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Abstract: In this paper we develop a compartmental epidemic model to study the transmission
dynamics of the COVID-19 epidemic outbreak, with Mexico as a practical example. In particular,
we evaluate the theoretical impact of plausible control interventions such as home quarantine, social
distancing, cautious behavior and other self-imposed measures. We also investigate the impact of
environmental cleaning and disinfection, and government-imposed isolation of infected individuals.
We use a Bayesian approach and officially published data to estimate some of the model parameters,
including the basic reproduction number. Our findings suggest that social distancing and quarantine
are the winning strategies to reduce the impact of the outbreak. Environmental cleaning can also be
relevant, but its cost and effort required to bring the maximum of the outbreak under control indicate
that its cost-efficacy is low.
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1. Introduction

In late December 2019, the World Health Organization (WHO) received notification of up to 27
possible cases of pneumonia of unknown etiology, including 7 severe cases, in the Chinese city of
Wuhan. Within a few days, the novel coronavirus, SARS-CoV-2, provisionally named 2019-nCoV,
was identified as the causative agent. Since the first report in Wuhan, China, many countries have
now reported cases of infection, affecting people of all ages from different origins. Most people with
coronavirus disease 2019 (COVID-19), will experience mild to moderate respiratory illness and recover
without requiring special treatment. The most common symptoms at the onset of COVID-19 illness
are fever, cough, and fatigue, while other symptoms include sputum production, headache, diarrhea,
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dyspnoea, and lymphopenia, see [1] and the references therein. Older people and those with underlying
medical problems are more likely to develop serious illness.

On January 30, 2020, the WHO declared COVID-19 as an international emergency and on
March 11, 2020, the WHO declared the global COVID-19 outbreak a pandemic, pointing to the over
118,000 cases of the coronavirus illness in over 110 countries around the world and the constant risk
of further spread [2]. The COVID-19 pandemic was confirmed to have reached Mexico in February
2020. On February 28, Mexico confirmed its first three cases. According to the WHO, Mexico
entered Phase 2 of the coronavirus pandemic on March 23, 2020, with 367 confirmed cases. Phase 2
includes cases where the sick individuals did not have direct contact with someone who had recently
been in another country. As of April 18, there had been 7497 confirmed cases of COVID-19 in
Mexico and 650 reported deaths.

According to the Center for Disease Control (CDC), the main transmission route for COVID-19 is
from person-to-person, either among people in close proximity or through respiratory droplets
produced when an infected person coughs or sneezes. Although it is not precisely known the
importance of infections caused by contact with contaminated surfaces, the environment-to-human
transmission route is also possible, so a person can get COVID-19 by touching a surface or object that
has the virus on it and then touching their mouth, nose or eyes [3]. Extensive measures to reduce both
person-to-person and environment-to-human transmission of COVID-19 are essential to control the
current outbreak. Several countries, including China and the US, have implemented major control
interventions, including travel bans and airport screening. However, the impact of such interventions
is probably minor on COVID-19 containment given the potentially large number of asymptomatic
individuals and the possibility of transmission before the onset of symptoms [4].

Analysis of epidemiological changes in COVID-19 infection is of paramount importance to boost
awareness and public health efforts to control the COVID-19 outbreak. In recent years, mathematical
modeling has become a valuable tool for the analysis of dynamics of infectious disease and for the
support of control strategies development [5]. Mathematical and statistical models are especially
useful to estimate key epidemiological parameters such as the basic reproduction number, R0, which
is an indicator of the potential severity of an epidemic and provides a powerful tool to estimate the
control effort needed to eradicate the disease. Several models, most of them using extensions of the
Susceptible-Exposed-Infected-Recovered (SEIR) structure, have been proposed to investigate the
spread of COVID-19 in different regions [4, 6–9]. In [10], the authors review current estimates for the
basic reproduction number of COVID-19 from 1 January 2020 to 7 February 2020. They found that
the estimates range from 1.4 to 6.49, with a mean of 3.28, a median of 2.79 and an interquartile range
of 1.16.

In this study, we use a mathematical model to investigate the dynamics of the on-going epidemic
outbreak of COVID-19. The rest of the paper is structured as follows. In the next section, we
formulate our model and develop the analysis to compute the basic reproduction number. In
Section 3, we calibrate our model using a Bayesian approach and officially published data by the
Secretariat of Health, Mexico, corresponding to the daily cumulative cases of infected individuals. In
Section 4, we use extensive numerical simulations to investigate the theoretical impact of several
control interventions against the spread of COVID-19 and compute the effective reproduction number.
The last section contains a discussion of the obtained results.
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2. Model formulation without control

Based on the clinical progression of the disease, we propose a deterministic compartmental
epidemic model under the SEIR structure. One important aspect in our model is that, in addition to
human-to-human transmission, we consider the indirect infections caused by contact with a
contaminated environment.

