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Abstract: Many diseases, such as HIV, are heterogeneous for risk. In this paper, we study an
infectious-disease model for a population with demography, mass-action incidence, an arbitrary num-
ber of risk classes, and separable mixing. We complement our general analyses with two specific
examples. In the first example, the mean of the components of the transmission coefficients decreases
as we add more risk classes. In the second example, the mean stays constant but the variance decreases.
For each example, we determine the disease-free equilibrium, the basic reproduction number, and the
endemic equilibrium. We also characterize the spectrum of eigenvalues that determine the stability
of the endemic equilibrium. For both examples, the basic reproduction number decreases as we add
more risk classes. The endemic equilibrium, when present, is asymptotically stable. Our analyses
suggest that risk structure must be modeled correctly, since different risk structures, with similar mean
properties, can produce different dynamics.
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1. Introduction

Prevention can help curb the HIV epidemic. Many studies [1, 2, 3, 4, 5] have demonstrated the
efficacy of pre-exposure prophylaxis (PrEP) in reducing HIV acquisition in at-risk populations. New
biomedical tools, including long-acting injections [6, 7, 8], slow-release implants [9, 10], and multi-
dose HIV vaccines [11, 12], are being tested and may provide additional preventive measures.

In the future, scientists will need to design strategies to account for both the variety of preventive
measures and the exact distribution of HIV risk as determined by age, gender, mixing preference,
sexual behavior, and other individual characteristics. The goal of these new strategies will be to both
increase the proportion of individuals practicing prevention and to decrease HIV transmission using
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newly approved tools. Mathematical modeling will likely become the tool of choice for evaluating
these strategies due to its ability to investigate multiple intervention scenarios with differing coverage
and targeting criteria.

Despite an increase in the use of individual-based network models in the last decade, deterministic
compartmental models built around systems of ordinary differential equations (ODEs) still dominate
HIV modeling. Many investigators find deterministic systems easier to both implement and calibrate.
In an extensive survey of models studying the effects of HIV/AIDS intervention [13], 86.9% of the
models were deterministic. In a recent analysis of antiretroviral therapies [14], 9 of 12 models were
deterministic compartmental models, while 3 were individual-based microsimulation models.

Compartmental models for isolated populations deal with HIV risk in a variety of ways. Many
models simply ignore individual differences and assume that risk is spread equally across the entire
population.

Another group of models [15, 16, 17, 18] divide the population into several (usually 2 to 6) distinct
risk groups and assign specific behavioral attributes (number of partners, sexual frequency, condom
use) to each group. These models are typically built around either transmission or contact matrices
[19] or contact fraction or mixing matrices [20] with many elements. Because of this complexity, these
models are often hard to analyze.

More rarely [15, 21, 22], risk is treated as a continuous variable, leading to integrodifferential equa-
tions with bivariate functions (kernels) rather than matrices. In general, continuous-risk models are
more complicated than models with a finite number of risk classes, and most analyses of continuous-
risk models rely on numerical methods. For separable kernels, however, analyses may simplify, as
stressed by [23] and [24].

There is also a growing literature on heterogeneity and risk in metapopulation models. Metapopula-
tion models are compartmental models with a large number of distinct populations. Quite commonly,
each population has its own homogeneous dynamics, and the populations are coupled together linearly,
due to migration or movement. Many published models [25, 26, 27, 28] contain susceptible-infectious-
susceptible (SIS) dynamics, and these papers often focus on the spread of flu-like diseases between
cities due to air travel. Other authors [29, 30], however, have used metapopulation models to analyze
the effects of migrant workers on HIV transmission.

In this paper, we consider a model in which the internal transmission dynamics are not homoge-
neous. Rather, we focus on a model for a single, structured population with an arbitrary number of
discrete risk classes and direct, nonlinear transmission between all of the risk classes. To use the ter-
minology of [31], we focus on a cross-coupled model rather than on a mobility metapopulation model.
Interestingly, methods developed for continuous-risk models can sometimes simplify the analysis of
models with discrete risk classes. In this study, we borrow methods from the study of integral and
integrodifferential equations to analyze our model, and we investigate how the number of risk classes
affects the model’s dynamics. We consider distinct scenarios in which added groups have lower risk
due to increased awareness or in which average risk across classes remains constant.

In the next section, we describe our model and spell out our simplifying assumptions. Then, in
section 3, we find the equilibria of our model. In section 4, we outline methods for determining the
stability of these equilibria. We complement these general analyses with two examples. In section 5,
we add low-risk groups, while in section 6, we add groups of intermediate risk. Finally, in section 7,
we summarize our work, discuss its limitations, and suggest future avenues for research.
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2. A structured model

Let r and s be continuous and dimensionless risk variables on a scale from zero to one. Zero is the
lowest risk. One is the highest risk.

Suppose that there are n risk classes, each of width ∆r = 1/n or ∆s = 1/n, and that i and j are
indices for these risk classes. Let S i(t) be the number of susceptible individuals in risk class i at time
t, Ii(t) be the number of sexually-active infectious individuals in risk class i at time t, and Ai(t) be the
number of infected individuals in risk class i at time t who have developed AIDS and are no longer
sexually active. We now consider the model

dS i

dt
= αi − S i

 n∑
j = 1

βi j I j

 − µ S i , (2.1a)

dIi

dt
= S i

 n∑
j = 1

βi j I j

 − γ Ii − µ Ii , (2.1b)

dAi

dt
= γ Ii − µ Ai − δ Ai , (2.1c)

where i = 1, ..., n.
System (2.1) is a risk-structured susceptible-infectious-removed (SIR) model with demography.

