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Abstract: Objective: This study was aimed to identify prognostic factors in glioma by analysis of the 
gene expression and DNA methylation data. Methods: The RNAseq and DNA methylation data 
associated with glioma were downloaded from GEO and TCGA databases to analyze the 
differentially expressed genes (DEGs) and methylated genes between tumor and normal tissues. 
Function and pathway analyses, co-expression network and survival analysis were performed based 
on these DEGs. The intersection genes of DEGs and differentially methylated genes were obtained 
followed by function analysis. Results: Total 2190 DEGs were identified between tumor and normal 
tissues, which were significantly enriched in neuron differentiation associated functions, as well as 
ribosome pathway. There were 6186 methylation sites (2834 up-regulated and 3352 down-regulated) 
with significant differences in tumor vs. normal. In the constructed co-expression network, DPP6, 
MAPK10 and RPL3 were hub genes. Survival analysis of 20 DEGs obtained 18 prognostic genes, 
among which 9 were differentially methylated, such as LHFPL tetraspan subfamily member 3 
(LHFPL3), cadherin 20 (CDH20), complexin 2 (CPLX2), and tenascin R (TNR). The intersection of 
DEGs and differentially methylated genes (632 genes) were significantly enriched in functions of 
neuron differentiation. Conclusion: DPP6, MAPK10 and RPL3 may play important roles in 
tumorigenesis of glioma. Additionally, methylation of LHFPL3, CDH20, CPLX2, and TNR may 
serve as prognostic factors of glioma. 
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1. Introduction 

Gliomas are the most malignant and aggressive cancers of the central nervous system 
originating from glial cells [1], the vast majority of which are characterized by diffuse infiltrative 
growth into the surrounding central nervous system parenchyma [2]. Gliomas include 
oligodendrogliomas, ependymomas and astrocytomas. Malignant gliomas are classified by the World 
Health Organization as either grade III and IV tumors or grade IV and IV tumors [3], which are 
treated with radiation and temozolomide, with only a minor benefit in survival time [4]. Therefore, 
understanding the molecule mechanisms of malignant gliomas and translating this understanding into 
treatment is crucially needed. 

Numerous genes are demonstrated to be genetically altered in gliomas [5]. For instance, EGFR, 
RTEL1, TP53, and TERT have been reported to increase the risk for all types of glioma. CCDC26 
and PHLDB1 are implicated in gliomas with isocitrate dehydrogenase mutations [6,7]. Recent study 
has found that deregulation of cell functions in cancer is encoded in both the genome and epigenome 
[8]. DNA methylation has nowadays emerged a key regulator of gene transcription [9]. Many studies 
have reported alterations of DNA methylation in gliomas [10–12]. Kroes et al. [13] found that 
epigenetic modulation of ST6Gal1 expression played an important role in the glioma phenotype. 
Majchrzak-Celińska et al. [14] reported that SFRP1 promoter methylation could serve as a potential 
indicator of the survival of glioma patients. We speculated that the genes that are both differentially 
expressed and methylated in gliomas may play a key role in glioma progression. 

In this study, we downloaded the RNAseq and DNA methylation data associated with glioma 
from GEO and TCGA databases to analyze the differentially expressed genes (DEGs) and 
methylated genes between tumor and normal tissues. These genes may play a causal role in 
gliomagenesis, and also have clinical and prognostic importance. 

2. Materials and methods 

2.1. Data acquisition 

The glioma associated RNAseq and DNA methylation data [1] were download from both GEO 
database [15] (http://www.ncbi.nlm.nih.gov/geo/) and TCGA (https://xenabrowser.net/datapages/) 
dataset in UCSC Xena database [16]. For the RNAseq data (GSE15222) in GEO, there were 187 
normal brain tissue samples (normal), and the gene expression was quantified using Sentrix 
humanref-8 BeadChip (GPL2700). The data in UCSC Xene database were normalized gene 
expression matrix, which contained 530 tumor samples. For the DNA methylation samples 
(GSE74486) in GEO, the corresponding platform was Illumina Infinium HumanMethylation450, and 
58 normal samples were selected. The DNA methylation dataset downloaded from the UCSC Xena 
database contained 530 tumor samples. Additionally, the clinical phenotypic data of samples were 
downloaded. 
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2.2. Differential expression analysis 

RNAseq data matrixes were normalized with betaqn method in R. Based on the normalized 
dataset, limma package [17] (version 3.10.3) was used for differential analysis of tumor vs. normal, 
and paired t-test was used for significance test. All genes were tested to obtain the corresponding p 
values. Benjamini & Hochberg (BH) method was used for multiple test correction, and the corrected 
p value was adj.P.Value. The threshold values were set as adj.P.Value < 0.01 and |log fold change 
(FC)| > 2. 

