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Abstract: This paper proposed a novel image interpolation algorithm with an arbitrary upscaling 
factor based on the spatial general autoregressive model. First, to accommodate arbitrary scale 
factors, a non-integer mapping method was modulated into the spatial general autoregressive model, 
which was employed to model the piecewise stationary pattern with a higher description capacity 
than autoregressive models. A gradient angle guided extension method was utilized to extend the 
spatial general autoregressive model, and more pixels in the neighborhood were included to estimate 
the parameters of the spatial general autoregressive model. To realize the high-accuracy estimation 
of the model parameters, a regularization method via an elastic network was adopted to maintain the 
complexity of the object function in a reasonable state and address the overfitting problem. We also 
introduced an iterative curvature method to refine the interpolation result of those image blocks with 
large variances of gray intensities. Experiments on 25 images were conducted with integer and non-
integer magnification factors to systematically verify the objective and subjective measures of the 
proposed method. The visual artifacts were effectively suppressed by the proposed method, and a 
flexible interpolation method for arbitrary scale factors was implemented. 

Keywords: image processing; arbitrary scale interpolation; autoregressive; gradient adaptive 
extension; elastic network; iterative curvature. 

 



6574 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 6573–6600. 

1. Introduction  

With the rapid development of multimedia technologies, the collection and transmission of 
multimedia data have become greatly convenient and easy. Meanwhile, multimedia data quality of 
imaging equipment limits the wider application of machine vision inspection system. The method to 
improve the image resolution through algorithms—namely, image interpolation, has become an active 
research field in machine vision. To a certain extent, image interpolation can effectively increase the 
image resolution to meet various applications, such as motion tracking and pose estimation. In 
addition, image interpolation has a wide range of practical applications and commercial prospects in 
remote sensing, cloud-of-thing system [1], surveillance [2,3], medical imaging [4], multimedia 
processing [5,6], and consumer electronic [7] . 

In the registration and fusion of non-homologous images, image size adjustment is needed. 
Especially in the visual measurement process of large machined parts, due to the angle of view, the 
images captured by different cameras have different dimensions [8]. This will lead to dimensional 
distortion. In order to reduce visual artifacts and adapt to the requirements of arbitrary magnification, 
a more flexible image interpolation method is needed. Although the visual quality of simple linear 
interpolation methods is not sufficient, these methods still are widely used due to their low 
computational complexity and interpolation flexibility. Linear interpolation methods include nearest-
neighbor interpolation [9,10], bilinear interpolation [11,12], bicubic interpolation [11–14], cubic spine 
interpolation [15,16] and iterative linear interpolation [17,18], which predict the gray intensity of an 
unknown pixel according to the distance between the unknown pixel and the reference pixels. The 
pixels at the boundary, edge or texture of a low-resolution (LR) image have a greater impact on 
image interpolation than those perpendicular to the edge. Therefore, an isotropic low-pass filter is 
employed to weaken the high-frequency components of the edges, and the edges are consequently 
smoothed, which will lead to artifacts such as blurring, ringing, checkerboard effects, edge 
discontinuities and jagging. 

2. Related works 

In related works, contributions have been made in reducing the visual artifacts. However, those 
methods are mainly suitable for integer magnification of images. Some edge-guided interpolation 
algorithms have been designed to correct the artifacts stemming from isotropic filters. The explicit 
methods [19,20] were developed to consider local structural information such as edges or isophotes. 
However, for images containing many complex structures, an edge map estimated with these methods 
tends to be unpredictable, which increases the intensity variation of the interpolation. Implicit adaptive 
methods have been proposed, which embed the local structures into an objective function that can be 
solved using linear or nonlinear optimization methods. These methods can model the image’s local 
patterns and estimate the unknown pixels around the edges in texture-rich areas. Li and Orchard [21] 
proposed an edge adaptive interpolation method according to the geometric duality of edges, named 
new edge directed interpolation (NEDI). Geometric duality between the low-resolution covariance and 
the high-resolution covariance, couple the pair of pixels along the same orientation, enables NEDI to 
estimate the high-resolution covariance from its low-resolution counterpart with a qualitative model 
characterizing the relationship between the covariance and the resolution. Because the inaccurate 
estimation of covariance in texture-rich regions, jagging and color infidelity are inescapable on some 
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RGB samples. Analogous to NEDI, other studies have been conducted with geometrical similarity 
measurement [22–26] to improve interpolation accuracy. Chang and Kevin [27] used collaborative 
representation and exploiting non-local self-similarity of natural images and introduced the external 
HR information into the interpolation process. Zhang and Wu [22] proposed soft-decision adaptive 
interpolation (SAI), which learnt and adapted varying pixel structures by using a piecewise 
autoregressive (PAR) model in the local rectangular window of the image. To implicitly use AR models 
for better solving nonlinear problems at the edges in image interpolation, irregular windows were 
employed by Guo et al. [23–25], which were extended adaptively from the root windows according to 
the geometric features, such as isophotes and curvatures. The similarities between pixels were 
calculated using patch-geodesic distance. Cheng et al. [28] used Fast Fourier Transformation (FFT) 
multichannel interpolation to reconstruct or approximate the continuous signals from a series of 
discrete points. A spatial interpolation can predict the values of the unknown points by processing the 
surrounding variables with meaningful values within the same region. In our previous work [26], a 
spatial general autoregressive model (SGAR), which is a uniform expression for both linear and 
nonlinear AR models, was employed to implement a noise-insensitive and edge-preserving interpolator. 
Although it still uses regular windows, its nonlinear description ability was improved by introducing 
nonlinear terms into the model. The similarities between pixels in the image windows were implicitly 
exploited by the robust parameter estimation method named generalized M-estimator. 

In contrast to the above interpolation strategies, the curvature-based interpolation algorithms 
introduced high-order derivative information of image intensity to achieve high-accuracy interpolation 
from the rough results. Giachetti and Asuni [29] proposed the iterative curvature based interpolation 
(ICBI) method, which generates high-resolution (HR) pixels within the grid along the directions with 
the lowest second-order derivative and subsequently updates the values of the HR pixels by minimizing 
the local variations of curvature of the image intensity. However, the hole-filling strategy limits the 
application with non-integer upscaling factors. Kim and Cha [30] proposed the curvature interpolation 
method (CIM) based on a partial differential equation (PDE). Because it is known to tend to converge 
to a piecewise constant image [31,32]. These methods share the characteristic that the final 
interpolation results are modified by an iterative procedure upon the initial values provided by other 
methods. It was emphasized that better interpolation accuracy was achieved, which was largely due to 
the first-step interpolation method.  

Therefore, an arbitrary scale factor image interpolation based on the SGAR model was used to 
implement image interpolation from three aspects: image window adaptive extension by gradient 
angle, model regularization by the elastic network, and refinement of the result accuracy by the 
curvature constraints. The rest of the paper is structured as follows. Section 3 introduces the SGAR 
model-based image interpolation method and its implementation. Experimental results and a 
comparison study with some existing popular image interpolation techniques are presented in 
Section 4. Section 5 contains our conclusions. 

3. SGAR model-based image interpolation method and its implementation 

3.1. Image description based on SGAR model 

AR models are effective tools for image modeling [22–26,33–35]. The linear AR model in 
vectorization form is shown as follows. 
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  ˆ Th  y x x   (1) 

where ŷ  is the prediction value,  0 1, , , n      is the model’s parameter vector, containing the 
intercept term 0  and the feature weights 1  to n , x  is the sample’s feature vector, and h  is 
the hypothesis function, using the model parameters  . 

However, the data distributions of a digital image are more complex. To better fit the image model, 
the product of the pixels can be involved in the polynomial regression, which is adopted as a new 
feature, such as the SGAR model that was initially explored based on Weierstrass theory for digital 
image adaptive filtering in our previous work [36]. The pixels in the image follow a certain regular 
pattern that indicates the direction of gray scale change. In other words, every unknown interpolated 
pixel in a piecewise image can be estimated by its known adjacent neighbor with certain weights. The 
original images are broken up into small fragments. Based on the stationarity assumption in piecewise 
images [22], we model the fragments as a locally stationary Gaussian process. Inevitably, some 
fragments with abrupt and unnatural gray scale changes are brought into the modeling process and 
have negative effect on describing the pattern of the image [36]. An adaptive filter was implemented 
based on the SGAR model. The new filter removed these artifacts while effectively conserving detailed 
image information. This was because the SGAR model fuses both linear and nonlinear AR models into 
a uniform expression[26]. However, the high-order polynomial regression model will probably overfit 
the training data. Moreover, simple linear regression has the problem of underfitting. For an image 
window, it could be modeled as 
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where x(p) is the forecasted value of a pixel, x(sk) is the reference value of a pixel in the LR image, 
a(p) is the modeling residuals. s is a two-dimensional vector representing the location of the specific 
pixel. A is a set of vectors representing the location of adjacent reference pixels. The composition of 
set A is discussed in section 2.3. ϕ(s1, s2,…, si) is the model parameters. r is the order of the model, 
which indicates the dimension of vector ϕ. When r is 1, the SGAR model is degenerated into AR model 
as is shown in Eq (3). The dimension of the vector ϕ is only 8 and consists of the eight adjacent pixels 
around the anchor pixel.  

