.659 53.97 57.411 52.907 53.019 52.839
PSNR 29.229 30.809 30.541 30.896 30.886 30.901
Sheep 2% SSIM 0.887 0.898 0.892 0.900 0.900 0.902
FSIM 0.9711 0.9742 0.9725 0.9745 0.9746 0.9743
CcC 0.9914 0.9940 0.9936 0.9941 0.9939 0.9941
MSE 39.514 37.885 41.076 37.192 37.490 37.067
PSNR 32.163 32.346 31.995 32.426 32.392 32.441
Giraffe 2% SSIM 0.938 0.943 0.938 0.942 0.942 0.944
FSIM 0.9749 0.9752 0.9740 0.9754 0.9754 0.9752
CcC 0.9955 0.9957 0.9954 0.9958 0.9958 0.9958
MSE 183.369 171.484 173.456 166.573 167.652 167.954
PSNR 25.498 25.789 25.739 25.915 25.887 25.879
Tiger 2% SSIM 0.782 0.801 0.799 0.808 0.806 0.808
FSIM 0.9605 0.9616 0.9596 0.9616 0.9617 0.9614
cC 0.9732 0.9749 0.9746 0.9756 0.9760 0.9754
MSE 59.565 56.445 57.088 55.344 55.440 55.431
PSNR 30.381 30.615 30.565 30.7 30.693 30.693
Cat 2x SSIM 0.852 0.864 0.861 0.866 0.866 0.868
FSIM 0.9704 0.9717 0.9702 0.9717 0.9720 0.9715
cC 0.9870 0.9877 0.9875 0.9879 0.9883 0.9879
MSE 123.978 108.122 107.388 100.344 101.682 98.526
PSNR 27.197 27.792 27.821 28.116 28.058 28.195
Guitar 2x SSIM 0.883 0.897 0.895 0.898 0.897 0.906
FSIM 0.9627 0.9662 0.9672 0.9691 0.9686 0.9686
cC 0.9904 0.9916 0.9917 0.9922 0.9925 0.9924
MSE 33.055 31.859 32.668 30.377 30.714 30.02
PSNR 32.938 33.098 32.99 33.305 33.257 33.357
Dragonfly 2x SSIM 0.950 0.953 0.951 0.953 0.952 0.955
FSIM 0.9828 0.9827 0.9825 0.9832 0.9833 0.9828
CcC 0.9955 0.9957 0.9956 0.9959 0.9954 0.9959
MSE 107.069 103.032 102.779 99.755 100.272 100.064
PSNR 27.834 28.001 28.012 28.141 28.119 28.128
Church 2x SSIM 0.886 0.890 0.895 0.897 0.896 0.895
FSIM 0.9471 0.9446 0.9445 0.9449 0.9446 0.9446
cC 0.9873 0.9878 0.9878 0.9882 0.9881 0.9881
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Image Scale Criterion NEDI Bicubic i-NEDI ICBI SGAR Proposed
MSE 65.253 62.152 60.207 59.533 60.026 59.289
PSNR 29.985 30.196 30.334 30.383 30.347 30.401
Tower 2% SSIM 0.899 0.903 0.907 0.907 0.906 0.908
FSIM 0.9490 0.9487 0.9481 0.9479 0.9479 0.9475
CcC 0.9918 0.9922 0.9924 0.9925 0.9928 0.9925
MSE 149.758 110.03 112.736 106.043 108.439 105.334
PSNR 26.377 27.716 27.61 27.876 27.779 27.905
Butterfly 2 2x SSIM 0.924 0.930 0.930 0.934 0.933 0.934
FSIM 0.9565 0.9586 0.9581 0.9592 0.9588 0.9588
cC 0.9783 0.9841 0.9837 0.9846 0.9841 0.9848
MSE 119.413 113.792 118.699 112.433 113.106 110.616
PSNR 27.36 27.57 27.386 27.622 27.596 27.693
House 2x SSIM 0.852 0.861 0.855 0.863 0.862 0.865
FSIM 0.9459 0.9462 0.9445 0.9461 0.9462 0.9457
CcC 0.9824 0.9833 0.9825 0.9834 0.9832 0.9837
MSE 106.518 99.932 105.505 99.009 99.477 98.498
PSNR 27.857 28.134 27.898 28.174 28.154 28.197
Lion 2% SSIM 0.790 0.809 0.799 0.812 0.811 0.814
FSIM 0.9601 0.9625 0.9606 0.9627 0.9629 0.9623
CcC 0.9836 0.9846 0.9838 0.9848 0.9855 0.9848
MSE 400.909 387.65 387.415 379.12 378.228 371.372
PSNR 22.1 22.246 22.249 22.343 22.353 22.363
Stained Glass 2% SSIM 0.787 0.798 0.802 0.806 0.805 0.804
FSIM 0.9245 0.9228 0.9304 0.9278 0.9270 0.9272
CcC 0.9683 0.9692 0.9691 0.9698 0.9706 0.9700
MSE 114.975 112.91 113.786 110.039 110.317 108.504
PSNR 27.525 27.603 27.57 27.715 27.704 27.776
Colorful 2% SSIM 0.851 0.857 0.853 0.857 0.857 0.861
FSIM 0.9719 0.9713 0.9710 0.9718 0.9719 0.9715
CcC 0.9893 0.9895 0.9894 0.9898 0.9903 0.9899
MSE 154.087 143.778 144.271 138.333 139.746 138.528
PSNR 26.253 26.554 26.539 26.722 26.677 26.715
Newspaper 2x SSIM 0.860 0.871 0.872 0.876 0.875 0.876
FSIM 0.9575 0.9587 0.9589 0.9596 0.9595 0.9592
cC 0.9794 0.9815 0.9806 0.9815 0.9821 0.9814
MSE 286.172 271.404 277.259 266.933 267.872 265.138
PSNR 23.565 23.795 23.702 23.867 23.852 23.896
Wheel 2% SSIM 0.711 0.724 0.726 0.737 0.736 0.734
FSIM 0.9357 0.9334 0.9295 0.9316 0.9314 0.9314
cC 0.9332 0.9371 0.9353 0.9377 0.9374 0.9382