2.3. Functional and pathway enrichment analyses of DEGs 

DAVID [18] (version 6.7, https://david-d.ncifcrf.gov/) was used for gene ontology (GO) 
analysis to understand the functions of DEGs in terms of biological process (BP), cellular component 
(CC) and molecular function (MF). Results were visualized using GOplot [19]. Based on Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database [20], pathway analysis was performed using 
Gene set enrichment analysis (GSEA, version 3.0) [21]. Enrichment results with significance 
threshold of adj.P.Value < 0.05 were screened. 

2.4. Co-expression analysis of DEGs 

The Pearson correlation coefficients between the DEGs pairs were calculated and the correlation 
test was carried out by using corr.test method of psych [22] (parameter: ci = F, adjust = "BH"). 
Multiple test correction was performed by BH method. Gene pairs of |R| > 0.9 and p value < 0.05 
were screened, and the co-expression network was constructed using Cytoscape software [9] (version 
3.7.0). 

2.5. Prognostic gene screening 

The prognosis information of the corresponding patients, including overall survival (OS) and 
OS status, was collected from the downloaded clinical data. The DEGs was used as candidate genes, 
and their expression medians were used as the boundary value to divide the samples into high 
expression and low expression groups. Kaplan-Meier (K-M) survival analysis was conducted by 
combining with the gene expression values and prognostic information, and the K-M curves were 
drawn. Significance of p value was calculated by Logrank test, and mRNA with p value < 0.05 was 
preliminarily screened. 

2.6. Differential methylation sites analysis 

The methylation data matrixes were normalized with betaqn method in R. Based on the 
normalized dataset, differential analysis of tumor vs. normal was performed using the limma package 
followed by significance test using the paired t test. The obtained p values were corrected by multiple 
tests using BH method, obtaining adj.P.Value. The threshold values were set as adj.P.Value < 0.05 
and |log FC| > 1. 

The coordinates of the above selected differential methylated chips on the genes (including the 
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corresponding genes, chromosomes, initiation, and termination sites) were downloaded from UCSC 
Xena database (illuminaMethyl450_hg19_GPL16304_TCGAlegacy), and the corresponding version 
of the genome annotation was downloaded from GENCODE database 
(https://www.gencodegenes.org/human/release_19.html). The methylation sites are located on the 
genes by comparing the coordinates of the methylation sites with those of the genes, including exon, 
intron, 5’-UTR and 3’-UTR. 

The Pearson correlation coefficients between methylated sites and gene expressions were 
calculated in R, and multiple test correction was performed by Bonferroni method. The threshold 
values were set as adj.P.Value ≤ 0.05 and |r| ≥ 0.7. In addition, the relationships among gene 
expressions, degree of methylation and histological types were analyzed by Analysis of Variance 
(AOV) and Bonferroni methods in R. 

2.7. Key genes identification 

The genes that were significantly differentially expressed and differentially methylated between 
tumor and normal samples were select. We used DAVID database to analyze the functional 
annotation of these genes, and visualized the results with GOplot tool. 

3. Results 

3.1. Differential expression analysis 

The number of annotated genes in TCGA and GEO databases was 20,530 and 16,754, 
respectively, with a total of 10,678 annotated genes. Among these annotated genes, there were a total 
of 2190 DEGs between tumor and normal groups, including 1001 up-regulated and 1189 
down-regulated genes in tumor group (Figure 1A). The top 10 up- and down-regulated genes are 
shown in Figure 1B. 

 

Figure 1. (A) Volcano plot of differentially expressed genes. The threshold value was set 
as |log2(FC)| > 2 and adj.P.val < 0.01. Red represents up-regulated gene, while green 
represents down-regulated gene. (B) Heat maps of the top10 up- and down-regulated 
differentially expressed genes (in ascending order of adj.P.Value). 
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3.2. GO enrichment analysis 

GO enrichment analysis was conducted on the DEGs obtained above, and the results showed 
that 23 BP, 16 CC and 2 MF terms were significantly enriched (adj.P.Value < 0.05). For BP, CC and 
MF, the results of the top 5 are presented in Figure 2. DEGs were significantly enriched in neuron 
differentiation, neuron development, axonogenesis, transmission of nerve impulse, cell 
morphogenesis, translation, ribosome, cytosolic ribosome, cell-cell signaling, and homophilic cell 
adhesion. 