We assume that each risk class has its own (constant) birth rate, αi > 0, and that the natural per-capita
death rate (µ), AIDS-induced per-capita death rate (δ), and per-capita AIDS development rate (γ) are
all constant and independent of risk class. The βi j are the transmission coefficients between individuals
of class j and class i. That is, βi j is the per-capita rate of infection of class-i susceptibles per class- j
infective. Model (2.1) should, arguably, contain standard incidence, but we have assumed mass-action
incidence to greatly simplify subsequent calculations.

To ease comparison with an integrodifferential model, we now shift from numbers to densities. In
particular, let

xi(t) = n S i(t) , yi(t) = n Ii(t) , zi(t) = n Ai(t) (2.2)

be the densities of susceptible, infectious, and inactive individuals in class i at time t. (We have, in
other words, divided S i, Ii, and Ai by the width ∆r = 1/n.) Since equations (2.1a) and (2.1b) do not
depend on equation (2.1c), we now consider the reduced system

dxi

dt
= νi − xi

1
n

n∑
j = 1

βi j y j

 − µ xi , (2.3a)

dyi

dt
= xi

1
n

n∑
j = 1

βi j y j

 − γ yi − µ yi , (2.3b)

i = 1, ..., n, where
νi = nαi . (2.4)
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As the number of risk classes goes to infinity, we expect system (2.3) to approach the integrodiffer-
ential system

∂x
∂t

= ν(r) − x(r, t)

1∫
0

β(r, s) y(s, t) ds − µ x(r, t) , (2.5a)

∂y
∂t

= x(r, t)

1∫
0

β(r, s) y(s, t) ds − γ y(r, t) − µ y(r, t) , (2.5b)

for suitably defined birth-rate density ν(r) and transmission kernel β(r, s) .
Students of integral equations [32, 33] often focus on separable kernels. These are kernels that can

be written as a finite sum of products of pairs of univariate functions, with

β(r, s) =

n∑
i = 1

ai(r) bi(s) (2.6)

for some n. In epidemiology [23, 24], the term separable is most commonly used for a single product,

β(r, s) = a(r) b(s) , (2.7)

in the transmission kernel.
For models with discrete risk classes, the term separable is again used [34, 24], when the elements

of the transmission matrix can be written as the simple product

βi j = ai b j . (2.8)

The transmission matrix [βi j] is now just the dot product of a column vector and a row vector. This
matrix is of rank one, and it has a one-dimensional range.

In our analysis of system (2.3), we will focus on symmetric and separable transmission matrices
with nonnegative elements

βi j = bi b j . (2.9)

In section 5, we will let

βi j = c2 i
n

j
n

(2.10)

so that
bi = c

i
n
. (2.11)

In section 6, we will let

βi j = c2
(

i − 1
n − 1

) (
j − 1
n − 1

)
(2.12)

for n ≥ 2 so that

bi = c
(

i − 1
n − 1

)
. (2.13)

We thus assume well-mixed populations, with encounters proportional to densities, but with trans-
mission coefficients that vary multiplicatively, as products of simple functions of susceptible and of
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infective risk. Risk levels, in turn, differ due to differences in behavior or prevention (e.g., vaginal ver-
sus anal sex or safe versus unprotected sex). Assumption (2.9) greatly simplifies our analyses, but still
allows us to capture a broad range of behavioral interactions, ranging from very low- to very high-risk
encounters.

3. Equilibria

We begin our analysis of system (2.3) by finding the system’s equilibria. To do so, we set the time
derivatives of system (2.3) equal to zero and look for roots of the system

νi − x∗i

1
n

n∑
j = 1

βi j y∗j

 − µ x∗i = 0 , (3.1a)

x∗i

1
n

n∑
j = 1

βi j y∗j

 − γ y∗i − µ y∗i = 0 , (3.1b)

for i = 1, ..., n.
For separable transmission matrices, the above system has two equilibria. There is, first and fore-

most, a disease-free equilibrium at

(x∗i , y∗i ) =

(
νi

µ
, 0

)
, (3.2)

for i = 1, ..., n.
To find our second, endemic equilibrium, we begin by noting that equation (3.1a) implies that

x∗i =
νi

µ + 1
n

∑n
j = 1 βi j y∗j

. (3.3)

If
βi j = bi b j , (3.4)

as in equation (2.9), then
x∗i =

νi

µ + a bi
, (3.5)

where the sum

a =
1
n

n∑
j = 1

b j y∗j (3.6)

still needs to be determined. We call a the infectivity potential .
To find the densities of infectious individuals at equilibrium, we sum equations (3.1a) and (3.1b),

νi − µ x∗i − (γ + µ) y∗i = 0 , (3.7)

and obtain

y∗i =
1

(γ + µ)
(νi − µ x∗i ) . (3.8)
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In light of equation (3.5), it now follows that

y∗i =
νi

(γ + µ)

(
a bi

µ + a bi

)
. (3.9)

Inserting equation (3.9) into the right-hand side of equation (3.6) gives us

1
(γ + µ)

