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Abstract: Energy management plays an important role in improving the fuel economy of plug-in
hybrid electric vehicles (PHEV). Therefore, this paper proposes an improved adaptive equivalent
consumption minimization strategy (A-ECMS) based on long-term target driving cycle recognition
and short-term vehicle speed prediction, and adapt it to personalized travel characteristics. Two main
contributions have been made to distinguish our work from exiting research. Firstly, online long-term
driving cycle recognition and short-term speed prediction are considered simultaneously to adjust the
equivalent factor (EF). Secondly, the dynamic programming (DP) algorithm is applied to the offline
energy optimization process of A-ECMS based on typical driving cycles constructed according to
personalized travel characteristics. The improved A-ECMS can optimize EF based on mileage, SOC,
long-term driving cycle and real-time vehicle speed. In the offline part, typical driving cycles of a
specific driver is constructed by analyzing personalized travel characteristics in the historical driving
data, and optimal SOC consumption under each typical driving cycle is optimized by DP. In the online
part, the SOC reference trajectory is obtained by recognizing the target driving cycle from Intelligent
Traffic System, and short-term vehicle speed is predicted by Nonlinear Auto-Regressive (NAR) neural
network which both adjust EF together. Simulation results show that compared with CD-CS, the fuel
consumption of A-ECMS proposed in the paper is reduced by 8.7%.

Keywords: plug-in hybrid electric vehicle; energy management; driving cycle prediction; dynamic
programming; adaptive equivalent consumption minimization strategy




6311

1. Introduction

1.1. Motivation

The PHEV has the characteristics of traditional hybrid electric vehicle and pure electric vehicle,
which is an important development direction of new energy vehicles [1]. In order to achieve better
energy-saving effect of the PHEV, energy management strategy (EMS) is needed to determine the
working mode of various components of the power transmission system and the energy distribution of
different power sources to adapt to diverse driving environments [2].

1.2. Literature review

In terms of EMS goals for PHEV, some studies focus on battery aging and its thermal
dynamics [3,4], and most studies is devoted to reducing fuel consumption. The way to achieve EMS
can be divided into two types: rule-based and optimization-based [5,6]. The rule-based strategy is
mainly based on the engineering experience and the characteristics of each component in the power
system to design the working mode of the system and the energy distribution of different power sources.
The rules are versatile and practical, but the potential for energy saving is limited [6-9]. Optimization-
based strategy can be divided into instantaneous optimization, local optimization and global optimization.

The equivalent consumption minimization strategy (ECMS) is the representative of the
instantaneous optimization strategy [7,10,11]. ECMS transforms the electric energy consumption into
the equivalent fuel consumption by introducing the EF, so as to optimize the instantaneous equivalent
fuel consumption [7,12,13]. This strategy has strong real-time performance, but poor robustness and
limited optimization effect.

The EMS of local optimization is mainly based on model predictive control (MPC). This strategy
calculates the optimal control parameters in the prediction domain, with small amount of calculation,
real-time control and significant optimization effect [8,9].

The global optimization strategy is represented by Reinforcement Learning (RL) and DP.
Learning-based EMS has a strong self-learning ability and it is model-free which relies on a mass of
real-world sample for training [14,15]. DP can obtain the multi-stage optimization decision and the
theoretical global fuel economy optimization, if the global driving cycle is known beforehand.
However, the disadvantage is that the calculation amount is large, and the future driving cycle is
difficult to obtain in advance, which limits the use of DP in real time [16,17].

In order to apply approximately optimization decision by DP for real-time control, future driving
cycles need to be known, which can be obtained by two ways: one is to build a future speed prediction
model based on the historical driving cycle data by neural network, Markov or Kalman filter [9,18,19].
And the other is to obtain the traffic information by high-tech [11,16,17], such as Navigation System,
Global Positioning System (GPS), Geographic Information System (GIS), Internet of Vehicles and
Intelligent Transportation System (ITS). Reference [16] combines GPS and ITS to obtain driving
information, and adjusts the EF in A-ECMS accordingly.

The PHEV controller can plan the optimization decision by DP offline to adjust the control
parameters in real-time [11]. In reference [17], an EMS of hierarchical control is proposed. The upper

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6310-6341.



6312

layer obtains real-time traffic data with GPS and ITS, and makes long-term planning of SOC optimal
consumption trajectory, while the lower layer uses MPC to realize short-term time-domain speed
prediction. Some research build A-ECMS based on DP combining initial EF optimized by genetic
algorithm [20], or combining driving cycle recognition [21].

When using DP to optimize EMS, it is necessary to recognize driving cycle for more targeted
controlling of various driving cycles. In recent years, many researchers [22—24] have made great efforts
to study the driving cycles of typical cities or specific vehicles. K-means cluster analysis [25], fuzzy
c-means (FCM) [26], and neural network [27] are common methods to construct typical driving cycle
by historical driving data. Driving cycles directly affect fuel consumption, so how to optimize the
energy management of PHEV in combination with driving cycles will be a research trend [17]. Some
research uses existing cycles to optimize the EMS, but few combine personalized travel characteristics
for a specific driver.

Based on the above studies, it can be seen that current PHEV energy management strategy has
achieved multiple research results, a variety of optimization methods have been applied to PHEV
energy management. How to make the strategy to get better adaptability to driving cycles and enough
real-time optimization ability need to be further resolved.