 ( ) ( ) ( ) ( )
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p s s p  (3) 

When r is 2, the SGAR model can also be rewritten as Eq (4). The dimension of vector ϕ is 44 and 
consists of 8 adjacent pixels around the anchor pixel, 36 self-multiplication and product of two 
different pixels are taken into consideration. We will explain how to obtain the parameters of the SGAR 
model in section 2.4. 
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3.2. Interpolation accommodate arbitrary scaling factor 

The relationship between the coordinates of the pixels of the HR image and those of the 
corresponding LR image must first be clarified. 

 

1

1

u i
h

v j
h

  

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

 (5) 

where (u, v) represents a pixel in the LR image, (i, j) represents a pixel in the HR image, and h is an 
arbitrary scaling factor. 

The reference pixels in the LR image of a reconstructed pixel in the HR image is determined with 
the following mathematical expression. 
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 (6) 

where φ(·) is a function that tends toward negative infinity, and ρ(·) is a function that rounds to the 
nearest decimal or integer. 

When r is 1, the product of the LR pixels and SGAR model parameter vector ϕ is regard as the 
value of interpolated pixel. For the convenience of understanding, taking 1.25× interpolation as an 
example, the coordinates of HR pixels are (63,22), (63,23), (64,22), (64,23), the LR reference pixels 
coordinate at (52, 19), (52,20), (53,19) and (53,20) are used to interpolate the HR pixel at (63, 22), 
other HR pixels interpolation schemes are shown in Figure 1: 

 

Figure 1. Pixel arrangement in interpolation process. 
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When r is 2, the parameters of SGAR model are estimated by modified samples. For each sample, 
it consist of an anchor pixel at the center of 3 × 3 image block, 8 LR reference pixels and 36 parameters 
generated by these pixels. Then the LR pixels used in the interpolation process share the same 
arrangement with the samples used in parameter estimation process. 

3.3. Gradient guided model extension 

The gradient guided method [20,37] was employed to adaptively extend the parameters estimation 
window to increase the training dataset and ultimately improve the interpolation accuracy. The gradient 
angles were calculated by the Scharr operator, which is formulated as follows. 

  
3 0 3 3 10 3

10 0 10 , 0 0 0

3 0 3 3 10 3
x y xScharr Scharr Scharr
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         
      

 (7) 

where Gx and Gy are the gradients of the x and y directions, respectively, according to the Scharr 
operator. 
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Therefore, the gradient angle is 
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The gradient angle space was divided into eight regions according to an interval of 45°, and the 
eight regions were placed into four groups. 
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





 (10) 

According to the gradient direction of each pixel in the LR image, the image windows involved in 
modeling the image with the SGAR model would be extended in four directions as shown in Figure 2. 

The gradient directions of the n pixels were grouped according to Eq (10), and the frequency of 
each group was counted. The extension direction was subsequently determined according to the 
maximum of the four frequencies. The number of fitting samples is determined by the gradient based 
extension method. In fact, 15 samples were used in the horizontal and vertical directions, and 19 
samples are used in the other two directions. 
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(a) (b) (c) (d) 

Figure 2. Adaptive window extension method based on gradient guidance. (a) Image 
windows extended horizontally. (b) Image windows extended in the direction of 45°. (c) 
Image windows extended vertically. (d) Image windows extended in the direction of 135°. 

3.4. Regularized SGAR model-based on elastic network 

The earlier works suggested that the patterns of the AR models containing only a linear 
relationship between pixels are sufficient. The least-square (LS) method [18], which is highly sensitive 
to outliers, was used to solve the parameters of the interpolation model with cross-direction constraints. 
To address the noise-sensitive problem of the ordinary LS, some methods were proposed [38]. Among 
them, regularization is a common method. The l1-norm and l2-norm regularization terms were added 
to the objective function by Liu et al. to enhance the stability of the LS solution. The l2-norm penalty 
term [27] (i.e., ridge regression) was used to regularize the objective function. Weighted ridge 
regression (WRR) [19] was adopted to restrain the expansion of variance and thus achieve more 
reliable estimations by modulating weights into the regression to evaluate the reliability of each sample. 
In contrast to the above methods, the products of the pixels were employed to increase the description 
capacity of the SGAR model to suit various digital images, and the overfitting problem was noted. 

The SGAR model adopted the products of pixels as the new features, so the descriptive power of 
the model was improved compared with some interpolation methods that consider only simple linear 
relations [15]. Therefore, the model was especially effective for rebuilding the local nonlinear 
relationship of image windows [22,23,26,35]. However, it may cause overfitting problems because of 
the higher degree of freedom [26]. To address this problem, the regularization method could be used 
to reduce the freedom of models and keep the complexity of the object function in a reasonable state. 
Ridge regression [23,39], Lasso regression [40] and Elastic Network [41] are the three most commonly 
used methods. 

Therefore, the mean square error (MSE) was calculated to represent the intensity differences 
between the reference pixels and the predicted pixels. The parameters of the SGAR model will 
obtained by minimizing the loss function. The loss function of Elastic Network is shown as:  
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where m is the number of the samples in the dataset, n is the number of fit parameters, X(i) is the vector 
combined with all features of sample i, θ is the vector of the model parameter, y(i) is the anchor pixel 
of the region, and is the original value of LR pixel at the center of 3 × 3 image block, α is the hyper-
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parameter that dominates the regularization level of the model, and t is the hyper-parameter that 
dominates the mixing ratio. In the experiment, the value of t was manually set to 0.5. 

3.5.  Regularized SGAR model-based on elastic network 

The SGAR model learns the structural relationship between pixels and their neighbors in the LR 
image to recover as much missing information as possible during down-sampling [42]. However, we 
know that it is very difficult to recover HR images in high-frequency areas where the gray level of the 
image changes rapidly, such as textures and gradients. Only a relatively small part of the missing 
information can be restored. Compared with low-frequency areas, modeling of image windows with 
the SGAR model in these areas is more likely to encounter the problem of insufficient generalization 
ability, which makes interpolation stability difficult to control. Therefore, in these regions, a strategy 
that updates the interpolated pixels by minimizing the local variation of the second derivative of the 
image was adopted. By transforming the two-dimensional image plane into three-dimensional space, 
the surface optimization methods [43] were employed to solve the problem of artifacts. 

List 1. The process of iterative curvature method. 
1: Input U (i, j) 

2: 

Calculate The second-order derivatives of U (i, j) in 8-directions 

1 ( ( 1, ) ( 1, )) / 2 ( , )d U i j U i j U i j      

2 ( ( , 1) ( , 1)) / 2 ( , )d U i j U i j U i j      

3 ( ( 1, 1) ( 1, 1)) / 2 ( , )d U i j U i j U i j        

4 ( ( 1, 1) ( 1, 1)) / 2 ( , )d U i j U i j U i j        

5 ( 1, ) ( , 1) ( 1, 1) ( , )d U i j U i j U i j U i j         

6 ( 1, ) ( , 1) ( 1, 1) ( , )d U i j U i j U i j U i j         

7 ( , 1) ( 1, ) ( 1, 1) ( , )d U i j U i j U i j U i j         

8 ( , 1) ( 1, ) ( 1, 1) ( , )d U i j U i j U i j U i j         

3: If i Thresholdd  , then id  A  which is a set. 

4:  minm kd d , where kd A , 1,2,k m  , m is the element numbers of A. 

5: Update U (i, j): U (i, j) = U (i, j) + dm 

6: 
Repeat steps 1–5 until the stopping rules: 1) Set A is an empty set or 2) the 

maximum iterations were reached. 
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An analogous filtering-based method proposed by Gong et al. [43] was explored to reduce the 
regularization part of the variational energy while guaranteeing non-increasing total energy. That is, 
the iterative curvature method was modulated into SGAR mode. The second-order derivatives of p (i, 
j) on the HR image were calculated in eight different directions, as shown in Figure 3, and were used 
as an approximation of the curvatures. The eight second-order derivatives were thresholded, and a set 
consisting of the thresholded second-order derivatives was obtained. P (i, j) was updated according to 
the absolute minimum of the elements of the set. The second-order derivatives of the digital image 
window were calculated repeatedly until the curvature of p (i, j) in all directions was below the 
threshold or the maximum iterations were reached. The curvatures around p (i, j) gradually adapted to 
the directions that shared a similar curvature change tendency. Thus, the accuracy of the interpolation 
results obtained in the first step was improved with the following algorithm process in List 1. 