For our model formulation, we divide the total human population (denoted N) into five
compartments: susceptible individuals (denoted S ), exposed/latent individuals (denoted E), infectious
asymptomatic individuals (denoted A), infectious with symptoms (denoted I), and recovered (denoted
R). Finally, we consider a compartment for the free-living SARS-CoV-2 in the environment (denoted
V).

For our model formulation, we consider a short time horizon in which the total human population
is relatively fixed. Therefore, demographic dynamics are not considered in the model. The susceptible
population S can acquire the infection when they come in contact with asymptomatic A and
symptomatic I infectious individuals at rates βA and βI , respectively. They also can be infected by
contact with contaminated surfaces with coronavirus at a rate βV . A proportion p of the exposed
individuals E will transition to the symptomatic infectious class I at a rate σ, while the other
proportion 1 − p will enter the asymptomatic infectious class A. The recovery rates for individuals in
the classes A, I are γA, γI , respectively. These individuals gain permanent immunity and move to the
recovered class R. However, individuals in the symptomatic infectious class I can die due to the
disease at a rate µ. Asymptomatic and symptomatic infected individuals release virus into the
environment with shedding rates c1 and c2, respectively. Hence, the free-living virus in the
environment grows with a factor c1A + c2I. The parameter µV represents the mortality rate of the
free-living virus in the environment.

These assumptions lead to the following system of differential equations:

Ṡ = −λS ,

Ė = λS − σE,

Ȧ = (1 − p)σE − γAA,

İ = pσE − γI I − µI,

Ṙ = γAA + γI I,

V̇ = c1A + c2I − µVV,

(2.1)

where λ = βAA + βI I + βVV is the force of the infection.
According to the WHO, the SARS-CoV-2 is primarily transmitted between people through

respiratory droplets and contact routes. Droplet transmission occurs when a person is in close contact
(within 1 m) with an infectious individual and is therefore at risk of having his mouth, nose, or eyes
exposed to potentially infectious respiratory droplets [3]. The parameters βk (k = A, I) model this
direct person-to-person transmission and are of the form βk = bkφk, where bk is the average number of
contacts per person per unit of time and φk is the probability of successful infection given a contact.
For example, βA = bAφA, where bA is the average number of close contacts in which a susceptible is
exposed to respiratory droplets produced when an asymptomatic infected person coughs, sneezes or
talks, and φA is the probability of successful infection given this contact. Since the virus can survive
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on inanimate surfaces [11], transmission may also occur through contaminated fomites. The
parameter βV models these indirect infections caused by touching an object or surface contaminated
(due to an infected person) with the virus. Therefore, βV = bVφV , where bV is the average number of
times a susceptible person touches a surface contaminated with SARS-CoV-2, and φV is the
probability of infection given this contact. The parameters ci ≥ 0 (i = 1, 2) measure the number of
virus particles released through respiratory droplets produced per infected individual (during coughs
or sneezes) that remain alive and infectious on surfaces or objects per unit of time.

We remark that for the starting model (2.1), we are not including the current intervention measures
against COVID-19. This will allow us to focus first on the predictions of the model without control.
In Section 4, we incorporate control interventions into our model and investigate the extent of the
influence of the controls to prevent SARS-CoV-2 spread comparing with the case without control.

2.1. Disease-free equilibrium and the basic reproduction number R0

The biologically feasible region for model (2.1) is

Ω = {S , E, A, I,R,V ≥ 0 : S (t) + E(t) + A(t) + I(t) + R(t) = N(t)} . (2.2)

Let X(t) be the solution of system (2.1) for a well-defined initial condition X(0) ∈ Ω. Since Xi =

0, implies Ẋi ≥ 0 for any state variable, then X(t) ∈ Ω for all t > 0. Thus, solutions trajectories
satisfy the usual positiveness and continuity properties and the model is both epidemiologically and
mathematically well posed [12].

To compute the coordinates of the disease-free equilibrium, we set the rate of change of all state
variables equal to zero. Solving the system of algebraic equations we find a unique disease-free
equilibrium with the following coordinates:

X◦ = (S 0, E0, A0, I0,R0,V0) = (N0, 0, 0, 0, 0, 0), (2.3)

where N0 is the value of the total population at equilibrium.
To compute the basic reproduction number R0, we use the next-generation operator introduced by

Diekmann et al. [13]. Under this approach, it is necessary to study the subsystem that describes the
production of new infections and changes among infected individuals. The Jacobian matrix J of this
subsystem at the disease-free equilibrium is decomposed as J = F−V, where F is the transmission part
and V describe changes in the infection status. The next-generation matrix is defined as K = FV−1,
and R0 = ρ(K), where ρ(·) denotes spectral radius.

