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Abstract: Intra-tumor and inter-patient heterogeneity are two challenges in developing mathematical
models for precision medicine diagnostics. Here we review several techniques that can be used to
aid the mathematical modeller in inferring and quantifying both sources of heterogeneity from patient
data. These techniques include virtual populations, nonlinear mixed effects modeling, non-parametric
estimation, Bayesian techniques, and machine learning. We create simulated virtual populations in this
study and then apply the four remaining methods to these datasets to highlight the strengths and weak-
nesses of each technique. We provide all code used in this review at https://github.com/jtnardin/Tumor-
Heterogeneity/ so that this study may serve as a tutorial for the mathematical modelling community.
This review article was a product of a Tumor Heterogeneity Working Group as part of the 2018–2019
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place at the Statistical and Applied Mathematical Sciences Institute.
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Abbreviations: BX/STR: biopsy/subtotal resection; CAT: computed axial tomography; CE:
Comparative E ectiveness; CT: computed tomography; DC: dendritic cell; ECM: extracellular matrix;
EHR: electronic health records; 18F-FLT: Fluorothymidine F-18; FET-PET: fluoroethyl-l-tyrosine
positron emission tomography; GBM: glioblastoma multiforme; GTR: gross total resection; HE:
Hematoxylin and eosin stain; LGG: low-grade glioma; MRI: Magnetic Resonance Imaging; MTD:
mean tumor diameter; OV: oncolytic virus; PCV: procarbazine and vincistrine; PET: Positron
Emission Tomography; PSA: prostate-specific antigen; RCT: Randomized Controlled Trial; TMZ:
temozolomide; AE: Auto-encoder; AIC: Akaike Information Criteria; ANOVA: Analysis of Variance;
ASAP: Adjoint Sensitivity Analysis Procedure; BRATS: Brain Tumor Segmentation Challenge; CE:
Comparative Effectiveness; DG: Days Gained; DTI: Diffusion Tensor Imaging; DWMRI: Diffusion
Weighted Magnetic Resonance Imaging; Fisher-KPP: Fisher-Kolmogorov-Petrovsky-Piskunov;
FSAP: Forward Sensitivity Analysis Procedure; GAN: Generative Adversarial Networks; HMC:
Hamiltonian Monte Carlo; KL divergence: Kullback-Leibler; LETKF: Local Ensemble Transform
Kalman Filter; MAPEL: Mechanistic Axes Population Ensemble Linkage; MCMC: Markov Chain
Monte Carlo; MTL: Multi-task learning; NLME: Nonlinear Mixed Effects; ODE: Ordinary
Differential Equation; PCA: Principal Components Analysis; PDE: Partial Differential Equation;
PDF: Probability Density Function; PINN: physics-informed neural networks; PMF: Prohorov Metric
Framework; QoI: Quantity of Interest; RDE: Reaction-Diffusion-Equation; SSAE: Stacked Sparse
Autoencoder; T1Gd: T1-weighted Gadolinium contrast enhanced; T2-FLAIR: T2-weighted
FLuid-Attenuated-Inversion-Recovery; VAE: variational autoencoder; VEPART: Virtual Expansion of
Populations for Analyzing Robustness of Therapies

1. Introduction

Heterogeneity in cancer is exhibited at both the intra-tumor and inter-patient levels [1]. Intra-tumor
heterogeneity in the form of genotypic and phenotypic variability between tumor cells is present in
most solid tumors [2] and has also been identified in hematopoietic cancers such as leukemia [3, 4].
Intratumor heterogeneity is driven by the introduction of genetic [5] and epigenetic alterations
characterized by genomic instability and evolutionary selection of advantageous cell phenotypes from
the cancer cell population [5, 6]. Recent studies have revealed that genetic heterogeneity does not
necessarily correlate with phenotypic heterogeneity, since not all genetic alterations result in a
phenotypic alteration, and only a few genetic alterations provide a fitness advantage [7].