    

(a) Vertical direction. (b) Horizontal direction (c) The direction of 135° (d) The direction of 45°

    

(e) The top left corner. (f) The top right corner 
(g) The bottom left 

corner 

(h) The bottom right 

corner. 

Figure 3. Curvature descriptions of 3 × 3 region in 8 different directions. 

4. Results and discussions 

Experiments were carried out on a dataset provided by ICBI [29] with different magnification 
factors to systematically verify the performance of the proposed method in terms of objective 
measurements, subjective visual effect and computational cost. For thoroughness and fairness, the 
chosen dataset contains images with different resolutions and various objects—animals, flowers and 
buildings—with a wide range of color and natural textures, which include typical and unique digital 
images for interpolation research.  

(i, j) (i, j) (i, j) (i, j)

(i, j) (i, j) (i, j) (i, j)
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Table 1. Comparison of 1.7× magnification interpolation results with four non-integer 
methods. 

Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed 

Zebra 1.7× 

MSE 81.207  228.335  75.005  77.776  59.349  

PSNR 29.035  24.545  29.380  29.222  30.397  

SSIM 0.924  0.864  0.929  0.920  0.926  

FSIM 0.9817  0.9512  0.9791  0.9772  0.9877  

CC 0.9935  0.9810  0.9939  0.9939  0.9952  

Bench 1.7× 

MSE 104.015  231.486  91.697  107.383  79.586  

PSNR 27.960  24.486  28.507  27.821  29.122  

SSIM 0.920  0.864  0.928  0.913  0.925  

FSIM 0.9760  0.9499  0.9761  0.9705  0.9847  

CC 0.9891  0.9749  0.9903  0.9889  0.9916  

Bird 1.7× 

MSE 71.808  156.785  61.920  74.543  63.665  

PSNR 29.569  26.178  30.212  29.407  30.092  

SSIM 0.914  0.847  0.920  0.907  0.916  

FSIM 0.9802  0.9511  0.9814  0.9753  0.9868  

CC 0.9921  0.9824  0.9932  0.9919  0.9929  

Clock 1.7× 

MSE 44.927  104.802  42.651  45.213  36.236  

PSNR 31.606  27.927  31.831  31.578  32.539  

SSIM 0.961  0.932  0.964  0.959  0.962  

FSIM 0.9875  0.9693  0.9862  0.9841  0.9921  

CC 0.9950  0.9880  0.9952  0.9950  0.9959  

Butterfly 1 1.7× 

MSE 97.058  249.318  87.326  95.717  74.768  

PSNR 28.260  24.163  28.719  28.321  29.394  

SSIM 0.939  0.875  0.946  0.936  0.947  

FSIM 0.9849  0.9600  0.9836  0.9806  0.9904  

CC 0.9929  0.9813  0.9936  0.9932  0.9945  

Bee 1.7× 

MSE 37.375  106.105  29.757  36.878  26.581  

PSNR 32.405  27.873  33.395  32.463  33.885  

SSIM 0.964  0.916  0.970  0.964  0.970  

FSIM 0.9916  0.9696  0.9907  0.9895  0.9952  

CC 0.9961  0.9886  0.9968  0.9962  0.9972  

Carrousel 1.7× 

MSE 77.964  183.253  72.883  78.882  62.649  

PSNR 29.212  25.500  29.505  29.161  30.162  

SSIM 0.952  0.913  0.955  0.949  0.953  

FSIM 0.9823  0.9592  0.9809  0.9786  0.9882  

CC 0.9948  0.9877  0.9951  0.9948  0.9958  

Sunflower 1.7× 

MSE 27.130  75.759  23.167  26.798  18.957  

PSNR 33.796  29.336  34.482  33.850  35.353  

SSIM 0.963  0.932  0.967  0.960  0.964  

FSIM 0.9907  0.9763  0.9906  0.9883  0.9945  

CC 0.9980  0.9945  0.9983  0.9981  0.9986  
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Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed 

Puppet 1.7× 

MSE 13.923  34.978  13.314  13.920  10.774  

PSNR 36.694  32.693  36.888  36.694  37.807  

SSIM 0.967  0.938  0.970  0.966  0.970  

FSIM 0.9932  0.9813  0.9913  0.9915  0.9958  

CC 0.9975  0.9937  0.9976  0.9975  0.9981  

Eagle 1.7× 

MSE 38.275  83.231  39.204  40.307  33.764  

PSNR 32.302  28.928  32.197  32.077  32.846  

SSIM 0.945  0.905  0.946  0.942  0.945  

FSIM 0.9907  0.9746  0.9880  0.9885  0.9932  

CC 0.9958  0.9908  0.9957  0.9956  0.9963  

Sheep 1.7× 

MSE 34.092  73.470  31.319  35.503  32.320  

PSNR 32.804  29.470  33.173  32.628  33.036  

SSIM 0.939  0.885  0.947  0.934  0.941  

FSIM 0.9909  0.9721  0.9903  0.9885  0.9941  

CC 0.9963  0.9919  0.9966  0.9961  0.9965  

Giraffe 1.7× 

MSE 20.370  62.295  18.833  18.987  14.790  

PSNR 35.041  30.186  35.382  35.346  36.431  

SSIM 0.969  0.929  0.973  0.969  0.972  

FSIM 0.9927  0.9719  0.9905  0.9908  0.9957  

CC 0.9977  0.9930  0.9979  0.9979  0.9983  

Tiger 1.7× 

MSE 102.932  201.494  101.077  107.526  102.251  

PSNR 28.005  25.088  28.084  27.816  28.034  

SSIM 0.878  0.806  0.883  0.867  0.874  

FSIM 0.9852  0.9578  0.9816  0.9820  0.9892  

CC 0.9851  0.9702  0.9853  0.9846  0.9851  

Cat 1.7× 

MSE 33.662  62.693  31.593  35.278  34.880  

PSNR 32.859  30.159  33.135  32.656  32.705  

SSIM 0.917  0.867  0.923  0.910  0.912  

FSIM 0.9886  0.9687  0.9883  0.9861  0.9914  

CC 0.9851  0.9702  0.9853  0.9846  0.9851  

Guitar 1.7× 

MSE 84.518  158.135  68.741  88.767  66.554  

PSNR 28.861  26.141  29.759  28.648  29.899  

SSIM 0.932  0.896  0.941  0.925  0.938  

FSIM 0.9833  0.9659  0.9854  0.9784  0.9914  

CC 0.9927  0.9863  0.9931  0.9924  0.9924  

Dragonfly 1.7× 

MSE 22.511  52.164  20.837  22.784  18.960  

PSNR 34.607  30.957  34.942  34.554  35.353  

SSIM 0.968  0.942  0.971  0.967  0.969  

FSIM 0.9931  0.9804  0.9917  0.9913  0.9957  

CC 0.9924  0.9877  0.9947  0.9932  0.9949  

Church 1.7× 

MSE 62.413  139.430  57.258  64.413  55.518  

PSNR 30.178  26.687  30.552  30.041  30.687  

SSIM 0.935  0.879  0.940  0.931  0.938  

FSIM 0.9784  0.9458  0.9759  0.9729  0.9848  

CC 0.9970  0.9930  0.9972  0.9970  0.9975  
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Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed 