For system (2.1), we obtain

F =


0 βAS 0 βIS 0 βVS 0

0 0 0 0

0 0 0 0

0 0 0 0


and V =


σ 0 0 0

−(1 − p)σ γA 0 0

−pσ 0 γI + µ 0

0 −c1 −c2 µV


.

Therefore, the basic reproduction number is given by

R0 =

[(
βA

γA
+

c1βV

µVγA

)
(1 − p) +

(
βI

γI + µ
+

c2βV

µV(µ + γI)

)
p
]

S 0. (2.4)
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To interpret the biological meaning of the basic reproduction number (2.4), we need the following
components. During his infection period, 1/γA, an asymptomatic infectious individual produces on
average βAS 0 infections and c1 virus particles into the environment. Since the coronavirus survives in
the environment a mean time of 1/µV , the average number of infections caused by the virus is βV/µV .
Hence,

TA =

(
βA + c1

βV

µV

)
S 0

γA
(2.5)

measure the contribution of asymptomatic infectious individuals to the production of new infections
taking into account the environment-to-human transmission route for virus released by asymptomatic
individuals. Analogously,

TI =

(
βI + c2

βV

µV

)
S 0

γI + µ
(2.6)

is the contribution of symptomatic infectious individuals to the production of new infections.
Therefore, the basic reproduction number (2.4) is the weighted sum of the terms TA and TI , that is,

R0 = (1 − p)TA + pTI (2.7)

As a consequence of Theorem 2 in [14], we establish the following result regarding the local stability
of the disease-free equilibrium.

Corollary 1. The disease-free equilibrium of system (2.1) is locally asymptotically stable for R0 < 1
and unstable for R0 > 1.

In this study, we are interested in the early dynamics of the infection process. Therefore, we did not
consider demographic dynamics and the study of the asymptotic behavior for endemic equilibria.

3. Parameter estimates

The compartmental epidemic model (2.1) for the transmission dynamics of SARS-CoV-2 has 11
parameters. First, we gather some parameter values from the literature. Next, we estimate those
parameters that are not found in the literature or that depend on the population under study. We assume
the time unit is days and estimate the parameters as follows.

(i) Recovery rates. The estimated mean value for the recovery rates γA, γI , for asymptomatic and
symptomatic infectious individuals, respectively, have been estimated to be γA = 0.13978 and
γI = 0.33029 [8].

(ii) Mean incubation period. The mean incubation period (1/σ) for coronavirus infection has been
estimated to be 6.4 days, ranging from 2.1 to 11.1 days [15]. Therefore, we assume σ = 1/6.4.

(iii) Fraction of individuals which develop symptoms. The probability of having symptoms after the
infection has been estimated to be p = 0.868343 [8].

(iv) Mortality rate of coronavirus in the environment. Some studies have estimated that coronaviruses
can remain infectious on inanimate surfaces at room temperature from a few hours up to 9 days
[11]. Here, we assume an average survival rate of 1 day which implies µV = 1.

(v) Disease induced death rate. The estimated mean value for the disease induced death rate is
µ = 1.7826 × 10−5 [8].
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The rest of the parameters, that is, the transmission rates βA, βI , and βV , in addition to the shedding
rates c1 and c2, will be estimated using Bayesian inference. We focus on this set of parameters for the
estimation because transmission parameters depend highly on population-level characteristics and it
can be unreliable to take estimations from different data.

We consider data corresponding to the daily cumulative cases of infected individuals in Mexico.
The data were obtained from the daily report of the Mexican Secretaria of Health from March 11,
2020, to March 25, 2020 [16]. It is important to remark that this data corresponds to the confirmed
cases; therefore, it is highly possible that the real epidemic curve is higher than the total infected cases
presented in the data. In other words, since in México there is not massive testing, the initial data on the
confirmed cases from the pandemic corresponds to symptomatic infections. Therefore, as an attempt
to avoid estimates biased down, we fit the data using only the individuals in the symptomatic infectious
class, I, without considering the asymptomatic infectious class A.
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Figure 1. (a) Data per date and fitted curves for the cumulative infected individuals for the
MAP estimate and posterior mean. (b) Estimation of R0 for the samples of the MCMC. The
value of R0 for the MAP estimate is 2.5 and for the posterior mean estimate is 2.7.

The following values were taken as initial conditions: the initial total population was taken as the
approximate Mexican population at the year 2020, i.e., N(0) = 128, 000, 000; the initially symptomatic
infectious individuals as I(0) = 4, which is equal to the initial number of confirmed cases in the
data. No recovered individuals are considered at the initial time, thus R(0) = 0. Finally, we assumed
E(0) = 4, A(0) = 1, V(0) = 10, and S (0) = N(0) − E(0) − A(0) − I(0).