 

Figure 2. Gene Ontology (GO) functions enriched by differentially expressed genes. (A) 
The most significant 5 terms of BP, CC and MF were selected to show their differential 
expression (z-score), significance (FDR) and the number of corresponding genes (circle 
size). (B) For the first 8 GO terms, the phylogenetic tree was constructed by clustering 
genes according to the occurrence of genes in term. 

3.3. Pathway analysis 

According to GSEA enrichment analysis of pathways, we identified a total of 54 significantly 
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enriched pathways (adj.P.Value < 0.05), including 40 up-regulated pathways (normalized enrichment 
score, NES > 0) and 14 down-regulated pathways (NES < 0) (Figure 3A and 3B). KEGG ribosome 
had the highest NES in the significantly up-regulated pathways (Figure 3C). In addition, the 
significantly up-regulated pathways also included oxidative phosphorylation, protein export, and 
DNA replication. The most significantly down-regulated pathway was neuroactive ligand receptor 
interaction (Figure 3D). Moreover, many signal transduction pathways were significantly 
down-regulated, such as the Ras signaling pathway, sphingolipid signaling pathway, and CAMP 
signaling pathway. 

 

Figure 3. Gene set enrichment analysis (GSEA) pathways enriched by differentially 
expressed genes. (A) The dotplot of partially enriched pathways. (B) The joyplot of the 
up- and downregulated pathways. (C) The up-regulated pathway of ribosome. (D) The 
down-regulated pathway of neuroactive ligand receptor interaction. 

3.4. Co-expression network analysis 

For the 2190 DEGs, the correlation coefficients and significance degree of gene pairs were 
calculated based on their expression levels in different samples. The gene pairs with |r| > 0.9 and 
adj.P.Value < 0.05 were screened. The visualized network is shown in Figure 4. There were 440 
nodes (genes) in this co-expression network, among which 435 genes were up-regulated and only 5 
genes were down-regulated. As can be seen from Figure 4, there were 5 subnetworks, among which 
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98.9% of the genes (435/440) were located in the same subnetwork. In this network, there were some 
high-connectivity genes (hub nodes), such as dipeptidyl peptidase like 6 (DPP6), mitogen-activated 
protein kinase 10 (MAPK10), RAB39B, member RAS oncogene family (RAB39B) and ribosomal 
protein L3 (RPL3), whose co-expressed genes are 285, 178, 110 and 109, respectively. 

 

Figure 4. The constructed co-expression network. Red represents up-regulated genes and 
green represents down-regulated genes. 

3.5. Gene expression and prognosis 

The downloaded TCGA clinical data contained the information of 515 patients, where the 
survival status and the corresponding survival time were extracted, and the mislabeled cases were 
deleted. Finally, the clinical information of 514 patients was retained. According to the log FC values 
of DEGs, the first 10 genes that were up-regulated and down-regulated were selected respectively, 
and the KM survival curves were plotted by combining the expression values of these genes in 
different samples and the clinical information (Figure 5). Based on the threshold of p value < 0.05, 
18 genes (except DPP6 and VSIG1) were significantly correlated with the survival time of the 
patients. 
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Figure 5. Gene expression related survival curves. The figure shows the survival curves 
of the 20 genes. The black curve and the red curve represent the low-expression group 
and the high-expression group, respectively. 

3.6. Differential methylation sites analysis 

The methylation sites of TCGA data set and GEO data set were 485,577 and 482,421, 
respectively, and the number of sites shared by the two datasets was 482,421. The differential 
analysis of the methylation levels of these sites showed that there were 6186 methylation sites (2834 
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up-regulated and 3352 down-regulated) with significant differences in tumor vs. normal (Figure 6A). 
These methylation sites involved a total of 4898 genes, and the intersection (632 genes) of these 
genes with the DEGs is shown in Figure 6B.  

The above 632 simultaneous differentially expressed and DNA differentially methylated genes 
were involved in 1010 methylation sites and constituted a total of 1116 pairs of methylation site-gene. 
The results showed that most methylation sites (77%) were located in noncoding regions (UTR and 
intron), and only 23% methylation sites were located in exon region (Figure 6C). In addition, the 
number of methylation sites located in the 5 'UTR zone (30%) was significantly higher than that in 
the 3' UTR zone (7%). In addition, based on the adj.P.Value ≤ 0.05 and |r| ≥ 0.7, a total of 25 pairs of 
methylation-gene were screened, including 7 positive correlations and 18 negative correlations 
(Table 1). 