Intratumor heterogeneity is also affected by the tumor microenvironment whereby gradients of
positive and negative growth factors, such as oxygen and lactic acid, have direct effects on cell
proliferation and survival. Heterogeneous tumor microenvironments also contribute to intercellular
variability as tumor cells adaptively switch between different phenotypes, e.g., changing metabolic [8]
or migratory states, in response to the availability of nutrients. Furthermore, distinct areas of a tumor
may experience different immunologic responses which cause further heterogeneity within the tumor,
and these immunological responses can be affected by local nutrient concentrations. For example,
most solid tumors experience regions of hypoxic stress [9] which in turn shapes cell phenotype and
can induce resistance to an immune response. The presence of this intratumor heterogeneity leads to
variability in tumor response to drug treatment [10, 11] and makes predictions of tumor growth and
spread particularly challenging [12]. In the context of tumor cell invasion in glioblastoma multiforme
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(GBM), phenotypic heterogeneity is often modeled by using several equations to represent
phenotypically distinct subpopulations of the tumor. For example, this approach has been used to
model the ‘go or grow’ mechanism in which one subpopulation is more mobile and the other is more
proliferative [13, 14], or to model phenotypic switching between hypoxic and normoxic
subpopulations [15, 16].

The presence of intratumor heterogeneity is increasingly recognized as one of the primary drivers
of heterogeneity in patient outcomes. The uniqueness and ongoing evolution of each patient’s tumor
microenvironment, genetic profile, and cell phenotype composition contributes to the difficulty in
predicting the effect of cancer therapies. For example, tumor cells can change their microenvironment
to induce immunusuppression [17–19] or to protect themselves from drug therapy [20]. A
heterogeneous tumor microenvironment may also contribute to variability in drug penetration,
creating inter-cellular variability from which therapy resistant cell populations or stem cell
phenotypes can be promoted [21, 22]. A recent meeting that included cancer biologists, clinicians,
and industry representatives highlighted the central problem with cancer therapy clinical trials under
the current paradigm [7]: “...trials for which a single therapy agent is tested in a cohort with a
matched biomarker do not provide information about the impact of heterogeneity or the longitudinal
evolution of clonal or subclonal cells.”

Mathematical modeling has successfully described the heterogeneity in the growth and
progression of tumors from individual patient data [23]. For example, in [24], a mathematical model
was used with MRI data from glioma patients to estimate patient-specific rates of cell proliferation
and diffusion, revealing that patients could be stratified into those with diffuse tumors (tumors with a
small rate of proliferation as compared to the rate of diffusion) versus nodular tumors (tumors with a
high rate of proliferation as compared to the rate of diffusion). Patients with diffuse tumors (identified
through the use of a mathematical model) showed no significant survival benefit with gross total
resection (GTR) versus biopsy/subtotal resection (BX/STR). Nodular tumor patients on the other
hand do exhibit a survival benefit with GTR. This is just one example of the insight that mathematical
models provide for precision medicine, but mathematical models can also be used to predict a
subject’s response to drug treatment [25–27], infer differences in environmental factors between
metastatic and benign tumors [28], or describe how metastatic cells spread [29]. We note that a
subject here may refer to a tissue culture, mouse, or human, all of which are vital parts of the drug
development process. There is a growing trend in the mathematical modeling community to focus on
personalized mathematical models that investigate not only the mean patient response, but also how
individual patients’ responses will vary due to the above-mentioned sources of heterogeneity [25, 30].
Although large omics datasets exist due to high-throughput platforms, a current challenge is to
integrate these data into a clinical setting [31, 32]. There has been some progress in connecting
clinical and statistical investigators [33], but treatment outcomes will be improved if clinicians can
continue to be informed by refined models that account for tumor heterogeneity and predict treatment
outcomes.

