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Abstract: We consider a stage-structure Rosenzweig-MacArthur model describing the predator-prey
interaction. Here, the prey population is divided into two sub-populations namely immature prey and
mature prey. We assume that predator only consumes immature prey, where the predation follows the
Holling type II functional response. We perform dynamical analysis including existence and unique-
ness, the positivity and the boundedness of the solutions of the proposed model, as well as the existence
and the local stability of equilibrium points. It is shown that the model has three equilibrium points.
Our analysis shows that the predator extinction equilibrium exists if the intrinsic growth rate of im-
mature prey is greater than the death rate of mature prey. Furthermore, if the predation rate is larger
than the death rate of predator, then the coexistence equilibrium exists. It means that the predation
process on the prey determines the growing effects of the predator population. Furthermore, we also
show the existence of forward and Hopf bifurcations. The dynamics of our system are confirmed by
our numerical simulations.

Keywords: predator-prey model; Rosenzweig-MacArthur model; stage-structure in prey; stability
analysis; Hopf-bifurcation

1. Introduction

Mathematically, there are some complex phenomena in nature that are appealing to be investigated.
One example is the interaction between prey and its predator. The first predator-prey interaction model
was developed independently by [1] and [2], and therefore it is known as the Lotka-Volterra predator-
prey model. Since then, the model for the interaction between prey and its predator is continuously
studied and developed by both mathematicians and biologists [3]. One of important features that
determine the characteristics of predator-prey interaction is the functional response which explains
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how many prey are eaten by predators per unit time. For example, the famous Rosenzweig-MacArthur
predator-prey model implements the Holling-Type II functional response p(x) = ax

b+x , where a and b
are positive parameters related to the predator’s attack rate and the handling time, respectively [4, 5].
The Rosenzweig-MacArthur model has attracted many scholars to study the effect of various factors
on predator-prey interactions, for example the effect of refuge [6, 7, 8, 9], harvesting [10], quiescence
[11], disease transmission among predators [12] or among prey [13] and the mutant population [14].

The transition between immature and mature stages from an adaptive dynamics perspective has
recently been evaluated in [15]. In the predator-prey interaction, the age or size of the prey certainly
determines the level of predation. Even in many cases, predators are only able to attack when the prey
is still immature. Indeed, small size or immature prey tend to be more easily captured and eaten by
predators. Moreover, there are many factors that significantly influence the dynamics of the predator–
prey models with stage–structure. For example, [16] and [17] have studied the harvesting policy in
a stage–structure predator–prey model. In [18], a ratio-dependent prey–predator model with stage–
structure was investigated, and the uniform persistence and impermanence of the model were carried
out through the sufficient conditions. Other features which influence the interaction of predator-prey
with stage-structure have also been studied in many references, such as maturation delay [19, 20, 21],
periodic functional responses [22, 23], prey refuge [24], combination of prey refuge and additional
food for predator [25], anti-predator [26, 27, 28], as well as diffusive effects [29].

Recently, the authors [30] have studied a Rosenzweig-MacArthur predator–prey model with stage–
structure in prey:

dx1

dt
= rx2

(
1 −

x1

K

)
− αx1 −

v0x1y
n1 + x1

dx2

dt
= αx1 − δ0x2

dy
dt

=
cv0x1y
n1 + x1

− δ1y

(1.1)

where x1 ≡ x1(t) and x2 ≡ x2(t) are respectively the densities of immature and mature prey population
at time t, and y ≡ y(t) is the density of predator population at time t. The following assumptions are
taken in deriving model (1.1) :

(H1) The immature prey do not produce offspring and their growth rate depends entirely on the repro-
duction by the mature prey, where the growth is assumed to be logistically with constant intrinsic
rate r > 0 and constant carrying capacity K > 0.

(H2) The immature prey is more vulnerable so predators only consume immature prey. The predation
mechanism is assumed to follow the Holling Type II functional response where the maximum
predation rate is v0 > 0 and the environmental protection for immature prey is denoted by n1 > 0.

(H3) The immature prey grow up and turn into mature prey with a conversion rate α > 0.

(H4) The growth of mature prey population depends only on the conversion of immature prey into
mature prey. The mature prey do not have a risk to be attacked by predator. The death rate of the
mature prey population is δ0 > 0.
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(H5) The predator consumes only the immature prey and the growth rate of predator population is
proportional to the predation rate, where the conversion rate of consumed prey into predator
births is c > 0. The death rate of the predator population is δ1 > 0.