Tower 1.7× 

MSE 37.601  79.741  35.826  39.162  35.180  

PSNR 32.379  29.114  32.589  32.202  32.668  

SSIM 0.943  0.906  0.946  0.938  0.940  

FSIM 0.9793  0.9497  0.9765  0.9750  0.9844  

CC 0.9927  0.9834  0.9933  0.9925  0.9935  

Butterfly 2 1.7× 

MSE 66.696  178.208  66.707  66.773  48.798  

PSNR 29.890  25.622  29.889  29.885  31.247  

SSIM 0.961  0.919  0.965  0.959  0.966  

FSIM 0.9855  0.9561  0.9802  0.9818  0.9910  

CC 0.9953  0.9900  0.9955  0.9951  0.9956  

House 1.7× 

MSE 74.397  146.167  68.578  78.266  74.777  

PSNR 29.415  26.482  29.769  29.195  29.393  

SSIM 0.913  0.866  0.919  0.905  0.904  

FSIM 0.9757  0.9447  0.9746  0.9695  0.9811  

CC 0.9908  0.9745  0.9906  0.9910  0.9932  

Lion 1.7× 

MSE 61.003  116.098  58.801  64.213  61.114  

PSNR 30.277  27.483  30.437  30.055  30.269  

SSIM 0.884  0.812  0.889  0.872  0.880  

FSIM 0.9849  0.9613  0.9835  0.9809  0.9894  

CC 0.9892  0.9785  0.9900  0.9888  0.9891  

Stained Glass 1.7× 

MSE 245.082  492.326  221.710  254.356  226.619  

PSNR 24.238  21.208  24.673  24.076  24.578  

SSIM 0.871  0.797  0.879  0.858  0.867  

FSIM 0.9570  0.9198  0.9591  0.9467  0.9726  

CC 0.9907  0.9821  0.9910  0.9903  0.9907  

Colorful 1.7× 

MSE 66.784  150.067  63.122  67.522  56.865  

PSNR 29.884  26.368  30.129  29.836  30.582  

SSIM 0.923  0.873  0.927  0.919  0.922  

FSIM 0.9880  0.9702  0.9869  0.9853  0.9917  

CC 0.9809  0.9602  0.9826  0.9805  0.9821  

Newspaper 1.7× 

MSE 89.945  181.939  82.357  94.110  79.896  

PSNR 28.591  25.532  28.974  28.394  29.106  

SSIM 0.917  0.868  0.924  0.911  0.920  

FSIM 0.9827  0.9579  0.9804  0.9782  0.9885  

CC 0.9881  0.9754  0.9891  0.9877  0.9894  

Wheel 1.7× 

MSE 176.331  335.015  180.833  187.125  191.301  

PSNR 25.668  22.880  25.558  25.409  25.314  

SSIM 0.827  0.738  0.826  0.807  0.802  

FSIM 0.9701  0.9253  0.9611  0.9648  0.9743  

CC 0.9908  0.9745  0.9906  0.9910  0.9932  

Comparisons of non-integer factors are studied with bicubic interpolation, bilinear interpolation, 
nearest neighbor interpolation and AREA interpolation. These methods are well-established in Open 
Source Computer Vision Library (OpenCV). The mean square error (MSE), peak signal to noise ratio 
(PSNR), structural similarity index (SSIM), feather similarity index (FSIM) and Correlation 
coefficient (CC) were used to evaluate the result of the interpolation algorithm. The experiments are 
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conducted in non-integer interpolation factors to substantiate the performance of proposed method in 
arbitrary scaling. In 1.7× and 2.2× enlargement, images with 512 × 512 pixels are resized into 435 × 
435 pixels and 563 × 563 pixels with bicubic method, and used as the reference for computing the 
MSE, PSNR and SSIM index. The images with 256 × 256 pixels are enlarged to the same size by 
proposed method and other four conventional non-integer interpolation methods. The experimental 
results are tabulated in Tables 1 and 2.  

Table 2. Comparison of 2.2× magnification interpolation results with four non-integer 
methods. 

Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed 

Zebra 2.2× 

MSE 88.816 206.365 50.628 76.558 46.788 

PSNR 28.646 24.984 31.087 29.291 31.429 

SSIM 0.903 0.848 0.922 0.902 0.925 

FSIM 0.8965  0.8323  0.8975  0.8956  0.8975  

CC 0.94262  0.97264  0.97502  0.97506  0.97513  

Bench 2.2× 

MSE 109.459 208.750 74.247 106.305 64.341 

PSNR 27.738 24.935 29.424 27.865 30.046 

SSIM 0.906 0.858 0.923 0.901 0.928 

FSIM 0.8993  0.8463  0.9026  0.8963  0.9030  

CC 0.93808  0.96811  0.97060  0.97168  0.97178  

Bird 2.2× 

MSE 75.389 142.926 53.552 74.440 49.275 

PSNR 29.358 26.580 30.843 29.413 31.205 

SSIM 0.898 0.839 0.921 0.893 0.926 

FSIM 0.8986  0.8398  0.9022  0.8959  0.9022  

CC 0.95257  0.97605  0.97802  0.97807  0.97807  

Clock 2.2× 

MSE 47.199 95.372 31.825 44.876 28.044 

PSNR 31.391 28.337 33.103 31.611 33.652 

SSIM 0.956 0.931 0.965 0.955 0.966 

FSIM 0.9432  0.9102  0.9449  0.9420  0.9452  

CC 0.98293  0.98430  0.98424  0.98428  0.94669  

Butterfly 1 2.2× 

MSE 103.625 228.543 61.539 94.279 56.611 

PSNR 27.976 24.541 30.239 28.387 30.602 

SSIM 0.924 0.866 0.949 0.924 0.951 

FSIM 0.9154  0.8609  0.9174  0.9142  0.9174  

CC 0.97389  0.97616  0.97630  0.97641  0.96715  

Bee 2.2× 

MSE 40.711 93.276 22.502 36.456 20.329 

PSNR 32.034 28.433 34.609 32.513 35.050 

SSIM 0.954 0.912 0.972 0.958 0.973 

FSIM 0.9389  0.8971  0.9398  0.9385  0.9397  

CC 0.98425  0.98562  0.98565  0.98569  0.98569  
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Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed 

Carrousel 2.2× 

MSE 81.653 166.234 55.864 77.604 49.037 

PSNR 29.011 25.924 30.660 29.232 31.226 

SSIM 0.943 0.909 0.954 0.942 0.956 

FSIM 0.9189  0.8715  0.9202  0.9176  0.9200  

CC 0.96606  0.98261  0.98406  0.98396  0.98402  

Sunflower 2.2× 

MSE 29.199 66.942 16.333 26.295 14.375 

PSNR 33.477 29.874 36.000 33.932 36.555 

SSIM 0.958 0.932 0.967 0.957 0.968 

FSIM 0.9525  0.9226  0.9530  0.9519  0.9530  

CC 0.98441  0.99236  0.99301  0.99304  0.99305  

Puppet 2.2× 

MSE 14.994 31.026 9.121 13.794 8.177 

PSNR 36.372 33.214 38.530 36.734 39.005 

SSIM 0.962 0.936 0.972 0.962 0.973 

FSIM 0.9582  0.9342  0.9593  0.9573  0.9591  

CC 0.98381  0.99165  0.99240  0.99247  0.99247  

Eagle 2.2× 

MSE 38.812 73.190 30.466 39.360 26.828 

PSNR 32.241 29.486 33.293 32.180 33.845 

SSIM 0.939 0.905 0.947 0.936 0.949 

FSIM 0.9490  0.9227  0.9496  0.9487  0.9494  

CC 0.97598  0.98676  0.98786  0.98733  0.98732  

Sheep 2.2× 

MSE 35.217 65.627 26.054 35.116 24.500 

PSNR 32.663 29.960 33.972 32.676 34.239 

SSIM 0.929 0.883 0.948 0.926 0.950 

FSIM 0.9389  0.9011  0.9415  0.9372  0.9410  

CC 0.97840  0.98865  0.98950  0.98944  0.98945  

Giraffe 2.2× 

MSE 22.205 53.935 12.282 18.577 11.382 

PSNR 34.666 30.812 37.238 35.441 37.569 

SSIM 0.959 0.923 0.972 0.963 0.973 

FSIM 0.9408  0.8983  0.9416  0.9405  0.9415  

CC 0.97902  0.98989  0.99078  0.99074  0.99079  

Tiger 2.2× 

MSE 104.056 182.616 89.693 105.770 82.569 

PSNR 27.958 25.515 28.603 27.887 28.963 

SSIM 0.858 0.793 0.874 0.846 0.880 

FSIM 0.9147  0.8711  0.9171  0.9134  0.9167  

CC 0.92847  0.95987  0.96311  0.96260  0.96287  

Cat 2.2× 

MSE 34.597 57.043 30.381 35.208 28.759 

PSNR 32.740 30.569 33.305 32.664 33.543 

SSIM 0.904 0.861 0.916 0.898 0.918 

FSIM 0.9368  0.9007  0.9391  0.9355  0.9385  

CC 0.96745  0.98197  0.98320  0.98325  0.98326  
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Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed 