1.3. Contributions and outline

As discussed above, how to combine ITS to globally optimize PHEV energy management is the
research focus. However, long-term traffic flow information from ITS can only reflect the average
speed and cannot be adjusted according to the actual speed, lacking robustness. Few studies combine
ITS and short-term speed prediction for EMS. Therefore, the main purpose of this study is to improve
the performance of A-ECMS by tuning EF instantaneously based on driving cycle prediction and
personalized travel characteristics. Two contributions have been realized in this paper, which is: An A-
ECMS was proposed, with an EF jointly correction algorithm combining long-term target driving cycle
and short-term vehicle speed prediction. Moreover, the DP algorithm is applied to the offline energy
optimization process of A-ECMS based on typical driving cycles constructed according to
personalized travel characteristics. The improved A-ECMS formulated in this paper can optimize EF
in real time based on mileage, SOC, long-term driving cycle and real-time vehicle speed. Meanwhile,
the online driving cycle recognition can be practically applied, and the adaptability of A-ECMS to
actual driving can be enhanced.

This paper is organized as follows. In Section 2, an A-ECMS with driving cycle prediction and
personalized travel characteristics merging DP algorithm is described. In Section 3, the methodology
of building typical driving cycles for a specific driver and planning SOC reference trajectory algorithm
is introduced. Typical driving cycle construction and simulation verification of A-ECMS are in Section
4. And conclusions are subsequently discussed in Section 5.

2. Improved adaptive equivalent consumption minimization strategy for PHEV

2.1. PHEV energy management by DP algorithm
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2.1.1. PHEV parameters

In this paper, the P2 configuration PHEV is taken as the research object. This configuration refers
to the coaxial connection of the engine and the motor, while P2 means that the motor is placed at the
front end of the transmission, between the engine and the transmission, and using the clutch between
the engine and the motor to control the power coupling and disconnection. The structure diagram is
shown in Figure 1 and the main parameters are shown in Table 1.
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Figure 1. Configuration of single-axis parallel P2 plug-in hybrid electric vehicle.
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Table 1. Main parameters of PHEV.

Component Parameter value
Engine Peak power: 64kW; Maximum torque :153Nm
Motor Peak power: 32Kw; Maximum torque 160Nm
Battery capacity 27.9Ah
Rated voltage of battery 320V
Final drive ratio 3.944
Transmission speed ratio 3.538/2.045/1.333/1.028/0.82

Mass:m = 1568Kkg;
) Vehicle equivalent cross section:A = 2.13m?;
Vehicle . -
Aerodynamic drag coefficient:C; = 0.29;

Tire radius:r = 312mm

The characteristics of the engine and the motor are shown in Figure 2 and Figure 3 respectively,
and the SOC calculation is realized by using the ampere hour integration method [20].
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Figure 2. Engine characteristic diagram. Figure 3. Motor characteristic diagram.

2.1.2. PHEV energy management by DP algorithm

DP, a global optimization algorithm, can calculate the optimal solution of PHEV energy
management problem, so as to obtain the optimal fuel economy, but the premise is to know the global
driving cycle [12].

In this paper, SOC of battery is selected as the system state variable, motor torque T, and
transmission gear gear(k) are selected as the system control variables, then the state and control
quantity of the system can be given as

{ x(k)=80C (k)
u(k)=[T, (k). gear (k)]

According to the dynamic relationship between power assemblies, the engine torque T, obtained

1)

from the motor torque T, can be given as follows
Te = Tr / (IO : igear(k)) _Tm (2)

where T.is the required torque of the whole vehicle,iyis the main reduction ratio, and igeqr(x)is the
transmission ratio of the current gear.

Since the selected state variable is the SOC of battery, the state equation under the dynamic
programming algorithm can be given as follows

U, (K) = U2 (K) —4- R, (SOC(K)) - P,y (K)

SOC(k +1) =SOC(k) - 2.R,(SOC(K))-Q

©)

where U,.is the open circuit voltage,R,is the internal resistance of the battery,Q,,.and Pp,.are the
battery capacity and the battery power, respectively.

Since the system takes fuel consumption as the objective function, the objective function under
the DP algorithm can be given as

J* =minJ = min {i L(x(k),u(k))} = min {i fuel, +a(SOC(K)-SOC, )2} (4)
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where SOCy is the SOC value at the termination time, fuel, is the fuel consumption of the whole
vehicle at the current stage. And a(SOC(k) — SOC;)? is the penalty function of SOC in DP, « is
the penalty coefficient, which is to correct the SOC value of battery and the target SOC value at the
termination time when DP calculation ends.

At the same time, when DP algorithm is applied to solve the PHEV energy management problem,
it will be limited by the hybrid system itself, so some constraints in the iterative calculation process
are shown as follows

r]e_min = ne (k) n
Te_min = Te (k) < Te_max

nm (k) < nm_max (5)
Tm_min < Tm (k) < Tm_max

SOC,, <SOC(k)<SOC,_,

e_max

nm_min <

where n, (k) is the engine speed, n,,(k) is the motor speed, n, i and n, g, are the engine
minimum and maximum speed respectively; T, i, and T, .4, are the engine minimum and
maximum torque respectively; n,, mnin aNd Ny, me, are the motor minimum and maximum speed
respectively; Ty, min @and Ty, e, are the motor minimum and maximum torque respectively;
SOCpin and SOC,,,, are the upper and lower limits of battery SOC respectively.

In order to study the optimal SOC trajectory under different driving mileage of PHEV based on
DP, this paper selects the different number NEDC driving cycles as test cycles. In the strategy, the
initial value of the battery SOC is set to 0.9 and the target value is 0.3. Respectively, simulating under
1 to 8 NEDC driving cycles and result is shown in Figure 4.
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Figure 4. SOC optimized by DP under different numbers of NEDC driving cycles.