Notice that the growth of immature prey in model (1.1) is inhibited by the intraspecific competition
between the mature and immature prey. In nature, the intraspecific competition also occur between
mature prey. Such intraspecific competition will be incoporated in this paper and hence we propose
the following stage-structure predator-prey model

dx1

dt
= rx2

(
1 −

(x1 + x2)
K

)
− αx1 −

v0x1y
n1 + x1

dx2

dt
= αx1 − δ0x2

dy
dt

=
cv0x1y
n1 + x1

− δ1y.

(1.2)

System (1.2) describes a predator-prey interaction where the predator only consumes immature
prey. One ecological example of such a predator-prey system is the interaction between Moluccan
megapode (Eulipoa wallacei) and rats Rattus sp. Rattus sp. is reported to prey upon Eulipoa eggs and
chicks, and it cannot attack adult Eulipoa, see [31]. Another example of predator-prey system which
can be described by model (1.2) is Chinese fire-bellied newt, which is unable to feed on the mature
Rana chensinensis, can only prey on its immature, see [32]. For the sake of convenience, we describe
all variables and parameters in system (1.2) in Table 1.

Table 1. Description of variables and parameters in system (1.3). N stands for the number
of individual per unit area.

Variable/Parameter Description Units

x1 Density of immature prey N

x2 Density of mature prey N

y Density of predator N

r Intrinsic growth rate of prey time−1

K Carrying capacity of prey N

α Conversion rate of immature prey into mature prey time−1

v0 Predation rate time−1

n1 Environment protection for prey N

c Conversion rate of consumed prey into predator birth dimensionless
δ0 Death rate of mature prey time−1

δ1 Death rate of predator time−1

We remark that the intraspecific competition between the mature and immature prey is assumed to
have the same strength as that between mature prey. To simplify our analysis, we reduce the number
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of parameters in system (1.2) by considering the following non-dimensional model

du1

dτ
=u2(1 − (u1 + u2)) − α1u1 −

u1u3

ω + u1

du2

dτ
=α1u1 − β1u2

du3

dτ
=
α2u1u3

ω + u1
− β2u3

(1.3)

where τ = rt, u1 = x1
K , u2 = x2

K , u3 =
v0y
rK , ω = n1

K , α1 = α
r , α2 = cv0

r , β1 = δ0
r and β2 = δ1

r .

As far as we are aware, the dynamics of system (1.3) have not been studied. Hence, a Rosenzweig-
MacArthur predator-prey model with stage-structure in prey is introduced in this paper and the dynam-
ical properties of the model are investigated. The organization of this paper is as follows. In Section 2,
we analyze the boundedness, existence and uniqueness of the solution of the system (1.3). In Section
3 we determine all possible equilibrium points including the conditions for their existence and stability
properties. The existence of Hopf-bifurcation and numerical simulations to illustrate our analytical
finding are presented in Section 4 and Section 5, respectively. The conclusion of our study is given in
the last section.

2. Basic properties of the model

In this section we present some basic properties of the model (1.3) which include the existence
and uniqueness, as well as the positivity and the boundedness of solutions of model (1.3). These are
necessary because we deal with a population-related model. Therefore solutions of the model (1.3)
must be non-negative. Boundedness of solutions explains that there are natural limits to population
growth because resources are limited.

2.1. Existence and uniqueness of solutions

The existence and uniqueness of solutions of system (1.3) will be investigated in the region [0,∞)×
ΩM where

ΩM =
{
(u1, u2, u3)T

∈ R3
+ : max {|u1| , |u2| , |u3|} ≤ M

}
for sufficiently large M. The existence of M is assured by the boundedness of the solutions, which will
be discussed later. Let U = (u1, u2, u3)T , Ū = (ū1, ū2, ū3)T and consider a mapping

H(U) =


H1(U)
H2(U)
H3(U)

 , (2.1)

where

H1(U) =u2(1 − (u1 + u2)) − α1u1 −
u1u3

ω + u1
,

H2(U) =α1u1 − β1u2,

H3(U) =
α2u1u2

ω + u1
− β2u3.

(2.2)

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4080–4097.



4084

For any U, Ū ∈ ΩM, we can show that

||H(U) − H(Ū)|| =|H1(U) − H1(Ū)| + |H2(U) − H2(Ū)| + |H3(U) − H3(Ū)|

=

∣∣∣∣∣u2(1 − (u1 + u2)) − α1u1 −
u1u3

ω + u1
− ū2(1 − (ū1 + ū2)) +α1ū1 +

ū1ū3

ω + ū1

∣∣∣∣∣
+ |α1u1 − β1u2 − α1ū1 + β1ū2| +

∣∣∣∣∣α2u1u2

ω + u1
− β2u3 −

α2ū1ū2

ω + ū1
+ β2ū3

∣∣∣∣∣
≤(2α1 + M + (1 + α2)Mω)|u1 − ū1| + (1 + β1 + 3M)|u2 − ū2|

+ (β2 + (1 + α2)(ω + M)M)|u3 − ū3|

≤L1|u1 − ū1| + L2|u2 − ū2| + L3|u3 − ū3|

≤L|(u1 − ū1) + (u2 − ū2) + (u3 − ū3)|
=L||U − Ū ||

(2.3)