For the parameter inference, we use a Bayesian approach. We run a Markov Chain Monte Carlo
(MCMC) using twalk, introduced in [17] (see Appendix 5 for details). We consider the time in days
and t0 = 0 for the first data on March 11. The resulting total infected cases for the maximum a
posteriori (MAP) and the posterior mean estimates are shown in Figure 1(a). The corresponding
values for the parameter estimates are presented in Table 1. The results show that the transmission
rate for symptomatic infectious, βI , is greater than the transmission rate for asymptomatic infectious
individuals, βA. This result can be counter-intuitive considering that people may get more contacts
with asymptomatic infectious than symptomatic infectious. Nevertheless, this only implies bA > bI ,
but the probability of infection is way higher for symptomatic infectious because they have higher
infectiousness, thus φI > φA which explains why βI is greater than βA. Note that both estimates values
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for βV almost match. The posterior distribution on βV ensures the identifiability of this parameter (see
Appendix 5, Figure 9(c)) which provides support for the modeling approach around the state variable
V and the environment-to-human transmission route.

In Figure 1(b), we show the values for R0 corresponding to the parameter estimates and the elements
of the chain. In particular, the value of the basic reproduction number for the MAP estimate is RMAP

0 =

2.5, and for the posterior mean estimate is RCM
0 = 2.7; hence, RMAP

0 < RCM
0 . These values are in the

range of the current R0 estimates [10]. Moreover, please observe the heavy tail to the right of these
values; this heavy tail implies that there exist possible scenarios with higher R0 values (see Figure 2(b))
for the uncertainty region on the fitted data. Note that even when the estimated values of βA and c1 have
different orders of magnitude for the MAP and the posterior mean, the corresponding values of R0 do
not change significantly. This is due to the low value of the assigned weight (1−p) of the asymptomatic
infectious class contribution TA to the production of new infections. Moreover, using the MCMC and
the analytic expression for R0, we estimate that, on average, the environment-to-human transmission
route contributes with 36% of the value of R0. Finally, in Figure 2(a) we present the curves of the
symptomatic infected class corresponding to the MAP and posterior mean estimates, I(t), for a time
horizon of 200 days.

Table 1. Bayesian estimators.

Parameter MAP estimate Posterior mean

βA 1.32 × 10−14 1.90 × 10−9

βI 6.69 × 10−9 4.52 × 10−9

βV 4.73 × 10−8 4.88 × 10−8

c1 1.89 × 10−6 2.54 × 10−2

c2 1.88 × 10−2 5.31 × 10−2
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Figure 2. (a) Infectious symptomatic individuals I(t) corresponding to the MAP (red) and
the posterior mean estimates (blue). (b) Red dots show the data of cumulative confirmed
cases of COVID-19 in Mexico from March 11, 2020, to March 25, 2020. The gray area
shows the uncertainty with the last 25000 samples of the chain. The green dots represent
data from march 26 to march 31 that were not used in the inference.
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Figure 3. (a) Posterior predictive marginal for the total cumulative infections on March 31.
(b) Red dots show the data of cumulative confirmed cases of COVID-19 in Mexico from
March 11, 2020, to March 25, 2020, used for the inference. In black we present our predicted
values, in green the data from March 26 to April 9 not used in the inference, and the dashed
lines show the interval with 98 percent of the mass for the predictive marginal.

The posterior distribution obtained allow us to compute posterior predictive marginals for future
data (after March 25). The probability of a future observation z given the data y is p(z|y) and can be
computed as follows

p(z|y) =

∫
X

p(z|x)p(x|y)dx (3.1)

where x denotes our vector of parameters. Figure 3(a) shows the predictive posterior marginal for the
total cumulative infections on March 31 (See Figure 10 for more predictive posterior marginals on
other dates). Figure 3(b) shows a comparison between the predicted values for the cumulative number
of infections and the officially published data from March 26 to April 9. The dashed lines represent the
interval with 98 percent of the mass for the predictive marginal.

According to our estimations, the value of the basic reproduction number R0 in the absence of
control is above unity. Under a non-intervention scenario, we expect that the number of individuals
in the infectious class I(t) to have a high peak that can produce a collapse in the health care system.
Therefore, it is of paramount importance the application of effective control measures to limit the
spread of SARS-CoV-2 and flatten the epidemic curve.

4. Control interventions

In this section, we extend the compartmental epidemic model for COVID-19 transmission
dynamics (2.1) including appropriate compartments to take into account some of the current
intervention measures for COVID-19 control. In particular, we consider the following control
interventions:

(i) Social distancing and home quarantine.
(ii) Isolation of infected individuals.

(iii) Environmental cleaning and disinfection.

