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Abstract: The whole world is devastated by the impact of the COVID-19 pandemic. The socioeco-
nomic and other effects of COVID-19 on people are visible in all echelons of society. The main goal
of countries is to stop the spreading of this pandemic by reducing the COVID-19 related new cases and
deaths. In this paper, we analyzed the correlated count outcomes, daily new cases, and fatalities, and
assessed the impact of some covariates by adopting a generalized bivariate Poisson model. There are
different effects of duration on new cases and deaths in different countries. Also, the regional variation
found to be different, and population density has a significant impact on outcomes.
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1. Introduction

The world has been devastated by the outbreak of COVID-19 caused by SARS-CoV-2 since Jan-
uary 2020. While many countries could control the spread, however, observing the second wave of
recurrence many other countries are witnessing the infection at an alarming rate. The developed, de-
veloping, and under-developed countries are facing the unforeseen challenges caused by the COVID-19
pandemic, which took a significant toll on various aspects of life on people all across the world. The
growing COVID-19 crisis hit developing countries, not only as a health crisis in the short term but
will also exhibit a devastating socio-economic impact over the months and years to come. The level
of anxiety in Africa, Europe, Bangladesh, Brazil, India, Iran, the USA, South Korea, and many other
countries increased due to new cases and fatalities recently. The socio-economic, psychological, and
other impacts have already started [1, 2]. It is difficult to diagnose this disease, and we already ob-
served a delay between the onset of symptoms and an accurate diagnosis [3]. Also, there are still many
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undiagnosed and delayed-diagnosis infections due to a lack of diagnostic kits. Both the undiagnosed
and diagnosed infections have a very high ability to transmit the virus to other susceptible people or
family members [4, 5]. The ability to diagnose and identify the infected persons in time and the treat-
ment have a tremendous impact on daily new cases and deaths. The timely and effective isolation of
symptomatic and confirmed COVID-19 cases is crucial for controlling this pandemic. The first wave of
this pandemic already proved how it could overwhelm the under-resourced hospitals and fragile health
systems in many countries.

The COVID-19 data are now available from various online sources. The majority of them are re-
porting daily new cases and deaths, along with very few other characteristics. For example, through
official communications under the International Health Regulations (IHR, 2005), by monitoring the of-
ficial ministries of health websites and social media accounts, the World Health Organization (WHO)
collected the numbers of confirmed COVID-19 cases and deaths from 31 December 2019 to 21 March
2020 [6]. Since 22 March 2020, daily global data are compiled through WHO region-specific dash-
boards. Also, Worldometer [7] reports country-specific data along with a few other characteristics.
Some sources are also reporting the number of daily tests to detect the infections. These data are
mostly used to display daily trends for new cases and deaths–a significant number of research papers
have already been published on the COVID-19 pandemic in various journals around the world. The
objectives of much of this research are to predict the trends for new cases and deaths and assess the
impact of available covariates on new cases and outcomes. Relevant policy makers of countries are
using this data to make plans and to reduce the rate of this pandemic. Already, many countries have
slowed down the spread of SARS-CoV-2, the virus that causes COVID-19, by taking stringent mea-
sures. However, many developing and under-developing countries failed to slow down the infection
rate by adopting stringent measures due to local circumstances and culture. Every region in the world
needs to make progress against the COVID-19; only then we can be safe. However, globally we are
very far from the goal, and the global number of confirmed cases is growing enormously fast.

The daily new cases and deaths, two count outcomes, are naturally correlated and dependent. Anal-
ysis of these two dependent count outcomes and assessing the impact of related covariates needs a
proper and accurate modeling approach. A marginal-conditional modeling approach for correlated
count outcomes will allow us to determine the covariate impact on the responses jointly and better
prediction. We employ a generalized linear covariate dependent bivariate Poison model to analyze the
dependent daily new cases and death and assessed the impact of some characteristics on the outcomes.
The rest of the paper is organized as follows. In Section 2, we present the methodology used in this
paper. The results of data analysis are presented in Section 3. Finally, in Section 4 we discuss the
conclusions.