where L1 = (2α1 + M + (1 + α2)Mω), L2 = (1 + β1 + 3M), L3 = (β2 + (1 + α2)(ω + M)M), and
L =max{L1, L2, L3}. Clearly that H(U) satisfies the Lipschitz condition with respect to U, and therefore
system (1.3) with any positive initial condition u1(0) ≥ 0, u2(0) ≥ 0, u3(0) ≥ 0 has a unique solution
U(τ) = (u1(τ), u2(τ), u3(τ))T ∈ ΩM. Hence, we have the following theorem related to the existence and
uniqueness of the system (1.3).

Theorem 2.1. The stage-structure predator-prey system (1.3) subject to any non-negative initial value
(u1(0), u2(0), u3(0)) has a unique solution (u1(τ), u2(τ), u3(τ))T

∈ ΩM for all τ > 0.

2.2. Positive invariance

To show the positive invariance of the system (1.3), we first write the system (1.3) and its initial
conditions in matrix form as

dU
dτ

= H(U), (2.4)

where U(τ) = (u1(τ), u2(τ), u3(τ))T ,U(0) = (u1(0), u2(0), u3(0))T ∈ ΩM and H(U) defined as in (2.1).
From the previous subsection it was shown that H(U) is locally Lipschitz. Furthermore, it is obvious
to show that Hi(Ui)|ui=0 ≥ 0, for i = 1, 2, 3. Then, according to Nagumo theorem, the solution U(τ) of
system (2.4) with initial condition U(0) = U0 ∈ ΩM remains in ΩM for any τ ≥ 0. Hence, we have the
following theorem.

Theorem 2.2. Every solution of (1.3) with initial conditions u1(0) ≥ 0, u2(0) ≥ 0, u3(0) ≥ 0 which
exists in ΩM, remains positive for all τ > 0.

2.3. Boundedness of solutions

Theorem 2.3. All solutions of system (1.3) which start ∈ ΩM are uniformly bounded.

Proof. We begin by assuming that u1(τ) + u2(τ) ≥ 1 for all τ ≥ 0. Using the first two equations in
system (1.3), we have

d
dτ

(u1 + u2) = u2(1 − (u1 + u2)) − β1u2 −
u1u3

ω + u1
. (2.5)
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It is clear that d
dτ (u1 + u2) ≤ 0, and thus u1 + u2 is monotone decreasing. Let’s denote

lim
τ→∞

u1 + u2 = κ. (2.6)

Based on Barbalat lemma, we can show that if κ > 1 then

0 = lim
τ→∞

d
dτ

(u1 + u2)

= lim
τ→∞

u2(1 − (u1 + u2)) − β1u2 −
u1u3

ω + u1

= lim
τ→∞

u2(1 − κ) − β1u2 −
u1u3

ω + u1

≤ − (κ − 1 + β1)u2 < 0.

(2.7)

This contradiction leads to κ = 1. Since u1 + u2 is monotone decreasing function, we have that

lim
τ→∞

sup(u1 + u2) = 1, (2.8)

meaning that there exists τ0 > 0 such that for τ > τ0 we get u1 + u2 ≤ 1 + ε or u1 ≤ 1 + ε − u2 for any
ε ≥ 0. Then, from the second equation in system (1.3) we get for any τ ≥ τ0 that

du2

dτ
=α1u1 − β1u2

≤α1(1 + ε − u2) − β1u2

=α1(1 + ε) − (α1 + β1)u2.

(2.9)

It is obvious that

u2(τ) ≤
α1(1 + ε)
α1 + β1

+

(
u2(0) −

α1(1 + ε)
α1 + β1

)
exp(−(α1 + β1)τ). (2.10)

By taking ε = 0, we get

lim
τ→∞

sup u2(τ) ≤
α1

α1 + β1
. (2.11)

Similarly, we can also show that

lim
τ→∞

sup u1(τ) ≤
β1

α1 + β1
. (2.12)

Hence u1 and u2 is bounded above. The latter inequality shows that there exists τ1 such that u1 ≤
β1

α1+β1
+ ε for all τ ≥ τ1. Now define u = u1 + u3

α2
. Using the first and the third equations in system (1.3),

we obtain

du
dτ

= − u2(1 − (u1 + u2)) − α1u1 −
β2u3

α2

≤ − β2(u1 +
u3

α2
) + (β2 − α1)u1

≤ − β2u + |β2 − α1|(
β1

α1 + β1
+ ε).