The goal of this review article is to summarize mathematical, statistical, and machine learning
methods that can be utilized for estimating intra- and inter-tumor heterogeneity from longitudinal
data. This review article was a produced by members of the Tumor Heterogeneity Working Group as
part of the 2018–2019 Program on Statistical, Mathematical, and Computational Methods for
Precision Medicine which took place at the Statistical and Applied Mathematical Sciences Institute
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(SAMSI). The aim of the SAMSI program was to facilitate interdisciplinary exchange between
mathematical, statistical, computational, and health sciences researchers in developing data-driven
methodology for precision medicine. We focus on the methods for estimating phenotypic
heterogeneity from patient data with the use of a mathematical model rather than deducing genetic
heterogeneity by clustering genomics data. Methods of modeling genetic, phenotypic, cell signaling,
and spatial heterogeneity in systems biology have recently been reviewed in [34]. Here, we discuss
the applicability of the methods for quantifying phenotypic heterogeneity to cancer prognostication
and treatment. In section 2, we describe a canonical spatiotemporal Reaction-Diffusion-Equation
(RDE) model of tumor growth, the Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) model. In
section 3, we review the concepts and techniques for generating virtual populations, and their
application to the study of tumor heterogeneity. We also generate a virtual population based on the
Fisher-KPP model. This virtual population will be used in the subsequent sections for the illustration
of the different methods for quantifying tumor heterogeneity. In sections 4 and 5, we discuss
Nonlinear Mixed Effects Modeling (NLME) and non-parametric estimation for quantifying tumor
heterogeneity. We illustrate an application of these two methods to a homogeneous virtual population.
In section 6, we summarize Bayesian estimation methods. In section 7, we highlight the use of recent
machine learning techniques for the study of tumor heterogeneity. In particular, we illustrate the
application of generative adversarial networks (GANs) and variational auto-encoders (VAEs) for
generating virtual populations. While we do not utilize clinical data in this paper, the generated data
are intended to closely match the attributes of clinical data. By generating our own data, we are able
to provide an evaluation of the reviewed methods by comparing estimated parameter and data
distributions to their ground truth values. Most of the sections in this paper are accompanied by
open-source code that can be accessed in a Github repository at
https://github.com/jtnardin/Tumor-Heterogeneity/. This code provides data-driven tools for cancer
modeling researchers that can be used to develop methods for connecting tumor heterogeneity to
variability in treatment outcomes.

2. The Fisher-KPP model for tumor growth

Reaction-diffusion equation models were introduced into the cancer modeling literature in the mid
1990’s by several groups [35–37] and have been employed with preclinical and clinical data [38–42].
To generate synthetic data sets for demonstrating the performance of various methods for quantifying
tumor heterogeneity in a tutorial-like setting, we choose to focus on the Fisher-KPP Reaction-diffusion
equation model of tumor growth in the absence of treatment for this review. While this model does not
directly account for tumor necrosis, vascularity, immune response or treatment response, it is frequently
used to model tumor growth from longitudinal imaging data, so we focus on it for the rest of this review
[23, 24]. If one instead has access to a time-varying scalar data (such as tumor volume over time),
then an ordinary differential equation, such as the logistic equation, would be appropriate [30, 43, 44].
We will state a general version of the PDE model first, then in later sections we discuss simplified
parameterizations that are useful for demonstrating key statistical concepts. Several of our assumptions
are motivated by clarity instead of accuracy to any clinical or preclinical context.

The Fisher-KPP model for tumor growth in the absence of treatment takes the form of a nonlinear
reaction-diffusion type Partial Differential Equation (PDE) for a density of tumor cells n = n(x, t)
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(units number per unit volume):
∂n
∂t = ∇ · (D∇n) + ρn

(
1 − n

κ

)
(x, t) ∈ V × [0,T ]

n(x, 0) = n0(x)

Bn = 0 boundary cond.

(2.1)

The spatial domain V ⊂ Rd corresponds to the biological domain the tumor is growing in, which we
take to be the planar set V = [0, 1]2 for convenience. The units of (x, t) are centimeters and days,
respectively, and the units of all other quantities follow by dimensional analysis.