2. Bivariate Poisson regression model

In this section, we discuss the methodology to model the daily new cases of COVID-19 infections
and deaths reported by world health organization (WHO). The world health organization regularly
updates daily new cases and deaths for each country. It is noteworthy to mention that these daily
counts of new cases and deaths are dependent or correlated. Therefore, more new cases can overwhelm
the heath care system which in turn can cause more deaths. Moreover, it is vital to study the impact
of duration and other available characteristics on these two dependent count outcomes. A bivariate
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Poisson model can be used to analyze such correlated count outcomes, which will provide in-depth
insights and dynamics regarding new cases deaths and covariates.

To analyze these dependent count outcomes along with covariates, we use a bivariate generalized
Poisson model [8]. This bivariate generalized Poisson regression model uses a marginal-conditional
modeling approach based Poisson-Poisson distribution. Let Yi1 and Yi2 be the count responses of the
daily new cases of COVID-19 infections and deaths, respectively, for the ith (i = 1, 2, . . . , n) day. It
can be shown that the joint distribution of Yi1 and Yi2 is [8]:

g(yi1, yi2) = g(yi2 | yi1).g(yi1) = e−λ̂i2yi1(λ̂i2yi1)yi2/yi2! × e−λ̂i1 λ̂
yi1
1 /yi1! = e−λi1λ

yi1
1 e−λi2yi1(λi2yi1)yi2/(yi1!yi2!)

(2.1)
The joint mass function of a bivariate generalized Poisson model for count responses Yi1 and Yi2 can

be expressed as,

g(yi1, yi2) = exp {yi1 ln λi1 + yi2 ln λi2 − λi1 − λi2yi1 + yi2 ln yi1 − ln yi1! − ln yi2!} (2.2)

where, ln λi1 = x′iβ1, and ln λi2 = x′iβ2 are link functions. In (2.1), x′i = (1, xi1, · · · , xip) is the vector of
the covariates and β1

′ = (β10, β11, · · · , β1p) and β′2 = (β20, β21, · · · , β2p) are the regression coefficients
corresponding to the new infections and deaths. It can be shown that the marginal means of Yi1 and Yi2

are E(Yi1) = µi1 = λi1 and E(Yi2) = µi2 = λi1λi2, respectively. It may be noted that the subscript i of λ
is used to represents different subjects due to varying combinations of covariate values.

The log-likelihood function can be written as:

ln L =

n∑
i=1

[
yi1(xi

′β1) + yi2(xi
′β2) − ex′iβ1 − ex′iβ2yi1 + yi2 ln yi1 − ln yi1! − ln yi2!

]
. (2.3)

To estimate the regression parameters, we can take the first and second derivatives of the above log-
likelihood function and develop the estimating equations as

∂ ln L
∂β1q

=

n∑
i=1

[
xiq(yi1 − ex′iqβ1)

]
= 0, q = 0, 1, · · · , p;

and
∂ ln L
∂β2q

=

n∑
i=1

[
xiq(yi2 − yi1ex′iqβ2)

]
= 0, q = 0, 1, · · · , p.

The second derivatives are:

∂2 ln L
∂β1q∂β1q′

= −

n∑
i=1

[
xiqxiq′e

x′iqβ1
]
, q, q′ = 0, 1, · · · , p;

∂2 ln L
∂β2q∂β2q′

= −

n∑
i=1

[
yi1xiqxiq′e

x′iqβ2
]
, q, q′ = 0, 1, · · · , p.

Consequently, The observed information matrix can be obtained as

Io =



(
n∑

i=1
(xiqxiq′e

x′iqβ̂1)
)

(p+1)(p+1)
0(p+1)(p+1)

0(p+1)(p+1)

(
n∑

i=1
yi1xiqxiq′e

x′iqβ̂2

)
(p+1)(p+1)


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and the approximate variance-covariance matrix for β̂′ =
(
β̂′1, β̂

′
2

)
is V̂ar(β̂) = Io

−1. Using the Newton-
Raphson method, we can obtain the estimated parameters.

Now, using the Poison-multinomial relationship, we can predict the probabilities for bivariate Poi-
son outcomes [9]. For notational convenience, the subscript i is omitted in what follows. To estimate
the joint probability, we do it in two steps. First, we need to calculate the marginal probability for each
count (m) of outcome Y1 (m = 0, · · · , k1). Similarly, we need to estimate the conditional probability
for each count (s) of Y2 (s = 0, · · · , k2) for a given value (m) of Y1. The estimate of the marginal
probability from the Poisson distribution can be obtained as:

P̂(Y1 = m | x) = P̂m = e−µ̂m µ̂m
m/m!, where

k1∑
m=0

P̂m = 1. (2.4)

Here, P̂(Y1 = m | x) is the estimated probability for specific value m for Y1 and for given covariate
value x. In other words, we are estimating the probabilities of each value of Y1 by considering all the
combinations of different covariate patterns.