In 2x interpolation experiment, proposed method together with our previous SGAR method
achieved best MSE in 18 of 25 images, best PSNR in 18 of 25 images, best SSIM index in 21 of 25
images, best FSIM index in 8 of 25 images and best CC index in 21 of 25 images. According to the
PNSR index, 7 of the 25 interpolated HR images obtained the best effect with the ICBI method, and
the other 18 interpolated HR images obtained the best effect with the method proposed in this paper.
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The ratio was as high as 72%. For these 18 images, the PSNRs of the proposed method were improved
to different degrees compared to those of the other four methods. The maximum, minimum and average
increments were 1.672, 0.005 and 0.267 dB, respectively, and the maximum, minimum and average
relative increments were 5.79, 0.02 and 0.94%, respectively. Compared with NEDI, the maximum,
minimum and average increases in PSNR were 1.672, 0.234 and 0.547 dB, respectively, and the
relative maximum, minimum and average increases were 5.79, 0.78 and 1.94%, respectively.
Compared with bicubic, the maximum, minimum and average increases in PSNR were 0.429, 0.063
and 0.182 dB, respectively, and the relative maximum, minimum and average increases were 1.45,
0.22 and 0.63%, respectively. Compared with i-NEDI, the maximum, minimum and average increases
in PSNR were 0.577, 0.051 and 0.281 dB, respectively, and the relative maximum, minimum and
average increases were 1.82, 0.17 and 0.98%, respectively. Compared with ICBI, the maximum,
minimum and average increases in PSNR were 0.353, 0.005 and 0.06 dB, respectively, and the relative
maximum, minimum and average increases were 1.11, 0.02 and 0.21%, respectively. According to the
SSIM index, 17 of 25 images obtain the best effect with the ICBI method, compare with the second
best ICBI method, the maximum, minimum and average increments were 0.02099, 0.00019 and
0.00251, respectively, and the maximum, minimum and average relative increments were 2.284, 0.021
and 0.283%, respectively. Compared with bicubic, which accommodate non-integer scaling factors,
the maximum, minimum and average increases in SSIM were 0.00976, 0.00124 and 0.00461,
respectively, and the relative maximum, minimum and average increases were 1.35, 0.13 and 0.52%,
respectively. Two points should be specified: First, both bicubic and the proposed method can
achieve non-integer image magnification. Compared with the bicubic method, the proposed method
improved the interpolation effect to a certain extent in all 25 experimental images. Second, both
ICBI and the proposed method use the iterative curvature method. Thus, the two methods achieved
the best interpolation effect among these edge-directed methods. The difference is that the method
presented in this paper uses the SGAR model to predict the unknown pixels in the first step the
increasing trend is obvious.

Compared with the most popular non-integer interpolate methods and other conventional edge-
directed methods, the HR images obtained by the proposed method have significantly fewer blurring
effects. As is shown in Figures 5 and 6, these defects are especially obvious among non-integer methods.
In the visual comparison of 2% magnification, these defects also exist in Figures 7(a) and 8(a). It can be
seen that the interpolation method based on the SGAR model has a better image description ability
than the interpolation method based on the B-spline theory. The isotropic low-pass filter can enhance
the smoothing effect, while the SGAR model is more suitable for revealing the distribution pattern of
the image. Furthermore, the interpolation method based on the SGAR model has better color fidelity
than NEDI, as shown in Figure 9. As shown in Figures 7 (d) and 8 (d), the HR image interpolated by
ICBI has more visual defects. To analyze the reason, the proposed method used a curvature iterative
method based on the discrete features of the image to describe the curvature change of anchor pixels
in more directions, which helps eliminate interpolation defects such as artifacts in edge areas and
texture-rich areas.