The boundary condition Bn can be taken to be Dirichlet, no-flux or free; we assume homogeneous
Dirichlet, that is n(x, t) = 0 on the domain boundary, for convenience. We also assume that the initial
condition n0 is fixed and known, that all tumors grow from an initial population of N0 = 5 cells
localized around a central point (x0, y0) = (0.5, 0.5) according to an isotropic Gaussian distribution
with standard deviation σ = 0.01cm (i.e., 100 µm):

n0(x) =
N0

2πσ2 exp
(
−

1
2σ2

(
(x − x0)2 + (y − y0)2

))
. (2.2)

In its full generality, the model parameters (D, ρ, κ) are permitted to be spatiotemporally
inhomogeneous fields, i.e., D = D(x, t), ρ = ρ(x, t), κ = κ(x, t). Such generality allows the user to
model intrapatient and intratumoral heterogeneity, but owing to statistical or computational
complexity, it is frequently convenient to restrict one or all of these fields to be constant or piecewise
constant in time and/or space. Such simplifications are assumed in sections 4–6 below, while
sections 3 and 7 maintain the spatially varying parameters. Extending the methods discussed in
sections 4–6 to the fully spatial case is a subject of future work. In any case, we assume that D, ρ, κ
are described by a p-dimensional parameter vector β ∈ Rp. For example, in the fully homogeneous
case the three coefficients in (2.1) are assumed constant, i.e., D(x, t) ≡ D0, ρ(x, t) ≡ ρ0 and κ(x, t) ≡ κ0,
and hence we can take β = (D0, ρ0, κ0) ∈ Rp with p = 3. For the spatially inhomogenous case,
(D, ρ, κ) are functions of a spatial variable x, so we must select a parameterization that is able to
generate such spatial variability using a finite-dimensional β. This is achieved by way of a field
synthesis map, which is constructed as follows. First, an appropriate set of functions X is selected for
the PDE parameter fields, say (D(x), ρ(x), κ(x)) ∈ X = XD × Xρ × Xκ, where X is a set of coefficient
functions selected to guarantee classical well-posedness of (2.1). Then, a linear or nonlinear synthesis
function Φ is constructed that maps parameter vectors β ∈ Rp to their field counterparts in X, that is
Φ : Rp → X. For instance, selecting a set of basis functions φ1(x), . . . , φpD(x), we can synthesize a
spatially inhomogenous diffusion parameter by the linear mapping:

D(x;β) = (ΦDβ)(x) =

pD∑
m=1

βmφm(x), (2.3)

where pD denotes the number of basis functions. Note that one must be careful to select φm and β such
that the resulting diffusion coefficient is non-negative. Selecting similar basis sets for the coefficients
ρ and κ results in a complete parameter-to-coefficient linear synthesis map Φ. More generally, a
nonlinear synthesis map such as the model (3.3) below can be employed. In machine learning, a field
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synthesis map is analogous to a generative model, such as those described in section 7, that produces
samples from a distribution by feeding a latent noise vector through a neural network.

To model both population heterogeneity and patient-specific uncertainty we treat the parameter
vector β as random, with distribution Pβ. For the homogeneous parameter case, β is a
three-dimensional random vector. In the more general spatially inhomogeneous case, β is a
p-dimensional random vector, where p ≥ 3 is the total number of parameters employed to describe
the spatial variability. The synthesis map Φ then allows us to treat the PDE coefficients (D, ρ, κ) as
spatial random fields, since they are a function of both a random component (β) and a spatial index
x ∈ V . More explicitly, denote a realization of the random vector β as βω. Then, we can express
(D, ρ, κ) as a vector-valued random field as follows:

(D, ρ, κ) : V ×Ω→ R3, (x, ω) 7→ (D(x, βω), ρ(x, βω), κ(x, βω)). (2.4)