For Y1 = m, let ym1 + · · · + yml + · · · + ymnm = nm, where yml = 1 if Y1 = m, yml = 0 otherwise,

m = 0, 1, · · · , k1, l = 1, · · · , nm, and
k1∑

m=0
nm = n. The estimate of Pm is

P̂m =
µ̂m

k1∑
m=0

µ̂m

, where µ̂m =

nm∑
l=1
µ̂ml

k1∑
m=0

nm∑
l=1
µ̂ml

, and µ̂ml = ex′mlβ1 .

For the conditional probabilities of Y2 = s for any given value of Y1 = m the corresponding estimates
of multinomial probabilities are

P̂s|m =
µ̂s|m

k2∑
s=0
µ̂s|m

, m = 0, · · · , k1, s = 0, · · · , k2.

where µ̂s|m =

nsm∑
h=1

µ̂sh|m

k2∑
s=0

nsm∑
h=1

µ̂sh|m

, and µ̂sh|m = ex′sh|mβ2 .

For Y2 = s, let ys1|m + · · · + ysh|m + · · · + ysnm |m = nsm, where ysh|m = 1 if Y1 = m, Y2 = s, ysh|m = 0

otherwise, m = 0, 1, · · · , k1, h = 1, · · · , nsm, and
k2∑

s=0
nsm = nm. For more comprehensive illustrations,

readers are referred to [9]. Consequently, the joint probability of Y1 = m and Y2 = s can be estimated
as follows:

P̂(Y1 = m,Y2 = s) = P̂(Y1 = m) × P̂(Y2 = s
∣∣∣Y1 = s) = P̂m × P̂s|m (2.5)

We can easily predict the marginal, conditional, and joint probabilities using the fitted marginal and
conditional models for new cases with different scenarios of outcomes and covariates. For marginal
probabilities, we use the following equation

ĝ(yi1) = e−λ̂i1 λ̂
yi1
1 /yi1!, (2.6)
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and for conditional probabilities we use

ĝ(yi2 | yi1) = e−λ̂i2yi1(λ̂i2yi1)yi2/yi2!. (2.7)

Then the joint probability can be estimated using the relation between Poisson and Multinomial de-
scribed in Eqs (2.4) and (2.5).

3. Analysis of World Health Organization COVID-19 Data

As of July 7, 2020, the World Health Organization (WHO) reported, globally, there have been
11,500,302 confirmed cases of COVID-19, including 535,759 deaths. We downloaded this map data
from the WHO Coronavirus Disease (COVID-19) Dashboard. This data set includes daily new cases
and deaths from 215 countries around the world by WHO region. The two-count outcomes, daily new
cases and deaths, are defined as Yi1 and Yi2, respectively. The seven WHO regions EURO (European),
AFRO (African), AMRO (American), EMRO (Eastern Mediterranean), SEAR (South East Asian),
WPRO (Western Pacific), and Other are used as categorical covariates by considering EURO as the
reference category. The duration (in days) from the first reporting date along with population density
per Km2 are also used as covariates in the bivariate Poisson regression model. To model the non-linear
relationship with outcomes and assess the effect of duration more accurately, we also used the squared
duration as a covariate in the bivariate Poisson model. The duration ranges from 0 to 176 days, and
the density ranges from 0 to 26337 per Km2. The ranges of these variables are vast, with long gaps
between the values. For modeling purposes and to avoid convergence problems, we used deciles for
each of these covariates. Besides, we recorded the number of daily new cases above 50 as fifty, and
the daily number of deaths above 5 as five. Again, the reason is to avoid convergence problems due
to the wide variation in the worldwide data. We fitted two models; in model 1, we only included the
following covariates as main effect terms,

x′i = (1, xi1, · · · , xi9) = (Constant, AFRO, AMRO, EMRO,Other, S EAR,WPRO,Duration,Density,

Duration2)

and in model 2, we included first-order interaction terms between covariates along with the main effects
as follows:

x′i = (1, xi1, · · · , xi21) = (Constant, AFRO, AMRO, EMRO,Other, S EAR,WPRO,Duration,Density,

Duration2,Duration ∗ Density,Density ∗ AFRO,Density ∗ AMRO,

Density ∗ EMRO,Density ∗ S EAR,Density ∗WPRO,Duration ∗ AFRO,

Duration ∗ AMRO,Duration ∗ EMRO,Duration ∗ Other,Duration ∗ S EAR,

Duration ∗WPRO).