The driving range is a key factor affecting the EMS for PHEV. As can be seen from Figure 4, the
trajectory of battery SOC will vary with the distance, and SOC presents an approximately linear decline
curve. When the trip ends, the SOC value drops to near the target value. But DP algorithm requires a
large amount of calculation, so it cannot be applied to real-time control. However, SOC linear descent
curve optimized by DP can provide a basis for reference SOC trajectory planning in EMS.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6310-6341.



6316

2.1.3.  SOC reference trajectory under known driving cycle

Taking multiple NEDC cycles as an example above, it is found that the optimal SOC reference
trajectory is an approximate straight line related to mileage. However, it is difficult to use the SOC
trajectory under NEDC or a certain existing driving cycle as a reference for actual driving condition.
Therefore, if cluster analysis is performed according to the historical driving data of a specific driver,
n typical driving cycles can be obtained, which can better reflect the personalized travel characteristics
of the driver. Then studying the optimal SOC consumption under each typical driving cycle by DP.

Analysis of
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Figure 5. The process of SOC reference trajectory planning based on DP.

As is shown in Figure 5, according to the characteristic parameters, the driving condition is
segmented and corresponding classified into different typical driving cycles. The SOC reference
trajectory can be linearly composed of the optimal SOC consumption of each section. The specific
allocation method and analysis are described in Section 3.2.

2.2. Driving cycle generation and short-term vehicle speed prediction

2.2.1. Long-term target driving cycle generation based on traffic information

SOC reference trajectory described above determines the target driving cycle in advance which
requires the use of ITS to generate. This paper extracts the traffic flow based on ITS, generates the
target driving cycle of the travel road as the traffic information of the road section, and obtains the
average traffic flow speed of the front road section in real time [28].

The actual navigation route is segmented every 200m, and the average traffic speed of each
section can be calculated as follows

N Vksegu) t
Vseg(i) (t)= —Zkzl N ® (6)
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where Vg4 (1) is the average speed of the section marked i attime ¢, Vkseg @ s the average speed of

the kth vehicle passing through the section at time t, and Nis the total number of vehicles recorded
in the section at that time.

Based on the above method, the route to the destination and the traffic flow speed information
can be obtained by the navigation system and ITS, and then the possible vehicle speed information in
the next trip can be estimated by fitting according to the traffic flow speed of the sub sections. For a

certain section of route, the curve of the average speed and the mileage of each section is shown in
Figure 6.

Vehicle Speed (km/h)

s ‘
0 2 4 6 10 12 14 16

8
Mileage (km)

Figure 6. Average speed-mileage curve based on traffic flow information.

However, the road network only obtains the relationship between mileage and vehicle speed, it
also needs to be converted to the time domain, as shown in Egs. (7).

Ty = 50 7)

oo Vseg(i)

where Lgggy and Tseq4¢;y are the length and the time of passing through section i.

T T
Average speed based on traffic flow
l = = = Average speed after smoothing

Vehicle speed (km/h)
B
o

. .
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Time (s)

Figure 7. Average speed based on traffic flow information and smoothing results.
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After conversion to time domain, the speed-time curve is a step curve, which does not conform
to the continuity characteristics of the vehicle speed, so it cannot be regarded as the real driving cycle.
Therefore, this paper uses the LOWESS filter function to smooth the step speed signal, so as to convert
it into a driving cycle curve that conforms to the normal driving speed rule, as shown in Figure 7.

In the energy management optimization strategy of PHEV, this is the most likely driving cycle of
the vehicle. The speed curve can be taken as the target driving cycle for long-term prediction.

2.2.2.  Short-term vehicle speed prediction based on NAR neural network

The long-term target driving cycle based on traffic flow information is the global predicted driving
cycle of the travel route, but there may be deviation in the real-time process, and the short-term vehicle
speed prediction is more consistent with the real-time driving cycle. Therefore, in the prediction of
PHEYV driving cycle, the global prediction and short-term prediction can be combined.

y(t-n)

y(t-3)
v (t-2)

y(-1)

Figure 8. The structure of NAR neural network with feedback.

The NAR neural network has advantages of solving time variant and nonlinear problems, making
it suitable for vehicle speed prediction [29]. Therefore in this paper, NAR neural network with
feedback is built to predict the speed, the structure diagram is shown in Figure 8. Taking the historical
driving cycle data as the input sample, through trial-and-error method and repeated tests, the number
of neurons in the hidden layer is determined to be 20, and the delay order of the output feedback is
determined to be 35 [29,30]. The neural network is trained and the training results are obtained. Figure
9 is the training process, and the ordinate is the mean square error (MSE). It can be seen from the figure
that when the number of training reaches 16 times, the mean square error of the verification set is the
smallest and converges to 0.0019219, so the training ends.

Figure 10 is an error autocorrelation graph of NAR neural network, which describes the
correlation of prediction errors in time. Theoretically, the autocorrelation function should have only
one maximum value and at Lag = 0, indicating that the prediction error is completely uncorrelated.
If there is a significant correlation in the prediction error, the training effect of the network is not
good [31]. It can be seen from Figure 10 that the NAR network in this paper has the largest correlation
at Lag = 0, and the correlation of other points is within the confidence interval, indicating that the
training results and prediction performance of the network are good at this time.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6310-6341.
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It can be seen from the Figure 11 that most of the error values of single-step prediction are in the
interval of [-0.2, 0.2], and the error is very small, indicating that the single-step prediction results are
accurate and the selection of neurons number is reasonable.
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Figure 11. Error of single-step prediction.
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Then the prediction effect of the neural network is studied as follows. Root mean square error
(RMSE) is used to evaluate the accuracy of NAR neural network and follow the rule of the higher the
RMSE value, the lower the prediction accuracy of the model. In order to evaluate the prediction effects
on speed, the results in different prediction duration are shown in Figure 12, and the corresponding
RMSE values are shown in Table 2.
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Figure 12. Prediction results on speed in different prediction duration.