We want to differentiate susceptible individuals depending on the probability of being infected. We
assume that part of the population changes behavior due to different reasons, including external
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measures. That change can be because they are following rules of social distancing or because they
are afraid and naturally keep a greater distance from others, etc. In any case, we consider two types of
behavior and obtain two categories of susceptible individuals. Hence, we assume susceptible
individuals S change their behavior and become cautious susceptible individuals (denoted S c) at a
rate α. The parameter α is the rate of behavioral change. This may be increased through mass
communication (TV, social networks, etc.). Cautious susceptible individuals will reduce their
probability of infection by a factor 1 − θ ∈ (0, 1) taking appropriate measures such as self-imposed
home quarantine, social distancing, hand washing, and mask-wearing.

To model isolation, we assume that symptomatic infected individuals, I, are screened at a rate d2

and moved to a diagnosed compartment D. Likewise, individuals in the exposed and asymptomatic
classes are diagnosed at a rate d1. It should be easier to identify infected people with strong symptoms
in comparison to asymptomatic individuals, therefore, d2 > d1 ≥ 0. We assume individuals in the D
class are being isolated and treated. Finally, we consider cleaning of visibly dirty surfaces followed by
disinfection which is an important practice measure for the prevention of COVID-19. We model this
by considering an additional mortality rate m for the free virus V .

From the above considerations, the control model for the transmission dynamics of COVID-19 is
governed by the following equations:

Ṡ = −λS − αS ,

Ṡ c = −λθS c + αS ,

Ė = λ(S + θS c) − σE − d1E,

Ȧ = (1 − p)σE − d1A − γAA,

İ = pσE − d2I − γI I − µI,

Ḋ = d1(E + A) + d2I − γDD − µD,

Ṙ = γAA + γI I + γDD,

V̇ = c1A + c2I − (µV + m)V,

(4.1)

where λ = βAA + βI I + βVV is the force of the infection.
It is important to remark that if factors such as lockdown or some external measures affect social

behavior of susceptible individuals, one can easily think that this may also happens in other
compartments. Hence, regardless of their infection status, individuals in all classes may reduce
infecting others. Therefore, from a modeling perspective, it would appear that not only in the
susceptible class S , but in all other classes, individuals should be allowed to become cautious. In
particular, if individuals in the infectious classes become cautious, their contact rates indeed change,
but this is reflected mainly in the average contacts of the susceptible class. Hence, since susceptible
individuals are the ones who catch the disease and continue the spread of the infection, we only
consider a cautious sub-class for the susceptible group.

The disease-free equilibrium for system (4.1) is of the form

X̃◦ = (0,N0, 0, 0, 0, 0, 0, 0). (4.2)

Defining the vector of constant controls u = (α, 1−θ, d1, d2,m) and using the next-generation matrix,
we obtain the following expression for the effective reproduction number Re:

Re(u) = (1 − p)T̃A(u) + pT̃I(u) (4.3)

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4165–4183.



4174

where

T̃A(u) =
σ

(d1 + γA)(σ + d1)

(
βA +

c1βV

µV + m

)
θN0 (4.4)

is the contribution of asymptomatic infectious individuals A to the production of new infections, and

T̃I(u) =
σ

(d2 + γI + µ)(σ + d1)

(
βI +

c2βV

µV + m

)
θN0 (4.5)

is the contribution of the symptomatic infectious individuals I to the incidence. Please note that T̃ j(0) =

T j ( j = {A, I}), therefore, in the absence of controls, the effective reproduction number is equal to the
basic reproduction number, Re(0) = R0.

4.1. The impact of social distancing and home quarantine

Here, we investigate the impact of cautious behavior of susceptible individuals, which results in
self-imposed prevention measures such as social distancing and home quarantine. In mathematical
terms, we explore how our model dynamics depends on the control parameters α and θ. The rest of the
control parameters are not considered here.

(a) (b)

Figure 4. Dynamics of the symptomatic infected and diagnosed classes I + D under the
control measure which represents cautious behavior of susceptible individuals. Dashed lines
represent hypothetical health-care system capacity. (a) We investigate three possible initial
times for the application of the control intervention: t = 1 (blue), t = 15 (orange), and t = 30
(green) with α = 0.01, and θ = 0.3. (b) We explore different values for the control parameter
θ, for all values the initial application time is t = 1 and α = 0.01.

We assume susceptible individuals in the susceptible cautious class reduce their probability of
infection by a factor 1 − θ for different values of the parameter θ, and we set the rate of behavioral
change as α = 0.01. It should be pointed out that the values of these parameters used in the
simulations are theoretical as they were chosen with the purpose of highlight the possible impact of
the control measures proposed in this study. This will allow us to focus on the investigation of the role
played by the initial times for the application of the intervention to flatten the prevalence curve. In
particular, we explore three possible initial times for the application of the intervention: (i) since day
one (t = 1), (ii) since two weeks after the first confirmed cases (t = 15), and (iii) since a month after
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the first cases (t = 30). For the sake of simplicity, we assume that after the initial time of application
the intervention is maintained for the whole time horizon. Since some of the posterior distributions
have heavy tails (see Appendix 5), for all the subsequent numerical simulations, the non-control
parameters are fixed using the posterior mean estimates.