To analyze the data for this paper, we used the bpglm R package to fit all the models [10].
The analysis results of the proposed bivariate Poisson model with the main effects only (Model 1)

are presented in Table 1. Our results in Table 1 indicates that all the WHO regional indicators are
showing a statistically significant relationship with daily new cases. Except for the EMRO region,
all other areas are showing fewer daily new cases, on average, than the reference EURO region. The

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6085–6097.



6090

Table 1. Estimated coefficients of main effects using bivariate Poisson model.

Y1: Marginal model Y2: Conditional model
Variables β̂ SE P-value Adj. p-value β̂ SE P-value Adj. p-value
Constant 1.92 0.008 0.000 0.000 -3.58 0.042 0.000 0.000
AFRO -0.54 0.004 0.000 0.000 -0.57 0.020 0.000 0.000
AMRO -0.49 0.004 0.000 0.000 0.03 0.015 0.059 0.254
EMRO 0.08 0.004 0.000 0.000 -0.15 0.017 0.000 0.000
Other -1.98 0.042 0.000 0.000 -0.55 0.278 0.050 0.236
SEAR -0.34 0.007 0.000 0.000 -0.06 0.028 0.045 0.225
WPRO -0.61 0.006 0.000 0.000 -0.33 0.026 0.000 0.000
Duration 0.41 0.003 0.000 0.000 0.28 0.013 0.000 0.000
Density -0.02 0.001 0.000 0.000 -0.01 0.002 0.000 0.000
Duration2 -0.02 0.000 0.000 0.000 -0.02 0.001 0.000 0.000

EMRO region is showing more daily new cases, on average, than the EURO region. This means the
daily new cases of the COVID-19 infections in each region except ERMO are lower as compared to
the EURO after the first case was diagnosed. This also suggests that compared to EURO, in the other
regions the COVID-19 outbreak spread more slowly but in the ERMO region, infection spread more
rapidly. Table 1 indicates that both linear and quadratic terms in duration are statistically significant in
the model. The estimates tell us that, with the other variables fixed, that the number of new cases rises
as the duration increases up to about 6, then decreases. Our results also indicates that population density
has a negative significant effect on the number of cases. This is an indication that under proper safety
measures it is possible to control the new cases even in highly populated areas. For the conditional
model, with daily death counts as an outcome, except for three WHO region indicators, the other
regions had fewer daily deaths, on average, than the EURO region. We are considering the adjusted p-
values which adjust for over (or under) dispersion. The other covariates show a significant relationship
with the daily number of deaths. However, we believe this may vary for country-specific data.

In Table 2, we present the results using the proposed bivariate Poisson model including the inter-
action terms as covariates with the main effects (Model 2). In this model, along with the main effects,
we included interaction terms between duration and density and the interaction terms between dura-
tion and all the WHO region indicators. All the WHO region indicators (main effect terms) showed a
significant (p < 0.01) reduction of daily new cases compared to the reference indicator EURO, except
for Other regions. However, we need to be cautious with the interpretation of these terms because of
the inclusion of the interaction terms involving region, which are all significant.

To compare the performance of the models, we have calculated the log-likelihood, Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC) and Deviance using both Model 1 and
2. The results in Table 3 indicate that Model 2 is performing better. Figure 1 displays the predicted
conditional probabilities for the given daily number of new cases. The number of new cases varies
from 0 to 50 (50 represents fifty or more) and is shown on the x-axis. Each line in the figure represents
the number of deaths, which ranges from 0 to 5 (5 represents five or more).

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6085–6097.
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Table 2. Estimated coefficients of main and interaction effects using bivariate Poisson model.