(2.13)
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By taking ε = 0 and denoting η = |β2 − α1|
β1

α1+β1
, we get the following inequality

du
dτ
≤ −β2u + η, (2.14)

from which we have

u(τ) ≤
η

β2
+

(
u(0) −

η

β2

)
exp(−β2τ). (2.15)

Hence, u3 is also bounded above because

lim
τ→∞

sup u ≤
η

β2
. (2.16)

Now we suppose that our assumption that u1 + u2 ≥ 1 is violated, i.e. there exists τ2 > 0 such that
we have for the first time u1(τ2) + u2(τ2) = 1. Then, we easily have

d
dτ

(u1 + u2) |τ=τ2 =u2(1 − (u1 + u2)) − β1u2 −
u1u3

ω + u1
|τ=τ2

= − β1u2 −
u1u3

ω + u1
|τ=τ2 < 0.

(2.17)

Consequently, whenever once a solution with u1 + u2 has entered the interval (0, 1) then it remains
bounded there for all τ > τ2, i.e.

u1(τ) + u2(τ) < 1,∀τ > τ2. (2.18)

From the second equation in system (1.3) we get

du2

dτ
= αu1 − β1u2 ≤ α1 − (α1 + β2)u2. (2.19)

Using the previous argument, we can prove that

lim
τ→∞

sup u2 ≤
α1

α1 + β1
. (2.20)

Similarly, we can also show that

lim
τ→∞

sup u1 ≤
β1

α1 + β1
. (2.21)

Again, by defining u = u1 + u3
α2

and using the previous argument, we can easily show that u is bounded
above and therefore u3 is also bounded.

At last, if u1(0) + u2(0) < 1, then by using the previous arguments, we have that u1(τ) + u2(τ) < 1
and u = u1 + u3

α2
is bounded for all τ > 0. This completes the proof. �

3. Existence and stability analysis of equilibrium points

It is easy to show that system (1.3) has three non-negative equilibrium points as follows.

• The extinction equilibrium E0 = (0, 0, 0), which there is no population in the habitat.
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• The predator-free equilibrium E1 = (û1, û2, 0), which exists if

β1 < 1 (3.1)

where û1 = β1(1 − β1)/(α1 + β1), û2 = α1û1/β1.

• The interior equilibrium E∗ = (u∗1, u
∗
2, u

∗
3), i.e. all of species coexist, where

u∗1 =
β2ω

α2 − β2
,

u∗2 =
α1β2ω

β1(α2 − β2)
and

u∗3 =
α1α2ω

[
β1(α2 − β2)(1 − β1) − β2ω(α1 + β1)

]
β1

2(α2 − β2)2
.

The interior or coexistence equilibrium point exists if

β1 < 1, α2 > β2, and ω < ω̃, (3.2)

where ω̃ =
β1(α2−β2)(1−β1)

β2(α1+β1) .

From the description above, it can be seen that if the conditions (3.2) are fulfilled then all three equi-
librium points exist. The local stability of each equilibrium points of system (1.3) is shown in the
following theorem.

Theorem 3.1. For system (1.3), we have the following stability properties of its equilibrium points:

(i) The equilibrium point E0 is locally asymptotically stable if β1 > 1.

(ii) The equilibrium point E1 is locally asymptotically stable if ω > ω̃.

(iii) The coexistence equilibrium point E∗ is locally asymptotically stable if ϕ1 > 0, ϕ3 > 0 and
ϕ1ϕ2 > ϕ3 where ϕ1, ϕ2 and ϕ3 are defined as in the proof.

Proof. The local stability of all equilibrium points can be studied from the linearization of the system
(1.3). The Jacobian matrix of the system (1.3) at a point (u1, u2, u2) is given by

J =


−u2 − α1 −

ωu3
(ω+u1)2 1 − u1 − 2u2 −

u1
ω+u1

α1 −β1 0
α2ωu3

(ω+u1)2 0 (α2−β2)u1−ωβ2
ω+u1

 (3.3)

By observing the eigenvalues of the Jacobian matrix (3.3) at each equilibrium point, we have the
following stability properties.