1
n

n∑
j = 1

ν j b2
j

µ + a b j
= 1 . (3.10)

This equation can be solved, either analytically or numerically, for the infectivity potential a.
The product a bi is the force of infection, at equilibrium, for class i. The infectivity potential a, in

turn, acts like the amplitude for the endemic equilibrium. Indeed, when a = 0, the endemic equilibrium
with coordinates (3.5) and (3.9) reduces to disease-free equilibrium (3.2). Equation (3.10), in turn,
reduces to the equation

R0 ≡
1

µ (γ + µ)
1
n

n∑
j = 1

ν j b2
j = 1 . (3.11)

We thus expect the endemic equilibrium to pass through the disease-free equilibrium in a transcritical
bifurcation as the basic reproduction number, R0, passes through one. For R0 = 1, a = 0, while for
R0 > 1, a > 0, and we have a unique endemic equilibrium.

4. Stability

We have seen that we have a disease-free equilibrium with coordinates

(x∗i , y∗i ) =

(
νi

µ
, 0

)
(4.1)

and an endemic equilibrium with coordinates

(x∗i , y∗i ) =

[
νi

µ + a bi
,

νi

(γ + µ)

(
a bi

µ + a bi

) ]
(4.2)

for infectivity potentials a > 0 satisfying equation (3.10). As usual, here and throughout, i = 1, ..., n.
Let us now analyze the stability of these equilibria by introducing small perturbations, ξi(t) and

ηi(t), about the coordinates of the equilibria,

xi(t) = x∗i + ξi(t) , yi(t) = y∗i + ηi(t) , (4.3)

into system (2.3). After simplifying, using system (3.1), and linearizing, we find that

dξi

dt
= −

µ +
1
n

n∑
j = 1

βi j y∗j

 ξi − x∗i
1
n

n∑
j = 1

βi j η j , (4.4a)

dηi

dt
=

1
n

n∑
j = 1

βi j y∗j

 ξi − (γ + µ) ηi + x∗i
1
n

n∑
j = 1

βi j η j . (4.4b)
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For separable kernel (2.9), system (4.4) simplifies to

dξi

dt
= − (µ + a bi) ξi − bi x∗i

1
n

n∑
j = 1

b j η j , (4.5a)

dηi

dt
= a bi ξi − (γ + µ) ηi + bi x∗i

1
n

n∑
j = 1

b j η j , (4.5b)

where the infectivity potential a is given by equations (3.6) and (3.10).
We now look for solutions of the form

ξi(t) = ui e λt , ηi(t) = vi e λt . (4.6)

After substituting these solutions into system (4.5) and canceling exponentials, we get the linear alge-
braic system

λ ui = − (µ + a bi) ui − bi x∗i
1
n

n∑
j = 1

b j v j , (4.7a)

λ vi = a bi ui − (γ + µ) vi + bi x∗i
1
n

n∑
j = 1

b j v j . (4.7b)

Let us now define

w =
1
n

n∑
j = 1

b j v j . (4.8)

Our eigenvalue equations now simplify to

(λ + µ + a bi) ui = − bi x∗i w , (4.9a)

− a bi ui + (λ + γ + µ) vi = bi x∗i w . (4.9b)

Adding these two equations, we also note that

(λ + µ) ui + (λ + γ + µ) vi = 0 . (4.10)

We must infer the 2n (allowing for multiplicity) eigenvalues λ for each equilibrium from these equa-
tions.

4.1. Disease-free equilibrium

For disease-free equilibrium (4.1), with a = 0, eigenvalue equations (4.9a) and (4.9b) reduce to

(λ + µ) ui = − bi
νi

µ
w , (4.11a)

(λ + γ + µ) vi = bi
νi

µ
w . (4.11b)

We now have several possibilities for our eigenvalues and eigenvectors.
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If bi is zero, the above equations reduce to

(λ + µ) ui = 0 , (4.12a)

(λ + γ + µ) vi = 0 , (4.12b)

and we get two eigenvalues, λ = − µ and λ = − (γ + µ). The first eigenvalue has an eigenvector with ui

nonzero and all other components zero. The second eigenvalue has an eigenvector with vi nonzero and
all other components zero. These eigenvalues recur for each zero bi.

More commonly, bi is positive. In that case, if the vi are all zero, the right-hand sides of equations
(4.11a) and (4.11b) still vanish, as does the left-hand side of equation (4.11b). This leaves us with

(λ + µ) ui = 0 (4.13)

and with the eigenvalue λ = − µ. The corresponding eigenvector has ui nonzero and all other compo-
nents zero. This eigenvalue recurs for each positive (or zero) bi. It thus occurs n times.

For positive bi, we also have eigenvalues λ = − (γ + µ). These eigenvalues are consistent with
system (4.11) if all of the ui are zero and if, in addition,

n∑
j = 1

b j v j = 0 (4.14)

so that w is zero. In general, there are n−1 vectors orthogonal to a non-zero vector with n components.
Thus, if any of our bi are positive, λ = − (γ + µ) occurs as an eigenvalue n − 1 times.