Y1: Marginal model Y2: Conditional model
Variables β̂ SE P-value Adj. p-value β̂ SE P-value Adj. p-value
Constant 2.33 0.012 0.000 0.000 -4.13 0.064 0.000 0.000
AFRO -1.56 0.015 0.000 0.000 -0.14 0.080 0.071 0.262
AMRO -0.69 0.013 0.000 0.000 0.70 0.058 0.000 0.000
EMRO -0.62 0.014 0.000 0.000 0.39 0.064 0.000 0.000
Other 1.66 0.078 0.000 0.000 -0.97 0.411 0.018 0.143
SEAR -3.58 0.039 0.000 0.000 0.35 0.182 0.052 0.227
WPRO -2.65 0.022 0.000 0.000 0.18 0.101 0.072 0.263
Duration 0.36 0.003 0.000 0.000 0.32 0.015 0.000 0.000
Density -0.03 0.002 0.000 0.000 0.08 0.008 0.000 0.000
Duration2 -0.02 0.000 0.000 0.000 -0.02 0.001 0.000 0.000
Duration*Density -0.00 0.000 0.001 0.495 -0.01 0.001 0.000 0.001
Density*AFRO 0.01 0.002 0.000 0.107 -0.10 0.008 0.000 0.000
Density*AMRO -0.11 0.001 0.000 0.000 -0.10 0.006 0.000 0.000
Density*EMRO 0.03 0.002 0.000 0.000 -0.11 0.007 0.000 0.000
Density *SEAR 0.31 0.004 0.000 0.000 -0.00 0.019 0.996 0.998
Density *WPRO 0.21 0.002 0.000 0.000 0.02 0.010 0.024 0.161
Duration*AFRO 0.15 0.002 0.000 0.000 0.01 0.010 0.397 0.599
Duration*AMRO 0.11 0.002 0.000 0.000 -0.03 0.007 0.000 0.005
Duration*EMRO 0.08 0.002 0.000 0.000 0.01 0.007 0.423 0.618
Duration*Other -0.97 0.035 0.000 0.000 0.15 0.085 0.085 0.284
Duration*SEAR 0.13 0.003 0.000 0.000 -0.08 0.012 0.000 0.000
Duration*WPRO 0.10 0.002 0.000 0.000 -0.11 0.010 0.000 0.000

0.00

0.25

0.50

0.75

0 5 10 15 20 25 30 35 40 45 50
Daily number of new cases

Co
nd

itio
na

l p
ro

ba
bi

lity

Deaths

0

1

3

5+

Figure 1. Conditional probability of number of deaths for given number of new cases.
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Table 3. Comparison between Model 1 and Model 2.

Model statistics Model 1 Model 2
(Main Effects) (Interaction Effects)

Log likelihood -380093.2 -356158.5
AIC 760226.4 712405.1
BIC 760389.8 712764.7
Deviance 651720.9 603913.1

The top line shows the probability of no deaths for the number of new cases. The probability shows
a steady downward trend and goes close to zero as the number of new cases increases, as one would
expect. The solid line for predicted probability for five or more deaths conditional on the number of
daily new new cases rises sharply for fifty or more new cases, and the risk is around 0.29. This sharp
increase is due to collapsing of 50 or more new cases as fifty to avoid estimation problems. We note
that for some days with no new cases, deaths are also reported. Figure 2 presents the trajectories of
joint probabilities for new cases and deaths. Overall the risk for both the new cases and deaths is
gradually decreasing.
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Figure 2. Joint probability of number of deaths for given number of new cases.

3.1. Country specific analysis

We observed that the effect of duration on both the outcomes of daily new cases and daily deaths
are positive for both the models (Tables 1 and 2). We hypothesized that these relationships might not
remain the same for country-specific data. The reason is that the developed countries with advanced
healthcare systems and with proper planning to handle the COVID-19 pandemic may observe different
results. For example, the impact of duration on new cases and deaths may have negative relationships.
Also, a longer duration may have a positive impact on daily new cases but a negative effect on daily
deaths. However, they may have a positive impact on both the outcomes as we observed in model 1
and model 2.
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Figure 3. Conditional probability of number of deaths for given 50+ new cases.