Guitar 2.2× 

MSE 87.945 147.489 62.059 88.695 52.371 

PSNR 28.689 26.443 30.203 28.652 30.940 

SSIM 0.923 0.891 0.939 0.917 0.944 

FSIM 0.9292  0.8952  0.9369  0.9246  0.9376  

CC 0.97516  0.98627  0.98703  0.98839  0.98857  

Dragonfly 2.2× 

MSE 23.496 46.874 15.687 22.488 14.230 

PSNR 34.421 31.421 36.175 34.611 36.599 

SSIM 0.963 0.940 0.971 0.963 0.972 

FSIM 0.9635  0.9400  0.9648  0.9627  0.9646  

CC 0.98166  0.99039  0.99118  0.99121  0.99124  

Church 2.2× 

MSE 64.442 126.812 46.051 63.768 42.204 

PSNR 30.039 27.099 31.498 30.085 31.877 

SSIM 0.925 0.878 0.942 0.922 0.945 

FSIM 0.8850  0.8210  0.8870  0.8844  0.8864  

CC 0.95441  0.97650  0.97845  0.97832  0.97838  

Tower 2.2× 

MSE 38.860 71.499 29.564 38.900 26.737 

PSNR 32.236 29.588 33.423 32.231 33.860 

SSIM 0.938 0.907 0.946 0.932 0.948 

FSIM 0.8976  0.8486  0.8989  0.8968  0.8985  

CC 0.97411  0.98649  0.98745  0.98758  0.98760  

Butterfly 2 2.2× 

MSE 70.169 157.232 41.024 65.577 36.018 

PSNR 29.669 26.165 32.000 29.963 32.566 

SSIM 0.951 0.914 0.967 0.952 0.969 

FSIM 0.9107  0.8601  0.9119  0.9095  0.9119  

CC 0.92690  0.96274  0.96583  0.96551  0.96565  

House 2.2× 

MSE 101.537 130.791 61.677 77.698 57.183 

PSNR 28.065 26.965 30.230 29.227 30.558 

SSIM 0.880 0.861 0.912 0.893 0.913 

FSIM 0.8872  0.8298  0.8904  0.8857  0.8897  

CC 0.94697  0.97134  0.97348  0.97367  0.97358  

Lion 2.2× 

MSE 62.116 104.635 51.312 63.442 47.896 

PSNR 30.199 27.934 31.029 30.107 31.328 

SSIM 0.866 0.803 0.887 0.854 0.891 

FSIM 0.9146  0.8718  0.9184  0.9121  0.9176  

CC 0.95686  0.97589  0.97759  0.97748  0.97759  

Stained Glass 2.2× 

MSE 253.151 445.729 198.079 252.215 181.234 

PSNR 24.097 21.640 25.162 24.113 25.548 

SSIM 0.851 0.789 0.871 0.837 0.875 

FSIM 0.8532  0.7783  0.8610  0.8473  0.8601  

CC 0.90247  0.94826  0.95220  0.95272  0.95295  
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Image Scale Criterion AREA Nearest Bicubic Bilinear Proposed 

Colorful 2.2× 

MSE 70.714 137.821 50.291 67.007 46.159 

PSNR 29.636 26.738 31.116 29.870 31.488 

SSIM 0.906 0.861 0.919 0.904 0.922 

FSIM 0.9347  0.8934  0.9360  0.9339  0.9356  

CC 0.96315  0.98112  0.98265  0.98278  0.98282  

Newspaper 2.2× 

MSE 92.886 166.308 71.003 93.358 63.312 

PSNR 28.451 25.922 29.618 28.429 30.116 

SSIM 0.904 0.859 0.919 0.899 0.924 

FSIM 0.9132  0.8684  0.9161  0.9105  0.9165  

CC 0.93967  0.96737  0.96981  0.97002  0.97009  

Wheel 2.2× 

MSE 180.859 297.585 158.770 188.328 148.868 

PSNR 25.557 23.395 26.123 25.382 26.403 

SSIM 0.799 0.725 0.815 0.776 0.817 

FSIM 0.8580  0.8014  0.8615  0.8559  0.8607  

CC 0.81563  0.89332  0.90193  0.90154  0.90170  

 

Figure 4. Images used in the experiments. 

In 1.7× interpolation experiment of 25 images, our method obtains best MES index in 17 of 25 
images, best PSNR index among 18 of 25 interpolated HR images, best SSIM index in 4 of 25 images, 
best FSIM index in 19 of 25 images and best CC index in 17 of 25 images. In 2.2× interpolation 
experiment, proposed method achieved best performance over MSE, PSNR and SSIM index in all 
of 25 images, best FSIM index in 9 of 25 images and best CC index in 15 of 25 images.  

In comparison with other edge-directed methods NEDI [21], improved NEDI (i-NEDI) [34] and 
ICBI [29] are invited to evaluate the result of the interpolation algorithm. All of 25 images with 512 × 
512 pixels are the references for computing the MSE, PSNR and SSIM, the 25 images with 256 × 256 
pixels are enlarged by propose method and other interpolation methods. In order to prevent the pixel-
shift in ICBI and our proposed method, the left-top 511 × 511 part of original images (and the results 
of other methods) is used to compute the MSE, PSNR and SSIM. The experimental results are 
tabulated in Table 3. 
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Table 3. Comparison of 2× magnification interpolation results with four excellent 
methods. 

Image Scale Criterion NEDI Bicubic i-NEDI ICBI SGAR Proposed 

Zebra 2× 

MSE 151.503 148.421 152.44 144.954 146.616  145.153 

PSNR 26.327 26.416 26.3 26.518 26.469  26.513 

SSIM 0.863 0.869 0.866 0.872 0.871  0.872 

FSIM 0.9547  0.9510  0.9512  0.9523  0.9522  0.9519  

CC 0.9876  0.9880  0.9876  0.9874  0.9881  0.9878  

Bench 2× 

MSE 161.811 157.186 147.207 145.943 147.807  146.195 

PSNR 26.041 26.167 26.452 26.489 26.434  26.481 

SSIM 0.869 0.876 0.883 0.883 0.882  0.883 

FSIM 0.9533  0.9510  0.9526  0.9531  0.9532  0.9525  

CC 0.9880  0.9843  0.9827  0.9842  0.9847  0.9832  

Bird 2× 

MSE 117.786 114.073 116.195 112.192 112.748  110.911 

PSNR 27.42 27.559 27.479 27.631 27.610  27.681 

SSIM 0.857 0.867 0.867 0.873 0.873  0.873 

FSIM 0.9521  0.9533  0.9529  0.9532  0.9534  0.9530  

CC 0.9843  0.9874  0.9868  0.9869  0.9874  0.9872  

Clock 2× 

MSE 80.781 77.446 75.958 74.529 75.464  74.407 

PSNR 29.058 29.241 29.325 29.408 29.353  29.415 

SSIM 0.936 0.938 0.942 0.941 0.940  0.940 

FSIM 0.9721  0.9703  0.9719  0.9713  0.9712  0.9709  

CC 0.9875  0.9915  0.9908  0.9914  0.9919  0.9912  

Butterfly 1 2× 

MSE 168.61 162.884 172.659 159.534 161.906  157.403 

PSNR 25.862 26.012 25.759 26.102 26.038  26.161 

SSIM 0.884 0.891 0.886 0.893 0.891  0.895 

FSIM 0.9622  0.9604  0.9611  0.9615  0.9608  0.9609  

CC 0.9915  0.9880  0.9873  0.9870  0.9881  0.9877  

Bee 2× 

MSE 61.689 60.26 63.025 57.927 58.620  56.663 

PSNR 30.229 30.331 30.136 30.502 30.450  30.598 

SSIM 0.907 0.925 0.908 0.913 0.911  0.929 

FSIM 0.9733  0.9719  0.9711  0.9723  0.9719  0.9719  

CC 0.9881  0.9937  0.9932  0.9932  0.9932  0.9938  

Carrousel 2× 

MSE 130.863 126.369 127.243 123.344 124.221  120.354 

PSNR 26.963 27.114 27.084 27.22 27.189  27.326 

SSIM 0.913 0.920 0.920 0.920 0.919  0.924 

FSIM 0.9618  0.9628  0.9635  0.9628  0.9634  0.9634  

CC 0.9911  0.9915  0.9914  0.9916  0.9916  0.9918  

Sunflower 2× 

MSE 50.277 42.696 44.174 41.959 42.132  38.675 

PSNR 31.117 31.827 31.679 31.903 31.885  32.256 

SSIM 0.916 0.934 0.918 0.919 0.918  0.940 

FSIM 0.9788  0.9775  0.9782  0.9785  0.9782  0.9781  

CC 0.9963  0.9968  0.9968  0.9969  0.9968  0.9971  

       Continued on next page

         

         

         



6590 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 6573–6600. 