The results are shown in Figure 4. Dashed lines represent hypothetical health-care system capacity.
Please observe that social distancing and home quarantine as control measures have the potential to
reduce the maximum number of infected individuals at the peak of the outbreak and also delay the time
of peak. Hence, this intervention has the potential to flatten the epidemic curve. From Figure 4(a), one
can also notice that a delayed introduction of control measures increases a lot the size of the peak. For
our parameters, a fifteen days delay in the use of the control causes, roughly, the number of cases at
the peak to double. From Figure 4(b), it can be observed that small variations in the parameter θ have
a big effect on the epidemic curve. Hence, increasing the effectiveness of social distancing and home
quarantine will produce a huge benefit to reduce the prevalence of the infection.

4.2. The impact of isolation of infected individuals

In this section, we analyze the effect of isolation of infected individuals. Therefore, we focus on the
screening/diagnosed rates d1 and d2. In Mexico, according to some early reports, only 10 percent of
mild suspected cases are tested for COVID-19 [18]. On the other hand, for severe cases, 100 percent
of patients are tested. Hence, we assume 10d1 = d2. In particular, we take d2 = 0.2, and d1 = 0.02 and
explore how the initial time of control application influence the possible prevalence of the infection.
For our simulations, the parameters which are already described by the model without control (2.1) are
fixed with their posterior mean estimate. In addition, we take γD = 0.1162 from [8].

(a)
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1e6
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d2 = 0.2
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Figure 5. Dynamics of the symptomatic infected and diagnosed classes I + D under the
control measure which represents isolation of infected individuals. Dashed lines represent
hypothetical health-care system capacity. (a) We investigate three possible initial times for
the application of the control intervention: t = 1 (blue), t = 15 (orange), and t = 30 (green)
with d2 = 0.2, and d1 = 0.02. (b) We explore different values for the control parameters d1

and d2 with 10d1 = d2, for all values the initial application time is t = 1.

The results are presented in Figure 5. We can see that the diagnosis and isolation of infected
individuals will reduce the maximum number of infected individuals in comparison with the no control
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case. It is noteworthy to mention (see Figure 5(a)) that for this intervention, the initial application of
the control does not influence significantly neither the size of the peak number of diagnoses nor the
peak’s timing. In Figure 5(a), it can be observed that the number of individuals at the peak is less for
the intervention that start at t = 30. However, this result is due to the fact that, for this intervention.
there are less diagnoses than for the other interventions, but the number of individuals in the class I
is actually the same for the three interventions. Moreover, the value of the control parameters has the
potential to reduce the size of the peak number of diagnoses and delay its occurrence (Figure 5(b)).

4.3. The impact of environmental cleaning and disinfection

It has been documented that SARS-CoV-2 can be deposited onto everyday surfaces in a household
or hospital setting by an infected person through coughing or touching objects and that the virus is
transmissible through relatively casual contact with contaminated surfaces [11]. Hence, we analyze the
effect of environmental cleaning and disinfection as a measure to prevent COVID-19 spread. Hence,
we study the effect of the parameter m related to an increase in the death rate of the virus that remains
in contaminated surfaces.

(a)

0 50 100 150 200 250 300
Time in days

0
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6
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I+
D

1e6
m = 0
m = 1
m = 10

(b)

Figure 6. Dynamics of the symptomatic infected and diagnosed classes I + D under the
control measure which represents environmental cleaning and disinfection. Dashed lines
represents hypothetical health-care system capacity. (a) We investigate three possible initial
times for the application of the control intervention: t = 1 (blue), t = 15 (orange), and t = 30
(green) with m = 15. (b) We explore different values for the control parameter m, for all
values the initial application time is t = 1.

The simulations in Figure 6 show that analogously to the case of the isolation measure, for this
intervention the initial application of the control does not influence the size of peak and only moves
the peak’s time (see Figure 6(a)). An increase in the value of m has the potential to flatten the epidemic
curve, however, big increments in m are needed to reduce substantially the prevalence of the infection
below the theoretical health-care system capacity (see Figure 6(b)). Therefore, under this strategy
alone will be difficult to successfully prevent further spread of COVID-19.
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4.4. Combination of control strategies

In this section, we investigate the extent of the impact of using our three control interventions
simultaneously. As China and South Korea have demonstrated [19], social distancing is an effective
measure to slow the spread of the virus and limit how many people are infected at one time. However,
there is a lot of uncertainty about how long social distancing will have to last to reduce the spread of
COVID-19 to near zero. Therefore, we focus on exploring the effect of different quarantine’s duration
on the reduction of the prevalence.