Table 2. RMSE values for different prediction durations.

5s
2.6456

10s
5.5578

Prediction durations
RMSE

15s
7.8314

20s
10.0521

It can be seen from Figure 12 and Table 2 that when the prediction time domain is 5 seconds,
the overall prediction effect of the test cycle is good, and its RMSE value is also small. With the
increase of prediction time domain from 5 to 20 seconds, RMSE increased significantly, while the
prediction accuracy decreased gradually. On the whole, vehicle speed prediction time domain is
selected for 5 seconds.

2.3. A-ECMS algorithm establishment

The essence of ECMS is to convert the electric energy consumption by the battery into the
equivalent fuel consumption through the equivalent factor in each instant. The energy distribution
rule with the minimum sum of the instantaneous fuel consumption of the engine and the equivalent
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fuel consumption of the motor as the optimal solution is conducive to reducing the energy
consumption and improving the economy [13].
The instantaneous equivalent fuel consumption of PHEV at a certain time ¢ can be given as follows

rheq (t) = rhfuel (t) + rﬁele (t) (8)

where m,, is the total equivalent fuel consumption; i, is the fuel consumption of the engine;
me 1S the equivalent fuel consumption after the electric energy conversion of the power battery, and
its calculation formula is shown as follows

iy (P 0) = k-s-— 8 (1 y). s T P ®) o

M4is i Ihv

where k = O.5><(1+sign(Pm(t))), indicating whether the working state of the motor is

discharging or charging; P, (t) isthe power of the motor at time t, Q;, Isthe calorific value constant
of the gasoline mass, 14, and n.,4- are the discharge and charge efficiency of the battery, and s is
oil-electricity conversion equivalent factor (EF).

According to the energy management optimization problem of PHEV, the objective function can
be obtained as follows

minJ () = | " rh, (u(t)dt (10)

where J(t) is the fuel consumption and u(t) is the control variable at time ¢.

For the ECMS strategy, the EF is fixed. However, the driving cycle information and the SOC
of the battery also affect the EF. If a fixed EF is adopted globally, the optimization effect may be
poor [32,33]. Based on ECMS, an adaptive control strategy based on real-time correction of EF by
SOC reference trajectory and vehicle speed is proposed in this section. An adaptive equivalent
consumption minimization strategy (A-ECMS) is established by introducing the SOC reference
trajectory and short-term driving speed prediction. The formula for changing the EF can be given
as follows

S(t) =Sy, + K, -(SOC,,, —SOC(1)) (11)

where s, ; Which is the initial equivalent factor of various typical driving cycles under the current
vehicle speed, K, isthe scale factor, SOC,. isthe reference SOC value, and SOC(t) is the real SOC
value at time ¢.

SOC reference trajectory can modify the EF in real time through the proportional control method.
Constant part of the adaptive equivalent factor s,.r;, or initial EF, is also very important in the
method. Therefore, this paper considers the combination of short-term vehicle speed prediction to
optimize initial EF of four typical driving cycles under different SOC values. In the application, the
constant part of the adaptive EF is modified according to the type of driving cycle, and compared with
the EF calculated based on SOC reference trajectory. If there is too much difference between the
predicted EF and the current EF, then the constant part of the current EF is modified.
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Figure 13. The process of A-ECMS based on driving cycle prediction and personalized
travel characteristics.

In summary, A-ECMS based on driving cycle prediction and personalized travel characteristics
is proposed in this paper and its process is shown in Figure 13. First of all, the driver's historical driving
data is clustered and analyzed offline to extract personalized travel characteristics and build the typical
driving cycles. Then real-time traffic flow information is obtained through ITS to plan the optimal
SOC reference trajectory, and combining the short-term vehicle speed prediction to modify the EF, so
as to control the vehicle to achieve the purpose of improving fuel economy.

3.  Methodology of building typical driving cycles and planning SOC trajectory

The development and application of EMS should be able to select appropriate control parameters
according to the actual driving cycles of the vehicle, so as to distribute the energy of each power source
more reasonably, achieve the best control effect and save energy as much as possible [28,33].
Meanwhile, driving style of each driver and actual driving conditions are diverse. This section will
explain the methodology of building typical driving cycles by analyze personalized travel
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characteristics, and planning the SOC trajectory by driving cycle recognition.

3.1. Bypical driving cycle construction based on historical driving data

In order to make the PHEV energy management strategy more targeted, the historical driving
cycle data by a specific driver should be analyzed firstly, and building the typical driving cycles for
the driver which is the basis of SOC reference trajectory analysis. The analysis process is shown in
Figure 14.

Determine the experimental data
collection scheme

v
| Collect the travel data of a driver | ] Collection and preprocessing of
v < > historical driving cycle data

Preprocessing of driving cycle data

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

: I Segment of driving cycles |

v
Calculation of driving cycle 4_,» Principal component analysis of
characteristic parameters historical driving cycles

v
Principal component analysis of
driving cycle characteristic
parameters

Fuzzy c-means clustering analysis
of historical driving cycles

v

Determine the number of clusters H Clustering analysis of of
by silhouette coefficient historical driving cycles

) 4
=NO hether reasonable

Extract the driving cycle fragments
by clustering results = l Build typical driving cycles

v
Build the driver's typical driving
cycles

Figure 14. The process of typical driving cycle construction.