In machine vision system, especially in online visual inspection system. Due to the vibration and
overheating problems, image noise will inevitably in the poor working conditions. In order to better
combine with the potential application scenarios, gaussian noise with mean value of 0 and variance of
0.005 is added to gray image. The images used in this part of the experiment are shown in Figure 10.
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(d) Bicubic (e) Proposed method (f) Original image

Figure 5. Visual comparisons of 2.2x magnification on the bench image.

(d) Bicubic (e) Proposed method (f) Original image

Figure 6. Visual comparisons of 2.2x magnification on the newspaper image.
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(g) Original image

Figure 7. Visual comparisons of 2x magnification on the sunflower image.

We add the latest learning-based Meta-SR [44] to the comparison. In comparing with the
traditional Bicubic interpolation method and Meta-SR [44], our previous SGAR method and the
proposed method have made better progress in objective indicators on all of 5 images. Although, on
some objective indicators, the edge-based method like NEDI and i-NEDI are better results than ours,
these methods also magnify the impact of noise on visual quality. These artifacts are especially obvious
in Figure 11.

Frankly, the naive for-loop and iterative process make the processing time relatively long, the
proposed method is much slower than ICBI, let along other popular non-integer interpolation methods
well-established in OpenCV. However, the processing speed can be improved with parallel threads
simultaneously process on NVIDIA CUDA devices and the research will continue in future works.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6573—-6600.



6595

(e) SGAR (f) Proposed method

(g) Original image

Figure 8. Visual comparisons of 2x magnification on the Carrousel image.

)
{

Figure 9. Color infidelity in comparing methods.
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Table 4. Comparison of 2x magnification interpolation results on noise images.

Figure 10. Noise images.

Image Scale Criterion =~ NEDI Bicubic i-NEDI ICBI Meta-SR SGAR Proposed
MSE 444.632 461.051 407.923 416.077 1240.412  361.525 402.718
PSNR 21.651 21.493 22.025 21.939 17.195 22.549 22.081
Image 1 2x SSIM 0.421 0.417 0.428 0.401 0.225 0.422 0.418
FSIM 0.763 0.758 0.757 0.752 0.752 0.768 0.762
CcC 0.923 0.921 0.932 0.930 0.820 0.939 0.932
MSE 521.417 548.597 491.627 528.783 1295417  467.874 531.563
PSNR 20.959 20.738 21.214 20.898 17.007 21.430 20.875
Image 2 2x SSIM 0.433 0.420 0.430 0.399 0.228 0.419 0.415
FSIM 0.770 0.761 0.758 0.751 0.690 0.766 0.762
CcC 0.923 0.920 0.929 0.924 0.836 0.932 0.923
MSE 439.341 489.277 441.469 466.365 1158.269 327.368 440.931
PSNR 21.703 21.235 21.682 21.444 17.493 22.980 21.687
Image 3 2% SSIM 0.464 0.461 0.475 0.436 0.238 0.507 0.454
FSIM 0.807 0.799 0.796 0.791 0.734 0.839 0.802
CcC 0.784 0.771 0.803 0.789 0.605 0.939 0.797
MSE 391.395 414.673 383.998 402.288 1054.442  411.358 391.838
PSNR 22.205 21.954 22.288 22.085 17.901 21.989 22.200
Image 4 2% SSIM 0.437 0.440 0.450 0.417 0.241 0.457 0.434
FSIM 0.784 0.786 0.782 0.776 0.713 0.805 0.786
CcC 0.898 0.894 0.905 0.900 0.780 0.810 0.902
MSE 358.182 368.718 354.381 376.873 900.455 349.492 347.985
PSNR 22.590 22.464 22.636 22.369 18.586 22.696 22.715
Image 5 2% SSIM 0.505 0.527 0.539 0.504 0.304 0.437 0.521
FSIM 0.836 0.842 0.838 0.833 0.787 0.789 0.843
CcC 0.931 0.930 0.935 0.930 0.858 0.912 0.935
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(g) Proposed method (h) Original image
Figure 11. Visual comparisons of 2x magnification on the noise image.

5. Conclusions

Based on our and others’ previous work, this paper introduced a new method for image
interpolation via integration. The new method is based on the SGAR model and can accommodate
arbitrary scaling factors. First, the paper discussed how to use the SGAR model to describe the image
window, including the establishment of a linear autoregressive model, the SGAR model and the
relationship between anchor pixels and their neighboring pixels. By grouping the gradient directions,
the adaptive extension direction of the image window was determined, and an image window adaptive
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extension method based on the gradient angles for the SGAR model was formed. Because the product
terms were introduced into the SGAR model, the degree of freedom of the model was increased, and
the ability to describe the model was enhanced, but this may cause overfitting problems. Therefore, an
elastic network was introduced into the solution of the objective function to address the overfitting
problem. Finally, the curvatures were calculated in eight directions, and the interpolation results were
updated accordingly to improve the interpolation accuracy. Experiments on 25 images show that the
objective measures of the proposed method were improved to a certain extent. Subjective visual effect
evaluations were carried out, and much better results were achieved. Therefore, the method presented in
this paper improved the objective index of image interpolation and enhanced the subjective visual effect.
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