To assess the country-specific impact of duration on daily new cases and deaths, we fitted separate
models for selected countries. We used duration as the only covariate because the WHO region and
density for each country are fixed values. Table 3 presents the bivariate Poisson regression results for
the selected countries. For China, increased duration decreases new cases and deaths significantly.
Similar patterns are found for Myanmar, but it was not significant for the marginal model. In the cases
of Malaysia, Sri Lanka, Republic of Korea, Spain, Australia, and Morocco, duration reduces mortality
(p < 0.01), but it is opposite for new cases. Duration reduces daily new cases (p < 0.01), for the
African country Tanzania. The majority of countries observed increased in daily new cases and deaths.

From the country-specific analysis, we plotted the predicted risk of the number of deaths for fifty or
more new cases for the selected countries (Figure 3 to Figure 6). The x-axis represents the number of
deaths, and the predicted risks are on the y-axis. In Figure 3, the conditional probability (conditional
on 50+ new cases) for five or more deaths showed an upward trend and much higher (0.22) for five
or more fatalities for Italy, followed by Germany, Spain, and the UK, respectively. The risk for five
or more fatalities (Figure 4) is highest for Australia, followed by France, the Netherlands, and New
Zealand, respectively. The trend for the Netherlands is mostly flat and for New Zealand it is close to
zero. Figure 5 presents the same trajectory for Canada, Japan, the Republic of Korea, and the USA.
The path for Canada started ascending from 3 fatalities for the given new cases. The risk of deaths for
five or more deaths is highest, around 0.12, followed by Japan, the Republic of Korea, and the USA,
respectively. For China, the risk for five or more fatalities is highest, around 0.27 (Figure 6), followed
by Malaysia, Morocco, and South Africa, respectively.

4. Conclusions

The entire world is trying hard to reach the same goal: the new cases of COVID-19 need to go to
zero. We can achieve this goal only if we can end the pandemic everywhere. To reduce COVID-19
infection, countries around the world are implementing various restrictions. These measures included
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Table 4. Resulst for country specific bivariate Poisson models.

Variables β̂ s.e. p.v. β̂ s.e. p.v. β̂ s.e. p.v. β̂ s.e. p.v.
China India Indonesia Rusian Federation

Y1:Con. 3.97 0.024 0.00 2.45 0.036 0.00 3.43 0.029 0.00 2.39 0.037 0.00
X1 -0.01 0.000 0.00 0.01 0.000 0.00 0.01 0.000 0.00 0.01 0.000 0.00
Y2:Con. -1.93 0.086 0.00 -2.79 0.154 0.00 -2.44 0.104 0.00 -3.10 0.166 0.00
X1 -0.01 0.001 0.00 0.00 0.001 0.01 0.00 0.001 0.17 0.01 0.001 0.00

Japan Philippines Iran Thailand
Y1:Con. 2.58 0.033 0.00 2.24 0.038 0.00 3.73 0.025 0.00 2.42 0.045 0.00
X1 0.01 0.000 0.00 0.01 0.000 0.00 0.00 0.000 0.00 -0.00 0.000 0.99
Y2:Con. -2.80 0.155 0.00 -2.46 0.156 0.00 -2.27 0.082 0.00 -3.76 0.475 0.00
X1 0.00 0.001 0.46 0.00 0.001 0.53 -0.00 0.001 0.38 0.00 0.005 0.71

Myanmar Malaysia Sri Lanka Saudi Arabia
Y1:Con. 1.30 0.107 0.00 2.76 0.035 0.00 1.14 0.065 0.00 3.43 0.029 0.00
X1 -0.00 0.002 0.41 0.01 0.000 0.00 0.01 0.001 0.00 0.01 0.000 0.00
Y2:Con. -2.04 0.726 0.00 -2.13 0.282 0.00 -1.87 0.969 0.04 -3.06 0.122 0.00
X1 -0.06 0.030 0.01 -0.02 0.003 0.00 -0.03 0.011 0.00 0.01 0.001 0.00

USA Canada Mexico Republic of Korea
Y1:Con. 2.48 0.034 0.00 2.47 0.035 0.00 3.15 0.032 0.00 2.92 0.032 0.00
X1 0.01 0.000 0.00 0.01 0.000 0.00 0.01 0.000 0.00 0.01 0.000 0.00
Y2:Con. -2.47 0.138 0.00 -2.77 0.152 0.00 -2.67 0.123 0.00 -1.99 0.137 0.00
X1 0.00 0.001 0.34 0.00 0.001 0.02 0.00 0.001 0.01 -0.01 0.002 0.00