The data of the driver's travel is collected by GPS equipment, and the sampling frequency is 1Hz.
And preprocessing is needed to remove the excessively long idle speed section and abnormal section
in the data. In the process of driving on urban roads, the driving cycles of vehicles are usually affected
by different types of road conditions and traffic environment. There are many idle, acceleration,
deceleration and other states [34]. Therefore, after preprocessing the historical data, the next important
step is to divide the kinematic segments, also known as short segments. As shown in Figure 15, the
kinematic segment is defined as the operating range from one idle to the next [35,36].
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Figure 15. Schematic diagram of kinematic segment.

By analyzing the driving characteristic parameters of each kinematic segment, the travel
characteristics of the vehicle are obtained. There are 13 characteristic parameters representing the
characteristics of driving cycles to be selected, as shown in Table 3.

Table 3. Characteristic parameters of driving cycles for describing kinematic segments.

Numbers Driving cycle characteristic parameter Unit
1 Average speed: Vg, km/h
2 Average driving speed: Ugye km/h
3 Standard deviation of vehicle speed: vg4 km/h
4 Maximum speed: Uy, km/h
5 Average acceleration: agy, m/s?
6 Average deceleration: ag,, m/s?
7 Maximum acceleration: Qg m/s?
8 Maximum deceleration: @i, m/s?
9 Standard deviation of acceleration: agq m/s?
10 Idle time ratio: P (t;ge) %
11 Acceleration time ratio: P(tg.) %
12 Deceleration time ratio: P (tgec) %
13 Uniform time ratio: P (t,ni) %

If the 13 characteristic parameters are directly used for clustering analysis, the calculation will be
large and affect the clustering results, and there will be information redundancy between the various
feature parameters. Therefore, it is necessary to reduce the dimension of the original driving cycle
matrix. In this paper, principal component analysis (PCA) method is used for extracting the key
ingredients and reducing the dimensionality.

Then by analyzing the principal component of the kinematic segments, they can be clustered into
several representative driving cycles for optimization of EMS. In this paper, the fuzzy c-means
algorithm (FCM) is used for clustering analysis. If samples X = [x4,x,,...,x,] are given, and ¢
represents the number of clusters, [0y, ay,...,ac] represents cluster centers of various categories.
Then the objective function can be expressed by Egs. (12).
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3U@) =Y (6,0’ (12)

i=1 k=1
where b isweighting parameters. §;, and d;, are membership and Euclidean distance between ith
sample and kth category. And Euclidean distance can be calculated by Egs. (2). m is the dimensions
of the sample.

dy = {i(xii _akj)z} (13)

Membership between ith sample and kth category can be calculated by Egs. (3).

=1/ S (14)

However, if the initial value of FCM is unreasonable, the algorithm may converge to the local
minimum point, which will affect the clustering results [25,37]. To solve this problem, this paper
applies simulated annealing algorithm (SA) and genetic algorithm (GA) to FCM, making clustering
more efficient and accurate [25]. The process of FCM based on genetic simulated annealing algorithm
(GA-SA) is shown in Figure 16.
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crossover, compilation operations

v

New species

Reduce the Calculate each cluster center, the
temperature degree of membership and fitness value
A of each individual

!

The simulated annealing algorithm For
replacing the old ones

nitila iteration number
Max iteration number

rrent temperature < Fina
temperature

Figure 16. The process of fuzzy c-means clustering based on GA-SA.
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3.2. Driving cycle recognition and SOC reference trajectory planning

3.2.1. Driving cycle recognition

The type of vehicle driving cycle has a great influence on the energy management strategy of
PHEV. Therefore, the algorithm of driving cycle recognition is designed based on the results of above
clustering analysis, in order to identify the current type of driving cycle in the process of vehicle driving,
and provide help for the later SOC reference trajectory planning. The driving cycle recognition process
is shown in Figure 17.

Extract real-time
driving cycle data

A 4

Calculate CharaCt‘?r_iStic - Get principal | Calculate euclidean
parameters of driving | component by PCA > distance
cycles
h 4
Identification of driving | Compared with four
cycle type - typical driving cycles

Figure 17. The process of driving cycle recognition.

The main idea of driving cycle recognition based on cluster analysis is to extract the characteristic
parameters of the driving cycle during the actual driving process, to calculate the principal component
and the Euclidean proximity of the driving cycle to the clustering center of various typical
driving cycles, and to classify the driving cycle as the cluster of a certain category if it is closest
to the clustering center of this category [34]. Thus, the classification of the current driving cycle
can be recognized.

Let the cluster center of typical driving cycles be Y, (n = 1,2,...,n) and the current actual
driving cycle of the vehicle to be identified is X. Then the Euclidean proximity between the current
actual driving cycle and the typical driving cycle in the historical driving cycle database can be given
as follows

(Y, X) =1—%(§, (Y, (k) — X (K))?)? (15)

where m is the number of characteristic parameters of the driving cycle.
According to the Euclidean proximity formula, the approach degree between Y,, and X can be
calculated. If there is

oY, X)= maX{G(Yl, X),oY,, X),o(Y;, X),o(Y,, X)} (16)
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It can be considered that the current driving cycle X and Y,, have the highest similarity, that is,
the current driving cycle belongs to this kind of driving cycle.

3.2.2.  SOC reference trajectory planning

After classifying the driving cycle fragments into typical driving cycles, DP algorithm is needed
to solve the optimal SOC consumption law of various typical driving cycles in this paper. By setting
different initial value and end value of SOC in the DP algorithm, study the relationship between the
SOC consumption per kilometer and the high efficiency utilization rate of engine under typical driving
cycles, and the comparison between the SOC consumption per kilometer and the average fuel
consumption rate. The calculation of high efficiency area utilization rate is given as follows [21].