Image Scale Criterion NEDI Bicubic i-NEDI ICBI SGAR Proposed 

Puppet 2× 

MSE 23.822 21.949 21.833 20.907 21.189  21.05 

PSNR 34.361 34.717 34.74 34.928 34.870  34.898 

SSIM 0.944 0.949 0.948 0.950 0.949  0.951 

FSIM 0.9813  0.9806  0.9805  0.9808  0.9810  0.9805  

CC 0.9958  0.9961  0.9961  0.9963  0.9963  0.9963  

Eagle 2× 

MSE 67.783 65.684 64.984 64.385 65.075  64.216
PSNR 29.82 29.956 30.003 30.043 29.997  30.054 

SSIM 0.905 0.909 0.910 0.911 0.910  0.911 

FSIM 0.9758  0.9756  0.9753  0.9755  0.9757  0.9753  

CC 0.9926  0.9928  0.9929  0.9929  0.9929  0.9929  

Sheep 2× 

MSE 77.659 53.97 57.411 52.907 53.019  52.839 

PSNR 29.229 30.809 30.541 30.896 30.886  30.901 

SSIM 0.887 0.898 0.892 0.900 0.900  0.902 

FSIM 0.9711  0.9742  0.9725  0.9745  0.9746  0.9743  

CC 0.9914  0.9940  0.9936  0.9941  0.9939  0.9941  

Giraffe 2× 

MSE 39.514 37.885 41.076 37.192 37.490  37.067 

PSNR 32.163 32.346 31.995 32.426 32.392  32.441 

SSIM 0.938 0.943 0.938 0.942 0.942  0.944 

FSIM 0.9749  0.9752  0.9740  0.9754  0.9754  0.9752  

CC 0.9955  0.9957  0.9954  0.9958  0.9958  0.9958  

Tiger 2× 

MSE 183.369 171.484 173.456 166.573 167.652  167.954 

PSNR 25.498 25.789 25.739 25.915 25.887  25.879 

SSIM 0.782 0.801 0.799 0.808 0.806  0.808 

FSIM 0.9605  0.9616  0.9596  0.9616  0.9617  0.9614  

CC 0.9732  0.9749  0.9746  0.9756  0.9760  0.9754  

Cat 2× 

MSE 59.565 56.445 57.088 55.344 55.440  55.431 

PSNR 30.381 30.615 30.565 30.7 30.693  30.693 

SSIM 0.852 0.864 0.861 0.866 0.866  0.868 

FSIM 0.9704  0.9717  0.9702  0.9717  0.9720  0.9715  

CC 0.9870  0.9877  0.9875  0.9879  0.9883  0.9879  

Guitar 2× 

MSE 123.978 108.122 107.388 100.344 101.682  98.526 

PSNR 27.197 27.792 27.821 28.116 28.058  28.195 

SSIM 0.883 0.897 0.895 0.898 0.897  0.906 

FSIM 0.9627  0.9662  0.9672  0.9691  0.9686  0.9686  

CC 0.9904  0.9916  0.9917  0.9922  0.9925  0.9924  

Dragonfly 2× 

MSE 33.055 31.859 32.668 30.377 30.714  30.02 

PSNR 32.938 33.098 32.99 33.305 33.257  33.357 

SSIM 0.950 0.953 0.951 0.953 0.952  0.955 

FSIM 0.9828  0.9827  0.9825  0.9832  0.9833  0.9828  

CC 0.9955  0.9957  0.9956  0.9959  0.9954  0.9959  

Church 2× 

MSE 107.069 103.032 102.779 99.755 100.272  100.064 

PSNR 27.834 28.001 28.012 28.141 28.119  28.128 

SSIM 0.886 0.890 0.895 0.897 0.896  0.895 

FSIM 0.9471  0.9446  0.9445  0.9449  0.9446  0.9446  

CC 0.9873  0.9878  0.9878  0.9882  0.9881  0.9881  

       Continued on next page
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Image Scale Criterion NEDI Bicubic i-NEDI ICBI SGAR Proposed 

Tower 2× 

MSE 65.253 62.152 60.207 59.533 60.026  59.289 

PSNR 29.985 30.196 30.334 30.383 30.347  30.401 

SSIM 0.899 0.903 0.907 0.907 0.906  0.908 

FSIM 0.9490  0.9487  0.9481  0.9479  0.9479  0.9475  

CC 0.9918  0.9922  0.9924  0.9925  0.9928  0.9925  

Butterfly 2 2× 

MSE 149.758 110.03 112.736 106.043 108.439  105.334 

PSNR 26.377 27.716 27.61 27.876 27.779  27.905 

SSIM 0.924 0.930 0.930 0.934 0.933  0.934 

FSIM 0.9565  0.9586  0.9581  0.9592  0.9588  0.9588  

CC 0.9783  0.9841  0.9837  0.9846  0.9841  0.9848  

House 2× 

MSE 119.413 113.792 118.699 112.433 113.106  110.616 

PSNR 27.36 27.57 27.386 27.622 27.596  27.693 

SSIM 0.852 0.861 0.855 0.863 0.862  0.865 

FSIM 0.9459  0.9462  0.9445  0.9461  0.9462  0.9457  

CC 0.9824  0.9833  0.9825  0.9834  0.9832  0.9837  

Lion 2× 

MSE 106.518 99.932 105.505 99.009 99.477  98.498 

PSNR 27.857 28.134 27.898 28.174 28.154  28.197 

SSIM 0.790 0.809 0.799 0.812 0.811  0.814 

FSIM 0.9601  0.9625  0.9606  0.9627  0.9629  0.9623  

CC 0.9836  0.9846  0.9838  0.9848  0.9855  0.9848  

Stained Glass 2× 

MSE 400.909 387.65 387.415 379.12 378.228  377.372 

PSNR 22.1 22.246 22.249 22.343 22.353  22.363 

SSIM 0.787 0.798 0.802 0.806 0.805  0.804 

FSIM 0.9245  0.9228  0.9304  0.9278  0.9270  0.9272  

CC 0.9683  0.9692  0.9691  0.9698  0.9706  0.9700  

Colorful 2× 

MSE 114.975 112.91 113.786 110.039 110.317  108.504 

PSNR 27.525 27.603 27.57 27.715 27.704  27.776 

SSIM 0.851 0.857 0.853 0.857 0.857  0.861 

FSIM 0.9719  0.9713  0.9710  0.9718  0.9719  0.9715  

CC 0.9893  0.9895  0.9894  0.9898  0.9903  0.9899  

Newspaper 2× 

MSE 154.087 143.778 144.271 138.333 139.746  138.528 

PSNR 26.253 26.554 26.539 26.722 26.677  26.715 

SSIM 0.860 0.871 0.872 0.876 0.875  0.876 

FSIM 0.9575  0.9587  0.9589  0.9596  0.9595  0.9592  

CC 0.9794  0.9815  0.9806  0.9815  0.9821  0.9814  

Wheel 2× 

MSE 286.172 271.404 277.259 266.933 267.872  265.138 

PSNR 23.565 23.795 23.702 23.867 23.852  23.896 

SSIM 0.711 0.724 0.726 0.737 0.736  0.734 

FSIM 0.9357  0.9334  0.9295  0.9316  0.9314  0.9314  

CC 0.9332  0.9371  0.9353  0.9377  0.9374  0.9382  

In 2× interpolation experiment, proposed method together with our previous SGAR method 
achieved best MSE in 18 of 25 images, best PSNR in 18 of 25 images, best SSIM index in 21 of 25 
images, best FSIM index in 8 of 25 images and best CC index in 21 of 25 images. According to the 
PNSR index, 7 of the 25 interpolated HR images obtained the best effect with the ICBI method, and 
the other 18 interpolated HR images obtained the best effect with the method proposed in this paper. 
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The ratio was as high as 72%. For these 18 images, the PSNRs of the proposed method were improved 
to different degrees compared to those of the other four methods. The maximum, minimum and average 
increments were 1.672, 0.005 and 0.267 dB, respectively, and the maximum, minimum and average 
relative increments were 5.79, 0.02 and 0.94%, respectively. Compared with NEDI, the maximum, 
minimum and average increases in PSNR were 1.672, 0.234 and 0.547 dB, respectively, and the 
relative maximum, minimum and average increases were 5.79, 0.78 and 1.94%, respectively. 
Compared with bicubic, the maximum, minimum and average increases in PSNR were 0.429, 0.063 
and 0.182 dB, respectively, and the relative maximum, minimum and average increases were 1.45, 
0.22 and 0.63%, respectively. Compared with i-NEDI, the maximum, minimum and average increases 
in PSNR were 0.577, 0.051 and 0.281 dB, respectively, and the relative maximum, minimum and 
average increases were 1.82, 0.17 and 0.98%, respectively. Compared with ICBI, the maximum, 
minimum and average increases in PSNR were 0.353, 0.005 and 0.06 dB, respectively, and the relative 
maximum, minimum and average increases were 1.11, 0.02 and 0.21%, respectively. According to the 
SSIM index, 17 of 25 images obtain the best effect with the ICBI method, compare with the second 
best ICBI method, the maximum, minimum and average increments were 0.02099, 0.00019 and 
0.00251, respectively, and the maximum, minimum and average relative increments were 2.284, 0.021 
and 0.283%, respectively. Compared with bicubic, which accommodate non-integer scaling factors, 
the maximum, minimum and average increases in SSIM were 0.00976, 0.00124 and 0.00461, 
respectively, and the relative maximum, minimum and average increases were 1.35, 0.13 and 0.52%, 
respectively. Two points should be specified: First, both bicubic and the proposed method can 
achieve non-integer image magnification. Compared with the bicubic method, the proposed method 
improved the interpolation effect to a certain extent in all 25 experimental images. Second, both 
ICBI and the proposed method use the iterative curvature method. Thus, the two methods achieved 
the best interpolation effect among these edge-directed methods. The difference is that the method 
presented in this paper uses the SGAR model to predict the unknown pixels in the first step the 
increasing trend is obvious. 