For (at least one) positive bi, we also have one more eigenvalue, corresponding to w , 0. Now,

ui = −
1

λ + µ
bi
νi

µ
w , vi =

1
λ + γ + µ

bi
νi

µ
w . (4.15)

Inserting the above expression for vi into our equation (4.8) for w, we get

1
(λ + γ + µ)

1
µ

1
n

n∑
j = 1

ν j b2
j = 1 . (4.16)

It follows that our last eigenvalue is

λ =
1
µ

1
n

n∑
j = 1

ν j b2
j

 − γ − µ . (4.17)

This last eigenvalue is positive if

R0 ≡
1

µ (γ + µ)
1
n

n∑
j = 1

ν j b2
j > 1 , (4.18)

in which case the disease-free equilibrium is unstable. If, instead, R0 < 1, the disease-free equilibrium
is asymptotically stable. The above formula for R0, the basic reproduction number is consistent with
our earlier definition of R0 in equation (3.11).
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4.2. Endemic equilibrium

For endemic equilibrium (4.2), with a > 0, eigenvalue equations (4.9a) and (4.9b) now take the
form

(λ + µ + a bi) ui = − bi
νi

µ + a bi
w , (4.19a)

− a bi ui + (λ + γ + µ) vi = bi
νi

µ + a bi
w . (4.19b)

As with our disease-free equilibrium, we now have several possibilities for our eigenvalues and eigen-
vectors.

If bi is zero, the above equations again reduce to

(λ + µ) ui = 0 , (4.20a)

(λ + γ + µ) vi = 0 , (4.20b)

and we again get the eigenvalues λ = − µ and λ = − (γ + µ). These eigenvalues recur for each zero bi.
For positive bi, we again have eigenvalues λ = − (γ + µ). These eigenvalues are consistent with

system (4.19) if all of the ui are zero and if w = 0. Since there are n − 1 vectors orthogonal to a
nonzero, n-component vector, λ = − (γ + µ) now occurs as an eigenvalue n − 1 times.

Finally, for some bi positive and w , 0, we have eigenvectors with components

ui = −
bi νi

(µ + a bi) (λ + µ + a bi)
w (4.21)

and, in light of equation (4.10),

vi =
(λ + µ)

(λ + γ + µ)
bi νi

(µ + a bi) (λ + µ + a bi)
w . (4.22)

Inserting the above expression for vi into equation (4.8) for w, we find that our remaining eigenvalues
satisfy the characteristic equation

λ + µ

λ + γ + µ

1
n

n∑
j = 1

ν j b2
j

(µ + a b j) (λ + µ + a b j)

 = 1 . (4.23)

If all of our bi are positive, we get n + 1 eigenvalues from this equation.
The left-hand side of equation (4.23) is a nasty expression with many singularities in λ. Rather than

hurting us, however, these singularities instead help us locate eigenvalues of characteristic equation
(4.23). We will explore and illustrate this phenomenon more fully in the next section, in the context of
an example.

5. Adding low-risk strata

Let us now consider a simple example in which the birth-rate densities are all constant, νi = ν, and
the transmission coefficients take the form

βi j = bi b j , (5.1)
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with

bi = c
i
n

(5.2)

for i = 1, ..., n. All of these bi are positive.

Table 1. Transmission components for the low-risk scenario.

n bi

1 c
2 c/2 , c
3 c/3 , 2c/3 , c
4 c/4 , c/2 , 3c/4 , c
5 c/5 , 2c/5 , 3c/5 , 4c/5 , c

For n = 1, there is only one risk class, and b1 = c. As we increase n (see Table 1), we, in effect, add
low-risk classes. The mean of the bi,

1
n

n∑
i = 1

bi =
c
2

(
1 +

1
n

)
, (5.3)

decreases towards c/2 as n goes to infinity.

5.1. Basic reproduction number

The basic reproduction number, equation (4.18), is now

R0 =
ν

µ (γ + µ)
1
n

n∑
j = 1

c2
( j
n

) 2

=
ν c2

µ (γ + µ)
(n + 1) (2n + 1)

6 n 2 ,

(5.4)

and the right-most fraction decreases from 1, at n = 1, to 1/3, as n approaches infinity. For R0 > 1, the
disease-free equilibrium is unstable and we have a unique endemic equilibrium.

5.2. Endemic equilibrium

Endemic equilibrium (4.2) now has coordinates

(x∗i , y∗i ) =

[
ν n

µ n + i a c
,

ν

(γ + µ)

(
i a c

µ n + i a c

) ]
(5.5)

for infectivity potentials a satisfying

c2 ν

(γ + µ)
1
n2

n∑
j = 1

j2

µ n + j a c
= 1 . (5.6)

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4184–4209.
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Figure 1. A plot of the infectivity potential a as a function of the contact or transmission
parameter c for the low-strata example of section 5. This curve was plotted using parametric
equations (5.8) for µ = 0.01 per year, γ = 0.03 per year, ν = 1.0 susceptibles per year,
and n = 10 risk classes. The infectivity potential a acts like the amplitude for the endemic
equilibrium and increases with increasing transmission parameter c.
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c

Figure 2. Plots of the infectivity potential a (left) and contact or transmission parameter c
(right) as functions of the parameter τ for the low-strata example of section 5. These curves
were plotted using parametric equations (5.8) for µ = 0.01 per year, γ = 0.03 per year,
ν = 1.0 susceptibles per year, and n = 10 risk classes. Using these curves, we can pick a
value of the parameter τ and read off the corresponding values of both c and a.
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Figure 3. Plots of the equilibrium densities of susceptibles (top) and infectives (bottom)
as a function of risk class for the low-strata example of section 5. The curves were plotted
using endemic equilibrium equation (5.10) for µ = 0.01 per year, γ = 0.03 per year, ν = 1.0
susceptibles per year, n = 10 risk classes, and various τ values. Equilibrium densities of
susceptibles decrease and equilibrium densities of infectives increase as τ increases.