N
en.oti = bT\anm .;%(i).loo% (17)
where N represents the length of time when the engine is working, and be,,;, represents the
minimum fuel consumption rate of the engine.

If the whole journey is within the pure electric mileage of PHEV, the pure electric mode is used
for the journey without SOC trajectory planning. But if it exceeds the pure electric mileage that can be
driven under the current battery state, in order to improve fuel economy, reasonable SOC planning is
required. The optimal SOC consumption of each typical driving cycle can be determined according to
the relationship between SOC, fuel consumption, and high efficiency utilization rate of engine, so as
to formulate SOC trajectory planning rule reasonably. This rule needs to traffic flow information in
advance which can be obtained by navigation system and ITS, and then allocate power to each section
based on the type of typical driving cycle and the current SOC state. The process of SOC trajectory
planning is shown in Figure 18.
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Figure 18. The process of SOC trajectory planning based on driving cycle recognition.
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4. Results and discussion

4.1. Building Typical driving cycle for a specific driver

The driving data of a specific driver is collected by GPS and the sampling frequency is 1Hz. The
data of vehicle speed and time information is extracted, which is shown in the Figure 19.
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Figure 19. Historical driving cycle data.

There are some abnormal acceleration and deceleration data points caused by GPS equipment or
vehicle, abnormal points with discontinuous time, excessive idle data points. These data points need
to be eliminated and the historical driving cycle data after preprocessing is shown in Figure 20.
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Figure 20. Historical driving cycle data after preprocessing.

1468 segments of driving cycle are extracted from historical data. 13 driving cycle characteristic
parameters, such as average speed, average driving speed and standard deviation of speed, are
respectively represented by x;, x,, ..., X153, and the index of driving cycle segment is represented by
i =1,2,...,1468, while the characteristic parameter x,, x,, ..., x,3 Of the ith driving cycle segment is
recorded as [x;1, Xz, ..., X;13]. Then there is the full information matrix X = (x;;)146sx13 Of the
actual driving cycle. Then using PCA regroups the original parameters into a new set of unrelated
integrated parameters to reduce dimension and the result is shown in Figure 21.
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Figure 21. Variance contribution rate of principal components.

As a result, the accumulative contribution rate of the first four principal components reached
91.18%. Generally speaking, when it is higher than 85%, it can be considered that the number of
principal components selected can retain most of the original data information, and achieve the purpose
of dimensionality reduction [34]. Therefore, the first four principal components are selected in this
paper. The dimension of historical driving cycle data has been reduced from 13 dimensions to 4
dimensions, which greatly reduces the calculation amount. The principal component score matrix of
driving cycle segments obtained by principal component analysis can be used for cluster analysis, as
shown in Table 4.

Table 4. Principal component score matrix of kinematic segments.

Index F1 F2 F3 F4
1 -1.1058  -1.3408 -0.2677 1.9947
2 0.8687 -1.7607  -0.2811 0.8793
3 -0.1886  -1.6428 0.5574 0.7264
4

-0.7973  -1.8836 2.0468 0.0025

1467 3.6596 -0.3058 0.8410 -1.4611
1468 3.0708 -0.3280  -0.5293  -0.1305

Four principal components of each kinematic segment have obtained above which can be used as
the feature vector of FCM samples. And four cluster centers are selected. Iterative process of clustering
is shown in Figure 22. It can be seen the convergence speed and objective function value of GASA-
FCM are both better than FCM.
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Figure 22. Iterative process of cluster analysis.

In order to make the clustering results intuitive and clear, the two-dimensional graph composed
of principal component 1 and 2 and the three-dimensional graph composed of principal component 1,
2 and 3 are described to show the classification situation, as shown in Figure 23. The black fork in the
graph is cluster center.
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Figure 23. Cluster results of driving cycle segments.

Then it is necessary to extract typical segments of four types of driving cycles. According to the
principle that 10 groups of short segments of driving cycles closest to the clustering center are selected
as candidate characteristic driving cycles, four types of typical driving cycles are selected, as shown
in Figure 24.

Type-1 driving cycle can be defined as medium speed driving cycles. The vehicle speed and the
idle time are both moderate, which is generally a relatively smooth urban driving cycle. Type-2 driving
cycle can be defined as high-speed driving cycle. The average speed is the highest of the four driving
cycle types. Meanwhile, the idle time ratio is the lower of the four driving cycle types, and the
maximum speed is also higher, indicating that the road condition of this kind of driving cycle is smooth.
Generally, it belongs to the smooth urban expressway section or suburban section. Type-3 driving
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cycle can be defined as urban medium and low speed driving cycle. It belongs to the urban smooth
road condition, which is reflected in the low average driving speed, low idle ratio, and little difference
in the proportion of acceleration state, deceleration state and uniform state. Type-4 of driving cycle
can also be defined as urban medium and low speed driving cycle. However, the road condition is
congested and the start and stop are frequent, which is reflected in the low average driving speed. The

idle state accounts for the highest proportion among the four states of acceleration, deceleration,
uniform speed and idle.
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Figure 24. Typical driving cycles for a specific driver.
4.2. SOC trajectory planning

The comparison between the SOC consumption per kilometer and the high efficiency utilization
rate of engine under four typical driving cycles, and the comparison between the SOC consumption
per kilometer and the average fuel consumption rate are in Figure 25 and Figure 26.

The main purpose of calculating the relationship among SOC consumption per kilometer, engine
efficient area utilization rate and average fuel consumption rate under various driving cycles is to
provide reasonable SOC distribution value for each driving cycle during SOC trajectory planning. At
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the same time, calculate the SOC consumption value per kilometer of vehicle under pure electric
driving under the condition of sufficient power, as shown in Table 5.
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Figure 25. High efficiency utilization rate of engine under four typical driving cycles.
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Figure 26. Average fuel consumption rate under four typical driving cycles.