Compared with the most popular non-integer interpolate methods and other conventional edge-
directed methods, the HR images obtained by the proposed method have significantly fewer blurring 
effects. As is shown in Figures 5 and 6, these defects are especially obvious among non-integer methods. 
In the visual comparison of 2× magnification, these defects also exist in Figures 7(a) and 8(a). It can be 
seen that the interpolation method based on the SGAR model has a better image description ability 
than the interpolation method based on the B-spline theory. The isotropic low-pass filter can enhance 
the smoothing effect, while the SGAR model is more suitable for revealing the distribution pattern of 
the image. Furthermore, the interpolation method based on the SGAR model has better color fidelity 
than NEDI, as shown in Figure 9. As shown in Figures 7 (d) and 8 (d), the HR image interpolated by 
ICBI has more visual defects. To analyze the reason, the proposed method used a curvature iterative 
method based on the discrete features of the image to describe the curvature change of anchor pixels 
in more directions, which helps eliminate interpolation defects such as artifacts in edge areas and 
texture-rich areas. 

In machine vision system, especially in online visual inspection system. Due to the vibration and 
overheating problems, image noise will inevitably in the poor working conditions. In order to better 
combine with the potential application scenarios, gaussian noise with mean value of 0 and variance of 
0.005 is added to gray image. The images used in this part of the experiment are shown in Figure 10. 
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(a) Nearest (b) AREA (c) Bilinear 

   

(d) Bicubic (e) Proposed method (f) Original image 

Figure 5. Visual comparisons of 2.2× magnification on the bench image. 

   

(a) Nearest (b) AREA (c) Bilinear 

   

(d) Bicubic (e) Proposed method (f) Original image 

Figure 6. Visual comparisons of 2.2× magnification on the newspaper image. 
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(a) Nedi (b) Bicubic (c) i-Nedi 

   

(d) ICBI (e) SGAR (f) Proposed method 

 

  

(g) Original image   

Figure 7. Visual comparisons of 2× magnification on the sunflower image. 

We add the latest learning-based Meta-SR [44] to the comparison. In comparing with the 
traditional Bicubic interpolation method and Meta-SR [44], our previous SGAR method and the 
proposed method have made better progress in objective indicators on all of 5 images. Although, on 
some objective indicators, the edge-based method like NEDI and i-NEDI are better results than ours, 
these methods also magnify the impact of noise on visual quality. These artifacts are especially obvious 
in Figure 11. 

Frankly, the naive for-loop and iterative process make the processing time relatively long, the 
proposed method is much slower than ICBI, let along other popular non-integer interpolation methods 
well-established in OpenCV. However, the processing speed can be improved with parallel threads 
simultaneously process on NVIDIA CUDA devices and the research will continue in future works.  
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(a) Nedi (b) Bicubic (c) i-Nedi 

 
(d) ICBI (e) SGAR (f) Proposed method 

 

  

(g) Original image   

Figure 8. Visual comparisons of 2× magnification on the Carrousel image. 

  

Figure 9. Color infidelity in comparing methods. 
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Figure 10. Noise images. 

Table 4. Comparison of 2× magnification interpolation results on noise images. 

Image Scale Criterion NEDI Bicubic i-NEDI ICBI Meta-SR SGAR Proposed 

Image 1 2× 

MSE 444.632  461.051  407.923  416.077  1240.412  361.525  402.718  

PSNR 21.651  21.493  22.025  21.939  17.195  22.549  22.081  

SSIM 0.421  0.417  0.428  0.401  0.225  0.422  0.418  

FSIM 0.763  0.758  0.757  0.752  0.752  0.768  0.762  

CC 0.923  0.921  0.932  0.930  0.820  0.939  0.932  

Image 2 2× 

MSE 521.417  548.597  491.627  528.783  1295.417  467.874  531.563  

PSNR 20.959  20.738  21.214  20.898  17.007  21.430  20.875  

SSIM 0.433  0.420  0.430  0.399  0.228  0.419  0.415  

FSIM 0.770  0.761  0.758  0.751  0.690  0.766  0.762  

CC 0.923  0.920  0.929  0.924  0.836  0.932  0.923  

Image 3 2× 

MSE 439.341  489.277  441.469  466.365  1158.269  327.368  440.931  

PSNR 21.703  21.235  21.682  21.444  17.493  22.980  21.687  

SSIM 0.464  0.461  0.475  0.436  0.238  0.507  0.454  

FSIM 0.807  0.799  0.796  0.791  0.734  0.839  0.802  

CC 0.784  0.771  0.803  0.789  0.605  0.939  0.797  

Image 4 2× 

MSE 391.395  414.673  383.998  402.288  1054.442  411.358  391.838  

PSNR 22.205  21.954  22.288  22.085  17.901  21.989  22.200  

SSIM 0.437  0.440  0.450  0.417  0.241  0.457  0.434  

FSIM 0.784  0.786  0.782  0.776  0.713  0.805  0.786  

CC 0.898  0.894  0.905  0.900  0.780  0.810  0.902  

Image 5 2× 

MSE 358.182  368.718  354.381  376.873  900.455  349.492  347.985  

PSNR 22.590  22.464  22.636  22.369  18.586  22.696  22.715  

SSIM 0.505  0.527  0.539  0.504  0.304  0.437  0.521  

FSIM 0.836  0.842  0.838  0.833  0.787  0.789  0.843  

CC 0.931  0.930  0.935  0.930  0.858  0.912  0.935  
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(a) Nedi (b) Bicubic (c) i-Nedi 

 
(d) ICBI (e) Meta-SR (f) SGAR 

 

 

(g) Proposed method (h) Original image  

Figure 11. Visual comparisons of 2× magnification on the noise image. 

5. Conclusions 

Based on our and others’ previous work, this paper introduced a new method for image 
interpolation via integration. The new method is based on the SGAR model and can accommodate 
arbitrary scaling factors. First, the paper discussed how to use the SGAR model to describe the image 
window, including the establishment of a linear autoregressive model, the SGAR model and the 
relationship between anchor pixels and their neighboring pixels. By grouping the gradient directions, 
the adaptive extension direction of the image window was determined, and an image window adaptive 
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extension method based on the gradient angles for the SGAR model was formed. Because the product 
terms were introduced into the SGAR model, the degree of freedom of the model was increased, and 
the ability to describe the model was enhanced, but this may cause overfitting problems. Therefore, an 
elastic network was introduced into the solution of the objective function to address the overfitting 
problem. Finally, the curvatures were calculated in eight directions, and the interpolation results were 
updated accordingly to improve the interpolation accuracy. Experiments on 25 images show that the 
objective measures of the proposed method were improved to a certain extent. Subjective visual effect 
evaluations were carried out, and much better results were achieved. Therefore, the method presented in 
this paper improved the objective index of image interpolation and enhanced the subjective visual effect. 

Acknowledgments  

Mr. Hu reports grants from National Natural Science Foundation of China, grants from 
Postgraduate Research & Practice Innovation Program of Jiangsu Province, during the conduct of 
the study. 

This work was supported in part by the National Natural Science Foundation of China under 
Grant No. 51705238 and the Postgraduate Research & Practice Innovation Program of Jiangsu 
Province Grant No. SJCX19_0491.  

Conflict of interests 

We declare that we do not have any commercial or associative interest that represents a conflict 
of interest in connection with the work submitted. 

References 

1. Y. Tian, M. M. Kaleemullah, M. A. Rodhaan, B. Song, A. Al-Dhelaan, T. Ma, A privacy preserving 
location service for cloud-of-things system, J. Parallel Distrib. Comput., 123 (2019), 215–222. 