In principle, we could specify the number of classes n and the parameters ν, γ, µ, and c for any
particular problem, use equation (5.6) to solve for a, and use equation (5.5) to find the coordinates of
the endemic equilibrium. Since, however, a and c often occur as a product in equations (5.5) and (5.6),
we instead take a simpler and more efficient approach.

Let
τ = a c . (5.7)
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We now treat τ > 0 as a parameter and use equations (5.6) and (5.7) to write c and a as the parametric
equations

c = n
(
γ + µ

νω

) 1
2
, a =

τ

n

(
νω

γ + µ

) 1
2

, (5.8)

where

ω =

n∑
j = 1

ω j =

n∑
j = 1

j 2

µ n + j τ
. (5.9)

These equations may be used to plot the infectivity potential a as a function of c, as in Figure 1.
As an alternative, c and a may each be plotted as a functions of the parameter τ, as in Figure 2. This

means that you can pick a value of τ > 0 and simply read off the corresponding values of c and a.
For a given τ, the coordinates of the endemic equilibrium in equation (5.5) are now just

(x∗i , y∗i ) =

[
ν n

µ n + i τ
,

ν

(γ + µ)

(
i τ

µ n + i τ

) ]
. (5.10)

We may thus plot the equilibrium densities of susceptibles and infectives, by class, for different τ
values, as in Figure 3. Increasing τ decreases the equilibrium densities of susceptibles and increases
the equilibrium densities of infectives.

5.3. Stability of the endemic equilibrium

We now wish to determine the stability of the endemic equilibrium. This equilibrium has 2n eigen-
values and we know, from section 4.2, that n− 1 of the eigenvalues have the value λ = − (γ+µ). Using
νi = ν and equations (4.23) and (5.2), the remaining n+1 eigenvalues satisfy the characteristic equation

ν c2

n 2

λ + µ

λ + γ + µ

n∑
j = 1

ω j

λ + ρ j
= 1 , (5.11)

where the ω j are defined in equation (5.9) and

ρ j = µ +
j
n
τ . (5.12)

Dividing both sides of characteristic equation (5.11) by the first fraction on its left-hand side and
substituting c from parametric equations (5.8), we see that the remaining n + 1 eigenvalues satisfy

λ + µ

λ + γ + µ

n∑
j = 1

ω j

λ + ρ j
=

ω

γ + µ
. (5.13)

If all of the eigenvalues have negative real part, the endemic equilibrium is asymptotically stable.
The right-hand side of equation (5.13) does not depend on λ and is a positive constant. The func-

tion on the left-hand side approaches zero through positive values as λ goes to plus infinity, and it
approaches zero through negative values as λ approaches minus infinity. (Feel free to look ahead to
the next subsection and to Figures 4–7 for graphical illustrations.) The left-hand function has an ob-
vious zero at λ = − µ, to the right of all singularities, and it has singularities (vertical asymptotes) at
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λ = − (γ + µ) and at λ = − ρi , for i = 1, ..., n. That is, it has n + 1 singularities. (For ease of exposition,
we now assume that all of these singularities are distinct.) These n + 1 singularities help us locate the
eigenvalues of equation (5.13).

As we increase λ, from left to right, between neighboring singularities that are both to the right
of the singularity at λ = − (γ + µ), the function on the left-hand side of equation (5.13) increases
(monotonically) from minus infinity to plus infinity. If we instead increase λ, from left to right, between
neighboring singularities that are both to the left of the singularity at λ = − (γ + µ), the function on
the left-hand side of equation (5.13) decreases (monotonically) from plus infinity to minus infinity. If
we look for eigenvalues by plotting each side of equation (5.13) as a function of lambda, checking for
intersections, these intervals each give us one real eigenvalue.

The situation is more complicated as we move between neighboring singularities, one of which is
λ = − (γ + µ). We have either one or two such intervals depending on whether λ = − (γ + µ) is an
endpoint or an interior singularity.

On one interval, the function on the left-hand side of equation (5.13) increases to plus infinity at
both ends of the interval. We call this interval the parabolic interval.

On the second interval, if it occurs, our left-hand function either increases from minus infinity to
plus infinity or decreases from plus infinity to minus infinity, depending on whether the second interval
is to the right or to the left of the parabolic interval. This second interval thus gives us another real
eigenvalue. We thus have n − 1 real roots between the n singularities λ = − ρi, not counting real roots
from the parabolic interval. For two intervals with λ = − (γ+µ) as an endpoint, which interval has one
real eigenvalue and which is the parabolic interval depends on the exact location of the singularities.

Let us now return to the parabolic interval. If the function on the left-hand side of equation (5.13)
dips low enough to intersect the right-hand-side constant, we have two real eigenvalues in the parabolic
interval. Otherwise, we have two complex conjugate eigenvalues or, possibly, two real eigenvalues that
live elsewhere.