 

Figure 6. (A) Volcano plot of differential methylation sites. The threshold value was set 
as |log2(FC)| > 1 and adj.P.Value < 0.05. Red indicates the site with the up-regulated 
methylation degree, while green indicated the down-regulated site. (B) Venn diagram of 
differentially expressed genes and differentially methylated genes. (C) The distribution of 
methylation sites in genes. Blue represented 3’-UTR region. Red represented 5’-UTR 
region. Green represented exon region. Purple represented intron region. 
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Table 1. Correlation analysis of methylation degree and gene expression 

correlation methylation site gene cor adj.P.Value 

positive 

cg24812837 TLX1 0.85 1.05E–145 
cg02155658 PAX1 0.794 2.51E–113 
cg14038391 TLX1 0.776 6.85E–105 
cg06654901 PAX1 0.753 7.30E–95 
cg18144593 VAX2 0.718 3.84E–82 
cg17101450 TLX1 0.716 1.61E–81 
cg03417559 LHX5 0.713 2.89E–80 

negative 

cg27457941 RBP1 –0.847 2.75E–144 
cg06543018 RBP1 –0.847 1.16E–143 
cg21816330 RAB34 –0.844 3.63E–142 
cg23363832 RBP1 –0.837 2.70E–137 
cg18686527 RAB34 –0.835 9.12E–136 
cg06208339 RBP1 –0.831 2.35E–133 
cg19485911 ACCN4 –0.749 2.66E–93 
cg27407147 LOC254559 –0.748 7.82E–93 
cg01316516 LDHA –0.747 9.52E–93 
cg00713925 C1orf85 –0.742 1.09E–90 
cg00210562 LOC254559 –0.74 6.60E–90 
cg03628148 LDHA –0.723 8.87E–84 
cg03514215 MYT1 –0.722 1.94E–83 
cg09557313 LECT1 –0.72 1.14E–82 
cg03900542 DEDD2 –0.715 3.33E–81 
cg02927519 TUFT1 –0.713 2.37E–80 
cg08861826 LDHA –0.705 1.02E–77 
cg21065196 LOC254559 –0.702 1.10E–76 

3.7. The correlation among gene expressions, degree of methylation and histological types 

Combined with the histological types of TCGA clinical information, a total of 529 valid samples 
were collected, including 197 Astrocytoma, 198 Oligodendroglioma, and 134 Oligoastrocytoma. 
After analyzing, 256 gene expression values and methylation at 280 sites were significantly 
associated with histological types (adj.P.Value < 0.05, Supplementary table 1). Figure 7 showed that 
top four methylation sites (cg02132760, cg14243481, cg14640066, and cg25766425) and top four 
genes (CPLX2, MYT1L, NOG, and PSD) were closely related to Astrocytoma, Oligodendroglioma, 
and Oligoaastrocytoma. 

3.8. Functional analysis of genes corresponding to the differential methylation sites 

Functional analysis of these 632 genes showed that a total of 21 BP, 8 CC and 6 MF terms were 
significantly enriched (Figure 8). These genes were mainly involved in functions of neuron 
differentiation, neuron development, cell morphogenesis, cell morphogenesis involved in neuron 
differentiation, cell-cell adhesion, cell-cell signaling, cell junction, transcription regulator activity, 



3919 

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 3909–3924. 

transcription factor activity, etc. 

 

Figure 7. The top 4 methylation sites and top 4 genes were closely correlated with 
histological types. Red represented Astrocytoma. Blue represented Oligodendroglioma. 
Green represented Oligoaastrocytoma. 

 

Figure 8. (A) The most significant 5 terms of BP, CC and MF were selected to show 
their differential expression (z-score), significance (FDR) and the number of 
corresponding genes (circle size). (B) For the first 8 GO terms, the phylogenetic tree was 
constructed by clustering genes according to the occurrence of genes in term. 
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4. Discussions 

In this study, 2190 DEGs were identified between tumor and normal tissues, which were 
significantly enriched in neuron differentiation associated functions, as well as ribosome pathway. In 
the constructed co-expression network, DPP6, MAPK10 and RPL3 were hub genes. Survival 
analysis of 20 DEGs obtained 18 prognostic genes, among which 9 were differentially methylated, 
such as LHFPL tetraspan subfamily member 3 (LHFPL3), cadherin 20 (CDH20), complexin 2 
(CPLX2), and tenascin R (TNR). In addition, it was found that most methylation sites (77%) were 
located in noncoding regions (UTR and intron), and only 23% methylation sites were located in exon 
region. A total of 25 pairs of methylation-gene were screened, including 7 positive correlations and 
18 negative correlations. After analyzing, 256 gene expression values and methylation at 280 sites 
were significantly associated with Astrocytoma, Oligodendroglioma and Oligoastrocytoma. 