(i) The Jacobian matrix of the system (1.3) at E0 has eigenvalues λ1 = −β2 and λ2,3 = −1
2 B1 ±

1
2

√
B2

1 − 4C1, where B1 = α1 + β1 > 0 and C1 = α1(β1 − 1). If

β1 > 1 (3.4)

then C1 > 0. Consequently Re(λ2,3) < 0 and E0 is locally asymptotically stable.
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4088

(ii) The Jacobian matrix of the system (1.3) at E1 has eigenvalues λ1 =
β1(α2−β2)(1−β1)−β2ω(α1+β1)

ω(α1+β1)+β1(1−β1) and

λ2,3 = −1
2 B2 ±

1
2

√
B2

2 − 4C2, where B2 = α1 + β1 + α1u1/β1 > 0 and C2 = α1(1 − β1). If E1 exists
then C2 > 0 and therefore Re(λ2,3) < 0. Thus, E1 is locally asymptotically stable if λ1 < 0, that is
when

ω > ω̃. (3.5)

Notice that if E1 exists and is locally asymptotically stable, then E0 is unstable and E∗ does not
exist.

(iii) The characteristic equation of the Jacobian matrix of the system (1.3) at E∗ is given by the fol-
lowing cubic equation

λ3 + ϕ1λ
2 + ϕ2λ + ϕ3 = 0 (3.6)

where

ϕ1 =m1 + m2 − m3,

ϕ2 =m1m2 + m4 + m5 − m3m6,

ϕ3 =m1m5 + β2m4 − m3(m4 + β1m7),

m1 =u∗2 + α1 +
ωu∗3

(ω + u∗1)2 ,

m2 =β1 + β2,

m3 =
α2u∗1

(ω + u∗1)
,

m4 =α1(u∗1 + 2u∗2 − 1),
m5 =β1β2,

m6 =α1 + β1 + u∗2,

m7 =m6 − β1.

The stability of E∗ can be determined by the Routh-Hurwitz criterion [33], i.e. E∗ is locally
asymptotically stable if ϕi > 0, i = 1, 3 and

ϕ1ϕ2 − ϕ3 =(m1 + m2 − m3)(m1m2 + m4 + m5 − m3m6) − (m1m5 + β2m4

− m3(m4 + β1m7))

=m3m6

(
1 +

(
m1m2 + m4

m3m6
− 1

)
(m1 + m2)

)
+ m3(β1m7 − m1m2)

− β2m4 + m5(m2 − m3) > 0.

�

From conditions (3.1) and (3.4), we note that if the intrinsic growth rate of immature prey is less
than the death rate of mature prey then the extinction point E0 will be locally asymptotically stable.
Otherwise, the predator-free point E1 exists whenever the death rate of mature prey is less than the
intrinsic growth rate of immature prey. Thus, the existence of predator-free point E1 and the stability
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of the extinction point E0 are dependent on both intrinsic growth rate of immature prey and the death
rate of mature prey. Next, condition (3.2) says that the coexistence equilibrium E∗ exists if the death
rate of the predator is less than the predation rate.

Based on the existence and stability results of equilibrium points of the system (1.3), we remark
that when ω > ω̃ then the coexistence equilibrium point (E∗) does not exist. In this case, parameter β1

is a threshold: if it is greater than unity then the asymptotically stable extinction equilibrium point (E0)
is the unique equilibrium point; if it is less than unity then E0 becomes unstable and there appears an
asymptotically stable equilibrium point (E1). Hence the system (1.3) undergoes a forward bifurcation
at β1 = 1. In fact a forward bifurcation may also be observed when β1 < 1, where in this case ω
behaves as the threshold parameter. Since β1 < 1, the extinction point (E0) is unstable. Furthermore,
when ω > ω̃, equilibrium point E1 is asymptotically stable and E∗ does not appear. On the contrary,
if ω < ω̃ then E1 becomes unstable and E∗ exists if α2 > β2. If the Routh-Hurwitz criterion for the
characteristics equation (3.6) is fulfilled then E∗ is asymptotically stable. Consequently, we have the
following corollary about the occurrence of bifurcation in the system (1.3).

Corollary 3.2. (i) If ω > ω̃ then the system (1.3) has a forward bifurcation from E0 to E1 around
β = 1.

(ii) If β1 < 1, α2 > β2, ϕ1 > 0, ϕ3 > 0 and ϕ1ϕ2 > ϕ3 then the system (1.3) undergoes a forward
bifurcation at ω = ω̃ from E1 to E∗.

4. Existence of Hopf-bifurcation

In this section, we study the Hopf-bifurcation around the coexistence equilibrium point E∗ =

(u∗1, u
∗
2, u

∗
3) of the system (1.3). We consider ω and α2 as the bifurcation parameters. ω = n1/K and

α2 = cv0/r are chosen as the bifurcation parameters because r and K are strongly related to the growth
of immature prey, which controls energy input in the predator-prey system. Furthermore a, v0 and n1

are important parameters governing the exchange of energy from prey to predator.