Germany UK France Italy
Y1:Con. 2.94 0.030 0.00 2.94 0.031 0.00 2.92 0.031 0.00 3.21 0.028 0.00
X1 0.01 0.000 0.00 0.01 0.000 0.00 0.01 0.000 0.00 0.01 0.000 0.00
Y2:Con. -2.95 0.130 0.00 -2.68 0.124 0.00 -2.65 0.126 0.00 -2.38 0.101 0.00
X1 0.00 0.001 0.00 0.00 0.001 0.01 0.00 0.001 0.01 0.00 0.001 0.46

Spain Australia Brazil Nigeria
Y1:Con. 3.03 0.030 0.00 2.48 0.040 0.00 3.24 0.030 0.00 2.07 0.045 0.00
X1 0.01 0.000 0.00 0.01 0.000 0.00 0.01 0.000 0.00 0.02 0.000 0.00
Y2:Con. -2.12 0.120 0.00 -2.62 0.252 0.00 -2.61 0.116 0.00 -3.12 0.209 0.00
X1 -0.01 0.001 0.00 -0.01 0.003 0.03 0.00 0.001 0.01 0.01 0.002 0.01

Egypt Tanzania South Africa Morocco
Y1:Con. 2.76 0.034 0.00 2.09 0.086 0.00 3.33 0.031 0.00 3.18 0.032 0.00
X1 0.01 0.000 0.00 -0.02 0.002 0.03 0.01 0.000 0.00 0.01 0.000 0.00
Y2:Con. -2.58 0.133 0.00 -4.52 1.013 0.00 -3.57 0.147 0.00 -2.08 0.159 0.00
X1 0.00 0.001 0.10 0.05 0.026 0.24 0.01 0.002 0.00 -0.02 0.003 0.00
Note: X1 = Duration; Y1:Con. is intercept of marginal model for for daily new cases and
Y2:Con. is intercept of conditional model for for daily deaths
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Figure 4. Conditional probability of number of deaths for given 50+ new cases.
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Figure 5. Conditional probability of number of deaths for given 50+ new cases.
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Figure 6. Conditional probability of number of deaths for given 50+ new cases.
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travel restrictions and quarantine of both suspected individuals and subjects who have had close contact
with suspected cases. Reducing new infections toward zero will reduce the spread of this disease and
the number of deaths. In this paper, we have analyzed the COVID-19 infected new cases and deaths
(two correlated count outcomes) and assessed the impact of duration, region, and density. The results
showed that increasing duration significantly increased the number of daily new cases and deaths,
which is observed for the world data. The impact of population density showed a negative effect on
both outcomes. We believe this could only happen as some densely populated countries may have
taken rigorous measures to fight this pandemic. We further investigated the impact of density, duration
along with regional impact variable by introducing the interaction effect in the model. The impact of
density showed a positive relationship with the number of deaths using the interaction model.

Regarding regional impact compared to the EURO, the rest of the regions showed a reduction of
new cases except for Others. However, the AMRO and EMRO regions showed an increase in deaths
compared to the reference EURO region. Regarding regional impact compared to the EURO, the rest of
the regions showed a reduction of new cases except for Others. However, AMRO and EMRO regions
showed an increase in deaths compared to the reference EURO region. These findings are based on the
world’s daily reported new cases and deaths.

The country-specific analyses reveal variations in conclusions regarding the relationship between
correlated outcomes and duration. With the introduction of various stringent measures to fight this
pandemic by many countries, we expect for an extended period, both new cases and death should
go down. For some countries with a longer duration, both the new cases and deaths are reducing,
e.g., China and Myanmar. On the other hand, a longer duration increases the daily new cases for the
Republic of Korea, Malaysia, Sri Lanka, Morocco, and Iran, but reduces the number of deaths. I took
out reference to Tanzania because P-values are large. Many other countries showed an increase in both
new cases and deaths. These findings may be an indication of the measures to fight this pandemic are
more advantageous for some countries but not for all. We believe that analysis with the availability of
more detailed data along with related risk factors may provide an in-depth understanding regarding the
dynamics.
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