DPP6 is a regulatory subunit of the voltage-gated A-type Kv4.2 potassium channel complex 
expressed in neuronal dendrites and soma [23]. DPP6 has been somatically altered in pancreatic 
cancers and plays a role in pancreatic cancer invasion [24]. MAPK10 is a member of the MAPK 
gene family, which has been found to be implicated in the proliferation and migration process of 
tumor cells [25,26]. A recent study reported that the expression level of MAPK10 gene changed 
significantly in glioma cells [27]. RPL3 encodes a ribosomal protein. It has been suggested that 
changes in the expression levels of ribosomal proteins have predictive value to distinguish cancer 
and normal cells [28]. A recent study has reported that human RPL3 can act as stress sensing 
molecule essential for cancer cell response to ribosomal stress in lung cancer cells lacking active p53 
[29]. In our study, RPL3 was enriched in ribosome pathway, an up-regulated pathway with the 
highest NES. The enhanced growth of cancer cells requires an increase in global protein synthesis 
that it is correlated with increased ribosome activity [30]. Our result further strengthened the link 
between ribosome defects and glioma progression. Taken together, we speculated that DPP6, 
MAPK10 and RPL3 may play important roles in tumorigenesis of glioma. 

Previous study had indicated that DNA methylation may be critical to the development of 
cancers, and have great potential to serve as biomarkers in predicting the prognosis and monitoring 
response to therapy [31]. In our reseach, it was found that most methylation sites (77%) were located 
in noncoding regions (UTR and intron), and only 23% methylation sites were located in exon region. 
A total of 25 pairs of methylation-gene were screened, including 7 positive correlations and 18 
negative correlations. By analyzing, 256 gene expression values and methylation at 280 sites were 
closely related to histological types. Additionally, survival analysis of 20 DEGs obtained 18 
prognostic genes, among which LHFPL3, CDH20, CPLX2 and TNR were differentially methylated. 
LHFPL3 is a member of LHFPL-like family and functions as a translocation partner of HMGIC in 
lipoma [32]. Amplification of LHFPL3 has been correlated with mesenchymal differentiation in 
gliosarcoma [33]. Additionally, alterations of LHFPL3 have been reported to be more frequent in 
high level of genomic instability, and in grade IV glioma [34]. Recently, Li et al. [35] detected 20 
pairs of glioma tissues and revealed that the expression level of LHFPL3 was significantly higher in 
glioma tissues compared with in the normal tissues. Study has reported that the survival rate of 
glioblastoma patients with LHFPL3 mutations is significantly worse than those without the 
alterations [36]. CPLX2 is a member of the complexin/synaphin family, being involved in 
synaptogenesis and regulation of the neurotransmitter release from pre-synaptic terminals in brain 
[37]. Therefore, CPLX2 plays a key role in the maintainance of normal neurological function [38]. 
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Komatsu et al. [39] have reported that CPLX2, as an important regulator of neuroendocrine function, 
is closely related to the growth of high grade lung high grade neuroendocrine tumors. A recent study 
suggested that CPLX2 was up-regulated in the glioblastoma tissues compared with normal brain 
tissues [40]. Therefore, LHFPL3 and CPLX2 may be served as potential prognostic biomarkers in 
glioma. 

In addition, CDH20 was significantly involved in GO functions associated cell adhesion. 
Cell-cell adhesion determines the cell polarity and is involves in the maintenance of tissues. 
Generally, cell-cell adhesiveness is decreased in human cancers [41]. Study has reported that changes 
in the function of cell-adhesion molecules contribute to the progression of tumors both by affecting 
cell signaling and altering the adhesion status of cells [42]. Adaptive adhesion systems have been 
revealed to mediate the invasion of glioma cells in complex environments [43]. TNR is a 
brain-specific member of the tenascin family comprising tenascins C (TNC), X, and W. TNC is the 
most prominent member of the tenascin family, and is highly expressed in glioma tissue. Growing 
evidence has indicated that TNC plays a key role in cell migration or invasion of glioma [44]. In this 
study TNR was enriched in nervous system associated functions, such as neuron differentiation. 
Recently, a study revealed that a single factor that promotes neuron differentiation can suppress cell 
growth of glioma cells [45], which suggesting the relationship between s neuron differentiation and 
occurrence of glioma. Therefore, a better understanding of the cell adhesion, migration and invasion 
molecules, such as CDH20 and TNR, may help to develop new treatment methods.  

Although these DEGs and differentially methylated genes were identified through a series of 
analyses, the results were not validated by animal or clinical experiments. Therefore, further 
experimental study is needed to confirm our findings. 

In conclusion, DPP6, MAPK10 and RPL3 may play important roles in tumorigenesis of glioma. 
Additionally, methylation of LHFPL3, CDH20, CPLX2, and TNR may serve as prognostic factors of 
glioma. 
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