Theorem 4.1. The stage-structure predator-prey system (1.3) undergoes Hopf-bifurcation around the
coexistence equilibrium E∗ when ω passes through ω∗ where ω∗ satisfies ϕ(ω∗) = ϕ1(ω∗)ϕ2(ω∗) −
ϕ3(ω∗) = 0, ϕi(ω∗) > 0 for i = 1, 2 and ϕ1(ω∗)ϕ′2(ω∗) + ϕ2(ω∗)ϕ′1(ω∗) − ϕ′3(ω∗) , 0.

Proof. At ω = ω∗, by the condition ϕ(ω∗) = 0, the characteristic equation (3.6) can be written as

(λ2 + ϕ2)(λ + ϕ1) = 0. (4.1)

If ϕ1 = m1 + m2 − m3 > 0 and ϕ2 = m1m2 + m4 + m5 − m3m6 > 0, then the roots of the equation (4.1)
are λ1 = −ϕ1 < 0 and λ2,3 = i

√
ϕ2. For any ω, the characteristic roots can generally be written as

λ1(ω) = −ϕ1(ω), and λ2,3 = µ1(ω)± iσ1(ω). By substituting λ(ω) = µ1(ω) + iσ1(ω) into equation (4.1),
we have

ζ1(ω) + iζ2(ω) = 0, (4.2)

where

ζ1(ω) =µ3
1(ω) + ϕ1(ω)µ2

1(ω) − 3µ1(ω)σ2
1(ω) − ϕ1(ω)σ2

1(ω) + ϕ2(ω)µ1(ω) + ϕ1(ω)ϕ2(ω)

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4080–4097.
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ζ2(ω) =3µ2
1(ω)σ1(ω) + 2ϕ1(ω)µ1(ω)σ1(ω) − σ3

1(ω) + ϕ2(ω)σ1(ω).

It is obvious that equation (4.2) is satisfied by ζ1(ω) = 0 and ζ2(ω) = 0. Furthermore, by taking the
derivate of equation (4.2) with respect to ω, we get

dζ1

dω
=P(ω)µ′1(ω) − Q(ω)σ′1(ω) + R(ω) = 0

dζ2

dω
=Q(ω)µ′1(ω) + P(ω)σ′1(ω) + S (ω) = 0,

(4.3)

where

P(ω) =3(µ2
1(ω) − σ2

1(ω)) + 2ϕ1(ω)µ1(ω) + ϕ2(ω),
Q(ω) =6µ1(ω)σ1(ω) + 2ϕ1(ω)σ1(ω),
R(ω) =ϕ′1(ω)(µ2

1(ω) − σ2
1(ω)) + ϕ′2(ω)µ1(ω) + ϕ′3(ω),

S (ω) =2ϕ′1(ω)µ1(ω)σ1(ω) + ϕ′2(ω)σ1(ω).

From system (4.3), we can show that

µ′1(ω) = −
P(ω)R(ω) + Q(ω)S (ω)

P2(ω) + Q2(ω)
. (4.4)

We notice that µ1(ω∗) = 0, σ1(ω∗) =
√
ϕ2(ω∗) and

P(ω∗) = − 2ϕ2(ω∗),

Q(ω∗) =2
√
ϕ2(ω∗)ϕ1(ω∗),

R(ω∗) = − ϕ2(ω∗)ϕ′1(ω∗) + ϕ′3(ω∗),

S (ω∗) =
√
ϕ2(ω∗)ϕ′2(ω∗).

Therefore the following equation is obtained(
d(Re(λ))

dω

)∣∣∣∣∣∣
ω=ω∗

= µ′1(ω∗) = −

(
ϕ1(ω∗)ϕ′2(ω∗) + ϕ2(ω∗)ϕ′1(ω∗) − ϕ′3(ω∗)

2(ϕ2
1(ω∗) + ϕ2(ω∗))

)
. (4.5)

Thus, if ϕ1(ω∗)ϕ′2(ω∗) + ϕ2(ω∗)ϕ′1(ω∗)− ϕ′3(ω∗) , 0, then transvesality condition is satisfied, and Hopf-
bifurcation occurs when ω passes through ω = ω∗. �

According to Theorem 4.1, there exists a Hopf bifurcation in the stage-structure predator-prey
model (1.3) where the Hopf bifurcation is controlled by ω. In fact, using the same argument as in
the proof of Theorem 4.1, we can show that the Hopf bifurcation can also be controlled by parameter
α2. The possibility of the Hopf bifurcation occurance is stated in the following theorem.