Table 5. SOC consumption per km in EV mode.

Driving cycle type 1 2 3 4
SOC distribution value per km
(%/km)

1.3229 1.3643 1.2180 1.0602

It can be seen that Type-1 typical driving cycles, when the SOC consumption reaches 1.1759%
per kilometer, the utilization ratio of the engine efficient area is still over 90%, and the average fuel
consumption rate is at the critical point of sudden increase, so this point can be regarded as the critical
point of the reasonable SOC distribution range. At the same time, the highest point of high efficiency
utilization rate of engine is selected as the optimal SOC distribution value under this driving cycle,
which is also at the lowest point of fuel consumption, so 4S0C,p¢ cycie 1 = 0.7349%/km.

For Type-2 typical driving cycle, the average speed of this driving cycle is higher, and the start
and stop are less. It can be seen the utilization rate of the high-efficiency area of the engine is not high
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as a whole. In Figure 23, the utilization rate of the high-efficiency area of the engine suddenly rises
because it is about to reach the critical value of the pure electric mode, and the engine has little work
at this time. Moreover, the change trend of the average fuel consumption rate is not obvious.

For Type-3 typical driving cycle, the critical value shall be selected according to the
comprehensive consideration so that the engine efficiency can be as high as possible and the average
fuel consumption should not be too high, so the optimal SOC value of this type of driving cycle is
ASOCopt cycle 3 = 0.8526%/km.

For Type-4 typical driving cycle, this driving cycle belongs to the congestion driving cycle, with
many starts and stops, and the speed is not high, which is not conducive to the engine work. It can be
seen engine working efficiency of this kind of driving cycle is not high and the fuel consumption is
increased. Therefore, try to operate in pure electric mode under this driving cycle. In conclusion, the
reasonable distribution range of SOC under various typical driving cycles is shown in Table 6.

Table 6. Reasonable distribution range of SOC under typical driving cycles.

Driving cycle type 1 2 3 4

SOC max distribution value per km
(%/km)
Optimal SOC max distribution value
per km (%/km)
SOC min distribution value per km
(%/km)

1.1759  1.2993  0.9744  1.0602

0.7349 03898  0.8526  1.0602

0 0 0 1.0602

Generally speaking, when the speed is low and the engine starts and stops frequently, the motor
should be allowed to work first, because in this case, it is not conducive to the engine working in the
efficient area. Therefore, according to the priority order of typical driving cycle 4-3-1-2, the battery
power is allocated. This SOC reference trajectory planning rule needs to obtain the road condition
information of the trip in advance, and based on the SOC state at this time, then the power allocation
of the sub sections can be carried out. The SOC trajectory planning algorithm is shown in Table 7.

Table 7. SOC trajectory planning algorithm.

1: Identify the road section belonging to Type-4 typical driving cycle;

2: Allocate the SOC of the roads of Type-4 typical driving cycle:
ASOCeycie s = DSOChy _cycie s X Seycie 4

3: Identify the road section belonging to Type 3 of typical driving cycles;
4: Allocate the SOC of the roads of Type-3 typical driving cycle:
ASOCeycte 3 = ASOCop: cycie 3 X Seycte 3

5: Identify the road section belonging to Type-1 of typical driving cycles;
6: Allocate the SOC of the roads of Type-1 typical driving cycle:
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ASOCcycre 1 = ASOCopt cycie 1 X Scycte 13

7: Identify the road section belonging to Type 2 of typical driving cycle;

8: Allocate the SOC of the roads of Type-2 typical driving cycle:
ASOCcycie 2 = ASOCiotar — (ASOCcycre 1+ ASOCcycie 3+ ASOCcycie _4);
9: if 0 < ASOCcycie 2 < ASOCmax_cycie_2 * Scycte_2

Indicate that the allocation is reasonable, SOC trajectory planning ending;
10: else ASOCcycie 2 > ASOCimax_cycie 2 * Scycle 2

Allocate the SOC of the roads of Type-2 typical driving cycle:

ASOCcycie 2 = ASOCax cycle 2 X Scycie 2

11: Reallocate the SOC of the roads of Type-1 typical driving cycle:
ASOCcycie 1 = ASOCtotar — (ASOCcycie 2 + ASOCcycre 3+ ASOCeycre 4)
12: SOC trajectory planning ending.

The relevant symbolic meanings and calculation methods are shown in Table 8.

Table 8. Relevant meanings of SOC trajectory planning algorithm.

Symbol Meaning
ASOCtotar SOC consumption value of the whole driving cycle
ASOCeycre iyt = 1,2,3,4 SOC distribution value of type i driving cycle
Seyete_it = 1,2,3,4 Mileage of each type of driving cycle

ASOCgy cycte it = 1,2,3/4 SOC distribution value in EV mode of each type of driving cycle
ASOCopt _cycie_irt = 1,2,3,4 Optimal SOC distribution value in EV mode of each type of driving cycle
ASOChmax_cyctle_ivt = 1,2,34  Maximum SOC distribution value of each type of driving cycle

In order to verify whether the above SOC trajectory planning algorithm is reasonable and effective,
this paper collects a section of data through ITS which only represents the information on a certain
route. and uses the method in Section 2.2 to convert to the target driving cycle for simulation and
verification. And compares the planned SOC trajectory with the SOC trajectory obtained by DP.