It is tempting to think that the real parts of the aforementioned complex eigenvalues always lie
within the parabolic interval, but this is incorrect. We can, however, show that the complex eigenvalues
always have negative real part.

To do so, we first rewrite characteristic equation (5.13) in polynomial form,

ω

γ + µ
(λ + γ + µ)

n∏
i = 1

(λ + ρi) − (λ + µ)
n∑

j = 1

ω j

∏
i, j

(λ + ρi)

 = 0 , (5.14)

and note that the leading coefficient, the coefficient in front of λn+1 , is

a0 =
ω

γ + µ
. (5.15)

The next coefficient, the one in front of λn, is, in turn,

a1 = ω +
ω

γ + µ

n∑
i = 1

ρi −

n∑
j = 1

ω j =
ω

γ + µ

n∑
i = 1

ρi . (5.16)

It is a well-known result, from the theory of equations [35], that the negative of the ratio of these
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two coefficients is just the sum of the roots of the polynomial. Thus,

n+1∑
i = 1

λi = −
a1

a0
= −

n∑
i = 1

ρi . (5.17)

Since we know that n − 1 of these roots are real and nested between the n singularities λ = − ρi,

− ρi+1 < λi < − ρi , i = 1, 2, ..., n − 1 , (5.18)

it quickly follows that

λn + λn+1 < − ρ1 . (5.19)

Thus, if these last two eigenvalues are a complex-conjugate pair, they must have negative real part with

Re λn < −
ρ1

2
, Re λn+1 < −

ρ1

2
. (5.20)

Alternatively, consider the possibility that the last two eigenvalues, λn and λn+1, are real and lie to
the right of all of the singularities. The rightmost singularity is, depending on our parameters, either
λ = − ρ1 or λ = − (γ+ µ). In either case, the current assumptions imply that λn > − ρ1 and λn+1 > − ρ1.
In light of inequality (5.19), it now follows that the last two eigenvalues must lie in the region bounded
by the inequalities

λn > − ρ1 , λn+1 > − ρ1 , λn + λn+1 < − ρ1 . (5.21)

This is a triangular region that lies entirely within the interior of the third quadrant of the (λn, λn+1)
plane. It follows that both λn and λn+1 must be negative.

In summary, our endemic equilibrium has 2n eigenvalues. At most, two of these eigenvalues are
complex. All of the eigenvalues are negative or have negative real part. Our endemic equilibrium is
thus asymptotically stable.

5.4. Graphical illustrations

To illustrate some possibilities and to show how the loci of the eigenvalues of the endemic equi-
librium can change, we start with µ = 0.01 per year, γ = 0.03 per year, and n = 4. In Figure 4, for
τ = 0.3 per year, we plot both sides of characteristic equation (5.13) as a function of λ. We see three
real eigenvalues in the intervals bounded by the four singularities at λ = − ρi, i = 1, ..., 4, and two real
eigenvalues in the parabolic interval bounded by the singularities at λ = − ρ1 and λ = − (µ+γ) = − 0.04
(per year). In addition, we have n − 1 = 3 eigenvalues (not shown) at λ = − (µ + γ). Since all of our
eigenvalues are negative real numbers, our endemic equilibrium is asymptotically stable.

As we decrease τ to 0.2 per year (see Figure 5), we lose the two real eigenvalues in the parabolic
interval. A standard numerical eigenvalue program [36] applied to system (4.7) reveals complex eigen-
values at λ ≈ − 0.0532 ± 0.0179 i. In this example, the real part of the complex eigenvalues lies within
the parabolic interval. Our endemic equilibrium is again asymptotically stable.
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Figure 4. Plots of both sides of characteristic equation (5.13) as a function of lambda for
n = 4, µ = 0.01 per year, γ = 0.03 per year, and τ = 0.3 per year. The dashed lines are vertical
asymptotes. The horizontal line is at the value of the right-hand side. The characteristic
equation has eigenvalues at λ ≈ − 0.2961, − 0.2205, − 0.1469, − 0.0719, − 0.0547 per year
that correspond to intersections of the left-hand and right-hand curves.
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Figure 5. Plots of both sides of equation (5.13) for n = 4, µ = 0.01 per year, γ = 0.03
per year, and τ = 0.2 per year. We now have real eigenvalues at λ ≈ − 0.1972, − 0.1447,
− 0.0917, and a complex-conjugate pair of eigenvalues at λ ≈ − 0.0532 ± 0.0179 i.
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Figure 6. Plots of both sides of characteristic equation (5.13) for n = 4, µ = 0.01 per
year, γ = 0.03 per year, and τ = 0.08 per year. Equation (5.13) now has real eigenvalues
at λ ≈ − 0.0814, − 0.0575, − 0.0323 and a complex conjugate pair of eigenvalues at λ ≈
− 0.0344 ± 0.0305 i .
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Figure 7. Plots of both sides of equation (5.13) as a function of lambda for n = 4, µ = 0.01
per year, γ = 0.03 per year, and τ = 0.02 per year. Equation (5.13) now has real eigenvalues
at λ ≈ − 0.0271, − 0.0211, − 0.0153 and a complex conjugate pair of eigenvalues at λ ≈
− 0.0133 ± 0.021 i.
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Figure 8. Plots of solutions of system (2.3), as a function of time (in years), for µ = 0.01 per
year, γ = 0.03 per year, τ = 0.2 per year, ν = 1.0 susceptibles per year, and n = 100 risk
classes. Solutions were computed using a fourth-order Runge-Kutta algorithm with adaptive
step-size control starting with initial conditions corresponding to susceptibles at their disease-
free equilibrium, xi(0) = 100, and a small, uniform density of infectives, yi(0) = 0.1 for
i = 1, ..., 100. Numerical solutions were recorded for time steps of ∆t = 0.01 years but were
only plotted at 2.5 year intervals for aesthetic reasons. Infectives (bottom) rapidly increase
before slowly decreasing to endemic equilibrium levels.
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In Figure 6, we kept all other parameters as in Figures 4 and 5, but set τ = 0.08 per year. As
we decreased τ, n of our n + 1 singularities shifted to the right, and our parabolic interval, now
(− 0.05, − 0.04), shifted to the left relative to the other intervals. Our complex eigenvalues, however,
lagged behind. Our numerical eigenvalue program indicates that the complex eigenvalues are now at
λ ≈ − 0.0344 ± 0.0305 i.