Theorem 4.2. The stage-structure predator-prey system (1.3) undergoes Hopf-bifurcation around the
coexistence equilibrium E∗ when α2 passes through α∗2 where α∗2 satisfies ϕ(α∗2) = ϕ1(α∗2)ϕ2(α∗2) −
ϕ3(α∗2) = 0 provided that ϕi(α∗2) > 0 for i = 1, 2 and ϕ1(α∗2)ϕ′2(α∗2) + ϕ2(α∗2)ϕ′1(α∗2) − ϕ′3(α∗2) , 0.
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Figure 1. (Color figure online) Phase-portraits of the system (1.3) with parameter values:
α1 = 0.5, α2 = 0.3, β2 = 0.3, ω = 0.03, and (a) β1 = 1.01, (b) β1 = 0.3. The red and green
circles represent unstable and stable equilibrium point, respectively.

5. Numerical simulations

For graphical confirmation of the previous analytical results, several numerical simulations have
been carried out. The model (1.3) is solved using the fourth-order Runge-Kutta method with some dif-
ferent initial conditions and some hypothetical values of the parameters. We first consider the following
parameter values: α1 = 0.5, α2 = β2 = 0.3, ω = 0.03 and β1 = 1.01. Because β1 > 1, Theorem 3.1 says
that the extinction of population point (E0) is the only equilibrium point which is locally asymptotically
stable. This can be understood from the fact that in this case β1 = δ0

r > 1, i.e. the death rate of mature
prey is larger than the intrinsic growth rate of immature prey. Hence the system will asymptotically be
convergent to the extinction equilibrium point. The behavior of this case is depicted in Figure 1.(a).
Next, we carry out a simulation using the same previous parameter values, except β1 = 0.3. In addition
to the unstable extinction of population point (E0), system (1.3) also has the predator-free equilibrium
E1 = (0.2625, 0.4375, 0.0). Since α2 = β2, we have ω̃ = 0 and therefore ω > ω̃. Based on Theorem
3.1, E1 is asymptotically stable. The case of α2 = β2 is equivalent to the case of cv0 = δ1. Hence, from
the third equation in the system (1.2), we have that the per capita growth rate of predator is less than
the predator death rate. This explains the extinction of predator population. The numerical solutions
which describe this situation is plotted in Figure 1.(b). To see a complete view of the dynamics of
the system (1.3) with parameter values α1 = 0.5, α2 = β2 = 0.3, and ω = 0.03, in Figure 2 we plot
the equilibrium densities of immature and mature prey as function of β1. The equilibrium density of
predator in this case is zero and thus it is not shown in the picture. Figure 1 shows that if β1 < 1 then E0

is unstable while E1 is stable. On the other hand, when β1 > 1, E1 disappears and E0 becomes stable.
Thus, the system (1.3) undergoes a forward bifurcation.

We now choose α1 = α2 = 0.5 and β1 = β2 = 0.3. Using Theorem 4.1, we can check that the system
undergoes a Hopf bifurcation around E∗ where the bifurcation point is at ω∗ = 0.03989. To verifiy the
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Figure 2. (Color figure online) The forward bifurcation diagram from E0 to E1 for system
(1.3). The red and blue lines represent the equilibrium point E0 and E1, respectively. The
dashed-line indicates unstable equilibrium while the solid-line indicates stable equilibrium.

existence of Hopf bifurcation numerically, we take two different values of ω, i.e. ω = 0.03 < ω∗ and
ω = 0.04 > ω∗. For ω = 0.03, we find that the system (1.3) has coexistence equilibrium point E∗ =

(0.045, 0.075, 0.072), with ϕ1 = 1.2617 > 0 and ϕ3 = 0.0338 > 0, but ϕ1ϕ2 − ϕ3 = −0.0323 < 0. Since
the Routh-Hurwitz criterion is not satisfied, the coexistence equilibrium point is unstable. However, for
ω = 0.04, the coexistence equilibrium point E∗ = (0.06, 0.1, 0.09) is stable because the Routh-Hurwitz
criterion is satisfied, i.e. ϕ1 = 1.26 > 0, ϕ3 = 0.0324 > 0 and ϕ1ϕ2 − ϕ3 = 0.00036 > 0. The numerical
solutions of the system (1.3) for ω = 0.03 and ω = 0.04 are shown in Figure 3. It can be seen in
this figure that our numerical solutions are convergent to a periodic solution when ω = 0.03 < ω∗ and
convergent to E∗ when ω = 0.04 > ω∗. This behavior indicates that the coexistence equilibrium point
(E∗) changes its stability, i.e. E∗ is unstable and convergent to a limit cycle whenω < ω∗ and it becomes
asymptotically stable if ω > ω∗. In other words, the system (1.3) experiences a Hopf bifurcation driven
by parameter ω. Figure 3 gives an indication that the Hopf bifurcation is supercritical because the limit
cycle is stable,