As shown in Figure 27, the driving cycle is divided into 9 sections. Then, it is necessary to
calculate the mileage of each driving cycle, and according to the above analysis results of SOC
consumption of four typical driving cycle segments, the reasonable SOC distribution value of each
typical driving cycle segment can be obtained. The SOC of each driving cycle can be allocated
according to the mileage and driving cycle category of each driving cycle, and the detailed information
of each driving cycle can be obtained, as shown in Table 9.
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Figure 27. Simulation driving cycle and recognition results.

Table 9. Specific information of each segment driving cycle.

Segment numbers 1 2 3 4 5
Period (s) 1-363 364-1355  1356-1727 1728-2492  2493-2966
Distance (km) 1.7469 11.2342 1.3181 10.5460 2.2507
Type of driving cycle 1 2 3 2 1
ASOC (%) 2.3110 9.8721 1.4449 9.2674 2.9775
Segment numbers 6 7 8 9
Period (s) 2967-3299  3300-4095 4096-4824 4825-5120
Distance (km) 0.3181 11.8117 2.7869 0.3678
Type of driving cycle 4 2 3 4
ASOC (%) 0.3212 10.3796 3.0550 0.3713

As shown in Figure 28, the reference SOC trajectory is close to the SOC trajectory curve obtained
based on DP algorithm, which shows that the SOC reference trajectory obtained by the SOC trajectory
planning algorithm is approximately the optimal SOC consumption trajectory.
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Figure 28. Comparison between SOC planning trajectory and SOC trajectory by DP.
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4.3. A-ECMS simulation verification

The driving cycle in Figure 27 is taken as the target driving cycle to carry out simulation
comparison of different control strategies, mainly including A-ECMS based on vehicle speed
prediction, A-ECMS without vehicle speed prediction, DP and CD-CS. The SOC reference trajectory
is shown in the Figure 28 and the simulation results are shown in the Figure 29-32 and Table 10.
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Figure 29. Vehicle speed prediction in 5s by NAR.
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Table 10. Comparison of simulation results of different strategies.

A-ECMS A-ECMS
Control strategy DP based on speed without speed  CD-CS
prediction prediction
The initial value of SOC 0.80
The final value of SOC 0.40 0.4017 0.4035 0.3956
Equivalent fuel 22543 23601 2.4127 2.5841
consumption (L/100km)
Savings of fuel economy 12.8% 8.7% 6.6% -

Figure 29 shows vehicle speed prediction in 5s by NAR, the predicted speed and the real speed
can be well matched. Figure 30 shows the SOC decline curve under different control strategies. The
A-ECMS takes the SOC trajectory obtained from the SOC planning rules mentioned in this paper as
the SOC reference trajectory, and modifies the EF in real time. At the same time, combined with the
short-term prediction of vehicle speed, when the speed changes greatly in the future, the EF is slightly
different from the optimal EF, then the constant part of the adaptive EF is adjusted to the appropriate
value. For example, in Figure 31, it can be seen that the EF increases greatly between about 270-500s,
which is due to the high-speed driving cycle. The figure also shows that the fluctuation law of the EF
is similar to the speed change curve of the simulation driving cycle.

It can also be seen from Figure 30 that the SOC descent trajectory of A-ECMS strategy based on
speed prediction is closer to that of DP and can follow the SOC reference trajectory well, while the
SOC trajectory of A-ECMS strategy without speed prediction is quite different. It can also be seen
from Table 10 that the A-ECMS based on speed prediction and the DP based strategy can better control
the SOC terminal value near the target value. For the A-ECMS without speed prediction, the slight
difference between the SOC terminal value and the target value is also acceptable. The final value of
SOC of CD-CS is more different. It can be seen from the comparison of engine operating points based
on the A-ECMS based on speed prediction and CD-CS strategy in Figure 31 that both rotate speeds
are concentrated at 1500-3000 rpm, but it is obvious that A-ECMS based on speed prediction engine
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operating points are more concentrated in the efficient area, which is conducive to the fuel economy
of the whole vehicle.

Finally, results in Table10 show that the fuel saving performance of A-ECMS based on vehicle
speed prediction is 8.7% higher than that of CD-CS and same as this is 6.6% in A-ECMS without
prediction, which indicates that when the future trip mileage is higher than the pure electric driving
mileage under SOC state, the power consumption can be used more reasonably to achieve better fuel
saving effect, which is helpful to improve the fuel economy of PHEV.

5. Conclusion

In order to solve the energy management problems for PHEV, such as the lack of self-adaptability
of driving cycle and the inability of real-time online control, the research on the driving cycle
prediction and adaptive control strategy of PHEV is carried out.

First of all, this paper proposes an A-ECMS for PHEV energy management, combined with long-
term driving cycle recognition by ITS and short-term vehicle speed prediction by NAR neural network
to real-time modify EF. Then through the analysis of historical driving cycles by PCA and FCM
clustering analysis based on genetic simulated annealing algorithm, this paper obtain four typical
driving cycles of the specific driver. Meanwhile, the relationship between SOC consumption, fuel
consumption and engine efficiency under typical driving cycle by DP is studied which contributes to
establish optimal SOC reference trajectory. Finally, the effect of A-ECMS based on speed prediction
proposed in this paper is verified by simulation. Simulation results show that compared with CD-CS
and A-ECMS without speed prediction, the fuel consumption of A-ECMS based on speed prediction
is reduced by 8.7% and 2.1%. SOC trajectory under A-ECMS basically coincides with SOC trajectory
under DP which shows that the algorithm in this paper can apply the optimized results of DP to real-
time control and take full advantage of energy saving potential for PHEV.

In this paper, driving data is obtained by the specific driver driving on a substantially fixed route.
Then in the further study, it will expand the database and combine Internet of Vehicles and big data
analysis to study the versatility of the algorithm and use it for real vehicle control.
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