In particular, in the numerical simulations, three possible social distancing and home quarantine’s
duration are analyzed: one month, two months and three months. The illustrative simulations of these
scenarios are presented in Figure 7(a). The values of the control parameters during active social
distancing are α = 0.01, θ = 0.4, d1 = 0.015, d2 = 0.15, m = 5. After the application of home
quarantine and social distancing the parameters d1, d2, m keep the same value but the parameters α
and θ are turned off. The simulations (see Figure 7(a)) show the unexpected result that extending
quarantine duration does not reduce the size of the peak number of diagnoses and only moves the
peak’s timing. Considering the results in Figure 4, one can deduce that the most influencing factor for
the efficacy of social distancing, home quarantine, and other lockdown measures is the timing. Hence,
these measures must be put in use as soon as possible by health authorities.

Another important scenario that is of interest for public health officials is if there will be a need for
several rounds of social distancing and home quarantine. As an illustrative example, we simulate the
periodic application of the control interventions for four days, one week, two weeks and a month. That
is, for example, the interventions are used for one month, then turned off for the next month and then
turned on for the next month periodically. When the control is on, the values for the parameters are
α = 0.01, θ = 0.3, d1 = 0.02, d2 = 0.2, m = 5, the results are shown in Figure 7(b). Please observe that
this brings oscillations in the prevalence of the infection. The oscillations increase their altitude and
amplitude with a larger time frame for the control interventions. The results in the simulations imply
that, for longer periods of intermittent home quarantine, the number of infected individuals at the peak
is much higher. This outcome coincides with the results obtained in [20].

5. Discussion

In this study, we have proposed a compartmental epidemic model to model the transmission
dynamics of the COVID-19 epidemic. Our model formulation is based on the SEIR structure
augmented with appropriate compartments to take into account the current intervention measures
against the spread of SARS-CoV-2. Moreover, in addition to human-to-human transmission, our
model considers indirect infections caused by contact with contaminated surfaces using an extra
compartment for the free-living coronavirus in the environment. We used a Bayesian approach and
officially published data to calibrate the model and estimate the basic reproduction number R0.

The results of our Bayesian inference show that the value of the basic reproduction number for
the MAP estimate is RMAP

0 = 2.5, and for the posterior mean estimate is RCM
0 = 2.7. Moreover,

under a non-intervention scenario, the model outcome shows that the maximum number of infected
individuals at the peak of the outbreak will be very high and can produce a collapse in the health care
system. Therefore the importance of prompt implementation of effective interventions to prevent the
further spread of COVID-19.
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Figure 7. Dynamics of the symptomatic infected and diagnosed classes I + D under the
application of the three control interventions. Dashed lines represent hypothetical health-
care system capacity. (a) We investigate three possible quarantine’s duration: one month
(blue), two months (orange), and three months (green). (b) We explore how the periodic
application of the control interventions affects the epidemic curve.

After our model calibration, we incorporated some of the current control interventions against
COVID-19 into our model: (i) social distancing and home quarantine, (ii) isolation of infected
individuals, and (iii) environmental cleaning and disinfection. We present illustrative numerical
simulations as a tool to evaluate the theoretical impact of our control interventions for plausible
scenarios related to the effectiveness and duration of the control application. In particular, we first
study the effect of each of our interventions alone and the role played by the initial times of the
application of the control to flatten the epidemic curve.

The results of our numerical simulations suggest that social distancing and home quarantine as
control measures have the potential to reduce the amplitude and delay the appearance of the peak of
maximum number of infected individual of the outbreak. Hence, this intervention alone has the
potential to flatten the epidemic curve. However, this intervention should be implemented as soon as
possible because a delayed introduction increases a lot the size of the peak of the infected. In
particular, a fifteen days delay in the use of this intervention causes, roughly, the number of cases at
the peak to double. The simulations also show that the diagnosis and isolation of infected individuals
will reduce the size of the peak number of diagnoses and delay its occurrence. Nevertheless, to
successfully control the infection more effort is needed under this intervention in comparison with
social distancing and quarantine. The impact of environmental cleaning and disinfection to reduce the
prevalence is low, so this strategy alone will be very difficult to achieve disease eradication. We also
investigated scenarios related to an intermittent administration of quarantine and social distancing,
including weekly and monthly intermittent interventions. This analysis indicates that for longer
periods of intermittent quarantine and social distancing, the maximum number of infected individuals
at the peak of the outbreak is higher. Hence, short periods of intermittent quarantine are more likely to
prevent the collapse of the health care system. These results may be relevant when suggesting exit
strategies after a long time quarantine.