As stated in Theorem 4.2, the Hopf bifurcation can also be controlled by parameter α2. To show
this behavior we perform simulation using α1 = 0.5, β1 = β2 = 0.3 and ω = 0.03. The critical α∗2
for the occurance of Hopf bifurcation can be determined using Theorem 4.2, where in this case we
get α∗2 = 0.5822. Using Theorem 3.1, it can be verified that the coexistence equilibrium point (E∗) is
unstable for the case of α = 0.55, and it is asymptotically stable for α = 0.59. As depicted in Figure 4,
such stability properties coincide with our numerical simulations. It is clearly seen in Figure 4.(a) that
for α2 = 0.55 < α∗2, E∗ is unstable and the solutions converge to a limit cycle (periodic solution). If we
take α2 = 0.59 > α∗2, then the solution is convergent to E∗, see Figure 4.(b). From Figure 4, we also
see the occurance of (supercritical) Hopf bifurcation controlled by α2.

To see the detail dynamics of the system (1.3) with parameter α1 = 0.5, β1 = 0.3 and β2 = 0.3,
we plot the stability region in (ω, α2)−plane, see Figure 5. In this picture we see that there are three
different regions: the cyan region represents the stability area of E1 (E0 exists but it is unstable, E∗ does
not exist); the green region represents the stability area of E∗ (E0 and E1 exists but they are not stable);
and the yellow region corresponds to the stable limit cycle (all the three equilibrium points exists
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Figure 3. (Color figure online) Phase-portraits of the system (1.3) where α1 = α2 = 0.5, β1 =

β2 = 0.3, and (a) ω = 0.03, (b) ω = 0.04. The red and green circles represent unstable
and stable equilibrium point, respectively. A solution with an initial value, which is close to
equilibrium point E0, initially approaches equilibrium point E1 but then continues to move
towards the stable limit cycle (a) or equilibrium point E∗ (b).

Figure 4. (Color figure online) Phase-portraits of the system (1.3) where α1 = 0.5, β1 = β2 =

0.3, ω = 0.03, and (a) α2 = 0.55, (b) α2 = 0.59. The red and green circles represent unstable
and stable equilibrium point, respectively. A solution with an initial value, which is close to
equilibrium point E0, initially approaches equilibrium point E1 but then continues to move
towards the stable limit cycle (a) or equilibrium point E∗ (b).
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Figure 5. (Color figure online) Bifurcation diagram in (ω, α2)-plane for the system (1.3) with
parameter α1 = 0.5, β1 = 0.3 and β2 = 0.3. The black circles correspond to the parameter
values used in Figure 1.(b), Figure 3 and Figure 4, respectively.

but they are unstable). We identify the occurrence of a Hopf bifurcation as a change from the green
region to the yellow region due to the changes of parameters ω or α2. We also notice the occurrence
of a forward bifurcation caused by the changes of α2, see the changes from cyan region to green
region. To provide a clearer illustration, we plot a bifurcation diagram for system (1.3) with parameter
α1 = 0.5, β1 = β2 = 0.3 and ω = 0.03, see Figure 6. From this figure we can see the appearance of
transcritical bifurcation which is caused by the changing of the value of α2. When α2 < α1

2 = 0.3343,
the equilibrium point E1 is asymptotically stable. On the contrary, if α1

2 < α2 < α2
2 = 0.3922 then

equilibrium point E1 becomes ustable and equilibrium point E∗ is asymtotically stable. In Figure 6 we
also observe that the system (1.3) undergoes 2-Hopf bifurcation. In this case, the equilibrium point
E∗ is asymptotically stable for α1

2 < α2 < α2
2 = 0.3922 or α2 > α∗2 = 0.5822, and it is unstable for

α2
2 < α2 < α

∗
2. In the latter case, the system (1.3) is convergent to a periodic solution or limit cycle.

6. Conclusion

A Rosenzweig-MacArthur predator-prey model with stage-structure in prey has been discussed. It
was shown that the proposed model has three equilibrium points, i.e. the extinction of population
(E0), the predator-free point (E1), and the coexistence point (E∗). All of these equilibrium points are
conditionally asymptotically stable. Our analysis also showed that the proposed model exhibits a Hopf-
bifurcation which can be driven by (ω) or (α2). Furthermore, the proposed model may also undergo a
forward bifurcation for suitable parameter values. The analytical findings have been confirmed by our
numerical simulations.
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