After we decrease τ even further, to τ = 0.02 per year (see Figure 7), the parabolic interval,
(− 0.04, − 0.03), lies to the left, but the complex eigenvalues, λ ≈ − 0.0133 ± 0.021 i, lie to the right.
Even so, inequalities (5.20) guarantees that the real parts of the two complex eigenvalues lie to the left
of λ = − ρ1/2 = − 0.0075.

Finally, we may plot solutions of system (2.3), for birth-rate densities νi = ν and transmission
coefficients (5.1) and (5.2), by computing these solutions numerically. Figure 8 shows, as an example,
the densities of susceptible and infectious individuals for system (2.3) for µ = 0.01 per year, γ = 0.03
per year, τ = 0.2 per year, and n = 100 risk classes. The solutions were computed using a standard,
variable-step, Runge-Kutta algorithm [37]. The solutions do eventually approach the asymptotically
stable endemic equilibrium. At the same time, the eigenvalues for the endemic equilibrium may not tell
the whole story, since our solutions quickly overshoot the endemic equilibrium before slowly returning
to the equilibrium. We will return to this topic in the discussion.

6. Filling intermediate strata

Let us now briefly consider a second example. We again assume that the birth-rate densities are
constant, νi = ν, but we now let the transmission coefficients take the form

βi j = bi b j , (6.1)

with

bi = c
(

i − 1
n − 1

)
(6.2)

for n ≥ 2 and i = 1, ..., n. The first of these bi is always zero. All of the other bi are positive.

Table 2. Transmission components for the intermediate scenario.

n bi

2 0 , c
3 0 , c/2 , c
4 0 , c/3 , 2c/3 , c
5 0 , c/4 , c/2 , 3c/4 , c
6 0 , c/5 , 2c/5 , 3c/5 , 4c/5 , c

For n = 2, there are two risk classes, with b1 = 0 and b2 = c. As we increase n (see Table 2), we
add intermediate risk classes. The mean of the bi,

1
n

n∑
i = 1

bi =
c
2
, (6.3)
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remains constant while the variance of the bi,1
n

n∑
i = 1

b2
i

 − (c
2

) 2
=

c2

2
n

n − 1
−

c2

4
, (6.4)

decreases from 3c2/4, at n = 2, to c2/4, as n approaches infinity.

6.1. Basic reproduction number

If we again use equation (4.18), we see that the basic reproduction number is now

R0 =
ν

µ (γ + µ)
1
n

n∑
j = 1

c2
(

j − 1
n − 1

) 2

=
ν c2

µ (γ + µ)
(2n − 1)
6 (n − 1)

.

(6.5)

In this instance, the right-most fraction decreases from 1/2, at n = 2, to 1/3, as n approaches infinity.
This reduction occurs despite the fact that the mean of the bi remains constant.

6.2. Endemic equilibrium

Endemic equilibrium (4.2) now has coordinates

x∗i =
ν (n − 1)

µ (n − 1) + (i − 1) a c
, (6.6a)

y∗i =
ν

(γ + µ)

[
(i − 1) a c

µ (n − 1) + (i − 1) a c

]
. (6.6b)

for infectivity potentials a satisfying

c2 ν

(γ + µ)
1

n (n − 1)

n∑
j = 1

( j − 1)2

µ (n − 1) + ( j − 1) a c
= 1 . (6.7)

We now proceed much as we did in section 5. We let

τ = a c , (6.8)

treat τ > 0 as a parameter, and use equations (6.7) and (6.8) to write c and a as the parametric equations

c =

[
n (n − 1) (γ + µ)

ν ω

] 1
2

, (6.9a)

a = τ

[
νω

n (n − 1) (γ + µ)

] 1
2

, (6.9b)

with

ω =

n∑
j = 1

ω j =

n∑
j = 1

( j − 1) 2

µ (n − 1) + ( j − 1) τ
. (6.10)
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For a given τ, the coordinates of the endemic equilibrium are now just

x∗i =
ν (n − 1)

µ (n − 1) + (i − 1) τ
, (6.11a)

y∗i =
ν

(γ + µ)

[
(i − 1) τ

µ (n − 1) + (i − 1) τ

]
. (6.11b)

6.3. Stability of the endemic equilibrium

We now wish to determine the stability of the endemic equilibrium for τ > 0. Since b1 = 0, we
know, from section 4.2, that λ = − µ is an eigenvalue. Since the remaining bi are positive, we also
know that n − 1 of the eigenvalues have the value λ = − (γ + µ).