Comparing the three strategies presented here, we observe that social distancing and quick
isolation of infected individuals are better strategies. Environmental cleaning can also be relevant, but
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its application level and efficacy required to bring the maximum of the outbreak under control indicate
that it might be too high to achieve in real life scenarios. Although other control measures are more
effective, the high percentage in R0 coming from the environment-to-human transmission route makes
us believe that the number of infections that can occur through this route should not be
underestimated. We highly recommend a periodic home-environmental cleaning. It is noteworthy to
mention that the initial application of the control does not influence the maximum number of infected
individuals at the peak of the outbreak for the isolation and environmental cleaning strategies, so the
winning strategy, besides being applied as soon as possible, seems to be social distancing and home
quarantine. In separate work, we compare the effect of similar percentage changes for each of the
three parameters and their relative effect on the outcome of the epidemics. We expect social
distancing and quarantine to also be the best strategies.
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Appendix: Bayesian Inference

For the Bayesian inference, we assume the following model for the data yi

yi = C(ti; x) + ηi, i = 0, . . . , 14 (.1)

where C(ti; x) denote the cumulative cases built from the solution I of the ODE’s system at time ti

and x = (βA, βI , βV , c1, c2) is the vector of parameters to estimate. We assume independence in the
realizations of x and η and ηi ∼ N(0, σ2). Our cumulative infected cases satisfies C(0; x) = y0 and

C(ti; x) = C(0; x) +

k=i∑
k=0

I(tk; x) (.2)

where I(tk; x) denote the infected cases at time tk given by the solution for the I class in our model given
the parameter x. Moreover, we define by π0(x) the prior distribution for x. We assume independence
of the parameters, hence

π0(x) = π1(βA)π2(βI)π3(βV)π4(c1)π5(c2). (.3)

Due to the uncertainty in the values of the vector of parameters x, we perform a sensitivity analysis
of the quantity C(ti; x) with respect to x for several time values ti. In particular, we use Sobol method
which is a variance-based global sensitivity analysis that decomposes the variance of the output of the
model into fractions which can be attributed to sets of inputs using a sensitivity index We perform the
Sobol sensitivity analysis (see Figure 8) on the python library Salib [21] and found that the results
do not depend on the times ti. The simulations show that the Sobol indices of the parameters ci (i =

1, 2) are null. From our modeling, we expect c1 < c2. Actually, we expect a low value for c1 since
corresponds to respiratory droplets of asymptomatic individuals. We propose a Gamma distribution
for c1 with mean close to 0. For the transmission parameters β j ( j = A, I,V), the lowest first order
Sobol index is the index of βA. Since we are using mass action incidence, we can expect to have values
of β j ( j = A, I,V) around the negative order of the initial susceptible population. Hence, we propose a
Gamma distribution for βA with mean 10−8. Recall that the gamma distribution is denoted by Γ(α, β)
with α the shape parameter and β the inverse scale parameter. If Z ∼ Γ(α, β) then E[Z] = α/β and
Var[Z] = α/β2. We propose

βA ∼ Γ(108, 1)
βI ∼ U(0, 10−1)
βV ∼ U(0, 10−1) (.4)

c1 ∼ Γ(103, 1)
c2 ∼ U(0, 1)
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where U(a, b) denote the uniform distribution in the interval (a, b). We run a MCMC using twalk for
2000000 samples with 1000000 of burnin. The posterior distribution for each parameter are shown in
Figure 9.
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Figure 8. First (S 1) and total order (S T ) Sobol indices of the cumulative cases C(ti; x) built
from the solution I of model (4.1) with respect to the parameters x = (βA, βI , βV , c1, c2). We
perform this analysis for several time values ti and found that the results do not depend on ti.
The indices for the variables ci (i = 1, 2) are null.

0 1 2 3
A 1e 8

0

2

4

6

Fr
eq

ue
nc

y

1e5

(a)

0 1 2
I 1e 8

0.0

0.5

1.0

1.5

Fr
eq

ue
nc

y

1e5

(b)

2 4 6 8
V 1e 8

0

1

2

3

Fr
eq

ue
nc

y
1e5

(c)

0.0 0.2 0.4 0.6
c1

0

2

4

6

Fr
eq

ue
nc

y

1e5

(d)

0.0 0.1 0.2
c2

0.00

0.25

0.50

0.75

1.00

Fr
eq

ue
nc

y

1e5

(e)

Figure 9. Posterior distributions for the parameters: (a) βA , (b) βI , (c) βV , (d) c1, (e) c2.
The parameters βA and c1 are not well informed by the data, their posterior distribution
corresponds to its prior distribution.
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Figure 10. Posterior predictive marginals for the total cumulative infections for several dates.
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