2. W. Wang, W. Zhang, Z. Jin, K. Sun, R. Zou, C. Huang, et al., A Novel Location Privacy Protection 
Scheme with Generative Adversarial Network, International Conference on Big Data and Security 
Springer, 2019. 

3. L. Wang, X. Shu, W. Zhang, Y. Chen, Design and Optimization of Evaluation Metrics in Object 
Detection and Tracking for Low-Altitude Aerial Video, International Conference on Big Data and 
Security, 2019. 

4. Y. Liu, M. Pang, Research on Medical Image Encryption Method Based on Chaotic Scrambling 
and Compressed Sensing, International Conference on Big Data and Security, 2019. 

5. B. Song, M. M. Hassan, A. Alamri, A. Alelaiwi, Y. Tian, M. Pathan, et al., A two-stage approach 
for task and resource management in multimedia cloud environment, Computing, 98 (2016), 119–
145. 

6. Z. Pan, C. N. Yang, V. S. Sheng, N. Xiong, W. Meng, Machine Learning for Wireless Multimedia 
Data Security, Sec. Commun. Networks, 2019 (2019), 7682306. 

7. S. Ousguine, F. Essannouni, L. Essannouni, M. Abbad, D. Aboutajdine, A New Image 
Interpolation Using Laplacian Operator, International Symposium on Ubiquitous Networking, 
2016, Singapore. 



6599 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 6573–6600. 

8. S. Pan, L. Han, Y. Tao, Q. Liu, Study on Indicator Recognition Method of Water Meter Based on 
Convolution Neural Network, International Conference on Big Data and Security, 2019, Springer. 

9. J. A. Parker, R. V. Kenyon, D. E. Troxel, Comparison of Interpolating Methods for Image 
Resampling, IEEE Trans. Med. Imaging, 2 (1983), 31–39. 

10. R. Hanssen, R. Bamler, Evaluation of interpolation kernels for SAR interferometry, IEEE Trans. 
Geosci. Remote Sens., 37 (1999), 318–321. 

11. T. M. Lehmann, C. Gonner, K. Spitzer, Survey: interpolation methods in medical image 
processing, IEEE Trans. Med. Imaging, 18 (1999), 1049–1075. 

12. D. Y. Han, Comparison of Commonly Used Image Interpolation Methods, Proceedings of the 2nd 
international conference on computer science and electronics engineering, Atlantis Press, 2013. 

13. A. Amanatiadis, I. Andreadis, Performance evaluation techniques for image scaling algorithms, 
IEEE International Workshop on Imaging Systems and Techniques, 2008. 

14. Y. Li, F. Qi, Y. Wan, Improvements On Bicubic Image Interpolation, 2019 IEEE 4th Advanced 
Information Technology, Electronic and Automation Control Conference (IAEAC), 2019. 

15. H. Hsieh, H. Andrews, Cubic splines for image interpolation and digital filtering, IEEE Trans. 
Acoust. Speech Signal Process., 26 (1978), 508–517. 

16. S. Abbas, M. Irshad, M. Z. Hussain, Adaptive image interpolation technique based on cubic 
trigonometric B-spline representation, IET Image Process., 12 (2018), 769–777. 

17. D. D. Muresan, T. W. Parks, Adaptively quadratic (AQua) image interpolation, IEEE Trans. Image 
Process., 13 (2004), 690–698. 

18. C. Chen, C. Lai, Iterative Linear Interpolation Based on Fuzzy Gradient Model for Low-Cost 
VLSI Implementation, IEEE Trans. VLSI Syst., 22 (2014), 1526–1538. 

19. Q. Wang and R. K. Ward, A New Orientation-Adaptive Interpolation Method, IEEE Trans. Image 
Process., 16 (2007), 889–900. 

20. C. M. Zwart, D. H. Frakes, Segment Adaptive Gradient Angle Interpolation, IEEE Trans. Image 
Process., 22 (2013), 2960–2969. 

21. X. Li, M. T. Orchard, New edge-directed interpolation, IEEE Trans. Image Process., 10 (2001), 
1521–1527. 

22. X. Zhang, X. Wu, Image Interpolation by Adaptive 2-D Autoregressive Modeling and Soft-
Decision Estimation, IEEE Trans. Image Process., 17 (2008), 887–896. 

23. Q. Wang, J. Liu, W. Yang, Z. Guo, Adaptive autoregressive model with window extension via 
explicit geometry for image interpolation, IEEE International Conference on Image Processing 
(ICIP), 2015. 

24. W. Yang, J. Liu, S. Yang, Z. Guo, Novel autoregressive model based on adaptive window-
extension and patch-geodesic distance for image interpolation, IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), 2015. 

25. W. H. Yang, J. Y. Liu, M. D. Li, Z. Gao, Isophote-Constrained Autoregressive Model With 
Adaptive Window Extension for Image Interpolation, IEEE Trans. Circuits Syst. Video Technol., 
28 (2018), 1071–1086. 

26. F. Hao, J. Shi, R. Chen, S, Zhu, Z. Zhang, Noise-insensitive and edge-preserving resolution 
upconversion scheme for digital image based on the spatial general autoregressive model, IET 
Image Process., 10 (2016), 280–288. 

27. K. Chang, P. L. K. Ding, B. Li, Single Image Super-resolution Using Collaborative Representation 
and Non-local Self-Similarity, Signal Process., 149 (2018), 49–61. 



6600 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 6573–6600. 

28. D. Cheng, K. I. Kou, FFT Multichannel Interpolation and Application to Image Super-resolution, 
Signal Process., 162 (2019), 21–34. 

29. A. Giachetti, N. Asuni, Real-Time Artifact-Free Image Upscaling, IEEE Trans. Image Process., 
20 (2011), 2760–2768. 

30. H. Kim, Y. Cha, S. Kim, Curvature Interpolation Method for Image Zooming, IEEE Trans. Image 
Process., 20 (2011), 1895–1903. 

31. A. Marquina, S. Osher, A New Time Dependent Model Based on Level Set Motion for Nonlinear 
Deblurring and Noise Removal, International Conference on Scale-Space Theories in Computer 
Vision, 1999. 

32. T. F. Chan, J. J. Shen, Image processing and analysis: variational, PDE, wavelet, and stochastic 
methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. 

33. J. Hu, Y. Luo, Single-image superresolution based on local regression and nonlocal self-similarity, 
J. Electron. Imaging, 23 (2014), 033014. 

34. N. Asuni, A. Giachetti, Accuracy Improvements and Artifacts Removal in Edge Based Image 
Interpolation, VISAPP (1), 8 (2008), 58–65. 

35. W. Dong, L. Zhang, R. Lukac, G. Shi, Sparse Representation Based Image Interpolation With 
Nonlocal Autoregressive Modeling, IEEE Trans. Image Process., 22 (2013), 1382–1394. 

36. F. Hao, J. Shi, Z. Zhang, R, Chen, S. Zhu, Canny edge detection enhancement by general auto-
regression model and bi-dimensional maximum conditional entropy, Optik, 125 (2014), 3946–
3953. 

37. M. Li, J. Liu, J. Ren, Z. Guo, Adaptive General Scale Interpolation Based on Weighted 
Autoregressive Models, IEEE Trans. Circuits Syst. Video Technol., 25 (2015), 200–211. 

38. A. Ullah, M. Z. Asghar, A. Habib, S. Aleem, F. M. Kundi, A. M. Khattak, Optimizing the 
Efficiency of Machine Learning Techniques, International Conference on Big Data and Security, 
2019.  

39. R. M. Rifkin, R. A. Lippert, Notes on regularized least squares, Massachusetts Institute of 
Technology Computer Science and Artificial Intelligence Laboratory, 2007. 

40. K. Koh, S. J. Kim, S. Boyd, An interior-point method for large-scale l1-regularized logistic 
regression, J. Mach. Learn. Res., 8 (2007), 1519–1555. 

41. J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via 
coordinate descent, J. Stat. Software, 33 (2010), 1. 

42. H. Wang, W. Guan, K. Zhang, Over-Sampling Multi-classification Method Based on Centroid 
Space, International Conference on Big Data and Security, 2019. 

43. Y. Gong, I. F. Sbalzarini, Curvature filters efficiently reduce certain variational energies, IEEE 
Trans. Image Process., 26 (2017), 1786–1798. 

44. X. Hu, H. Mu, X. Zhang, Z. Wang, T. Tan, J. Sun, Meta-SR: A Magnification-Arbitrary Network 
for Super-Resolution, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), 2020. 

©2020 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 

 