For the remaining n eigenvalues, we proceed much as we did in section 5. Using νi = ν and
equations (4.23), (6.2), and (6.9a), we quickly determine that the remaining n eigenvalues satisfy the
characteristic equation

λ + µ

λ + γ + µ

n∑
j = 1

ω j

λ + ρ j
=

ω

γ + µ
(6.12)

with ω and ω j as in (6.10) and

ρ j = µ +
( j − 1)
(n − 1)

τ . (6.13)

Because b1 = 0, the first term of each series drops out. So, counting really starts with j = 2.
The function on the left-hand side of the above equation has singularities (vertical asymptotes)

at λ = − (γ + µ) and at λ = − ρi for i = 2, ..., n. These n vertical asymptotes constrain and help
determine the location of the n eigenvalues of characteristic equation (6.12), much as in our previous
example. All of the eigenvalues are negative or have negative real part, and the endemic equilibrium is
asymptotically stable.

7. Discussion

In this paper, we used a structured infectious-disease model with demography, mass-action inci-
dence, and an arbitrary number of risk classes to investigate the effects of risk on the spread of HIV.
Using a simple, separable transmission matrix, we obtained equations for the disease-free equilibrium,
the basic reproduction number, the endemic equilibrium, and the eigenvalues that determine the stabil-
ity of the endemic equilibrium.

Separable transmission matrices can capture a broad range of behavioral interactions. For real
populations, the actual distribution of interactions will also depend on the initial distributions of risk
amongst susceptible and infective individuals. (Interactions may also, of course, depend on other de-
tails, such as the exact mixing pattern [38] and sexual network [39], that we did not consider.) Scientists
[40] have recently made tremendous progress in classifying the risk-structure of real populations. Our
model thus holds the promise that it may help us assess the effects of risk for real populations in an
analytically tractable way.

We complemented our general analysis with two specific examples. In our first example, we strat-
ified risk so that the mean of the separable components of the transmission coefficients decreased as
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we added more risk classes. We found a simple, closed-form expression for the basic reproduction
number, and this number decreased as we added more risk classes. Thus, initiating HIV-prevention
strategies that add low-risk categories lowers average risk and reduces the basic reproduction number,
as expected.

We also determined the nontrivial endemic equilibrium and characterized the spectrum of eigenval-
ues at this equilibrium. For n risk classes, the endemic equilibrium had 2n eigenvalues. No more than
two of the eigenvalues are complex and all eigenvalues are negative or have negative real part. Thus,
when the endemic equilibrium exists, it is asymptotically stable.

Despite the asymptotic stability of our endemic equilibrium, the number of infectives can greatly
overshoot endemic levels, as seen in Figure 8. This is not surprising since many mass-action disease
models have density thresholds, above which infectives increase and below which infectives decrease
[41, 42, 43]. In other words, our model burns through many susceptibles before equilibrating.

It is also important to remember, moreover, that the short-term behavior of a perturbation from an
equilibrium may differ from its long-term behavior. Transient amplification can, for example, occur
near asymptotically stable equilibria in reactive systems governed by nonnormal matrices [44, 45, 46].
In this paper, we focused solely on the stability of our endemic equilibria. Preliminary analyses (not
shown) suggest that our endemic equilibria may be reactive, despite their asymptotic stability. We hope
to look at the reactivity of our endemic equilibria in future work.

In our second example, we briefly looked at a model in which the mean of the separable components
of the transmission coefficients remained constant but the variance decreased as we added intermediate
risk classes. Here, the basic reproduction number again decreased as we added more risk classes.

This second example highlights the value of getting the risk structure right, since different risk struc-
tures with comparable mean properties can lead to different predictions. The seemingly unimportant
decision of the number of risk strata can influence the dynamic behavior of our system, even if every
effort has been made to keep the overall risk identical. Choosing the wrong number of strata can even
lead to qualitatively different behavior if the basic reproductive number falls below one. There has
recently been great progress in analyzing data-driven structured-population models in other fields [47],
and we hope to apply some of these new methods to our own model. In a future study, we plan to look
at real risk data to explore how feasible the above scenarios are for realistic HIV epidemics.

In formulating our models, we used mass-action rather than standard incidence and a separable,
well-mixed transmission matrix rather than assortative mixing. We made these assumptions to increase
analytic tractability. We hope to loosen these assumptions in future work. We note, however, that our
use of mass-action incidence may, in fact, make our model useful for the study of other diseases, such
as coronavirus (COVID-19).

We also introduced but did not analyze integrodifferential system (2.5). Our analysis of discrete
system (2.3), in the limit as the number of risk classes goes to infinity, suggests that the characteristic
equation at the endemic equilibrium of system (2.5) will have a continuum of singularities and that
it would be hard to understand system (2.5) without first understanding discrete system (2.3). At the
same time, many investigators find it easier to estimate parameters and to assess goodness of fit for
models with continuous traits [47]. We hope to analyze integrodifferential system (2.5) more carefully
in the future.
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