The induced probability distribution of the coefficient fields is, by construction of the synthesis map,
guaranteed to be supported in a set X of functions such that (2.1) is well-posed for all (or almost all) β.
For example, we can require that for almost all β, the synthesized carrying capacity κ(β) satisfies
κ(x;β) ≥ κ0 > 0 for all x ∈ V . Note that the ubiquitous Gaussian random field model does not satisfy
such a condition; we discuss a particular non-Gaussian random field model below that does provide
such a guarantee, and refer readers to [45–47] for a more complete background on the theory of random
and stochastic differential equations. Note that we have been careful to ensure that (2.1) can be treated
path-wise, i.e., without resorting to the theory of stochastic calculus. See [48] for a discussion of
the more general case where equations similar to (2.1) are treated in a fully statistical manner using
functional calculus.

We remark that, to accurately infer a general random field D, ρ, κ as a random function of spatial
coordinate x from clinical data requires a large dataset, curated from a large patient population. To our
knowledge, such a dataset is not currently available. However we can simulate these random fields and
ensure these fields are consistent with the available data, by using statistical methods to create virtual
patients and virtual populations.

In section 3 below, we will introduce the concept of a virtual patient. In the context of the
model (2.1), each realization of β ∼ Pβ corresponds to a virtual patient. Note that the full statistical
description of Pβ may require additional population parameters to be fully specified (e.g., means and
(co)variances), and we denote these parameters by θ throughout this study and denote the probability
distribution with parameter θ as Pβ|θ, or alternately with a Probability Density Function (PDF) p(β|θ)
(abusing notation by using the variable β to denote both the random variable and the argument of its
PDF). As the probability distribution Pβ is a precise mathematical description of a heterogeneous
population, as modeled via the patient-specific parameter β and the PDE (2.1), quantifying
inter-patient heterogeneity in the modeling context of this paper is analogous to performing statistical
inference on Pβ, for instance estimating the mean β̄ and covariance matrix Kβ.

Given a realized parameter β, it is usually the primary goal to predict the future state or some vector
Quantity-of-Interest (QoI) y ∈ Rq. Such a prediction takes the form of a mathematical model

y(model) =M(β). (2.5)

The dimension q of y is typically small, as this vector tends to only contain a limited number of human-
interpretable, and preferably observable, quantities of interest (QoI). While in the formulation (2.5) we
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have M : Rp → Rq, it is worth noting that it may be necessary to first predict a high- or infinite-
dimensional quantity to compute the final QoI y. For example, assuming that (2.1) is well-posed for
all β, we can first construct a deterministic parameter-to-solution map for the PDE, written as:

n(model)(x, t;β) =M
(PDE)(β). (2.6)

From the solution (2.6), we can further predict (say) the total tumor size (in number of cells) at
some fixed time T via

N(model)(β; T ) =

∫
V

n(model)(x,T ;β) dx =

∫
V
M

(PDE)(β)(x,T ) dx =M(β). (2.7)

In (2.7), the final QoI model can be written as a mapping M : Rp → R, despite the fact that (2.7)
first computes a spatiotemporal function via (2.6). Note that typically, (2.1) does not have an explicit
closed-form solution, so it may be necessary to numerically approximate the parameter-to-solution
map (2.6), say at M spatial locations over N timepoints. In this case, we can consider the numerical
solution at the q = NM points as a large vector QoI. Thus, when convenient, y(model) may also represent
a high-dimensional quantity such as a tumor cell density defined on a computational grid. From such
a computational solution, a final low-dimensional QoI such as (2.7) can be estimated.

We employ the commonly used modeling assumption that the true value of y, denoted y(true), is
related to the model prediction via

y(true) = y(model) + ε(model) =M(β) + ε(model), (2.8)

where ε(model) is a model error, which may consist of both systematic error (including numerical
discretization errors) and calibration noise, and which depends on β. A measured data point y(meas)

will be related to y(model) via

y(meas) = y(true) + ε(meas) = y(model) + ε(model) + ε(meas), (2.9)

where ε(meas) is a measurement noise, which typically has mean zero indicating an unbiased
measurement method. We discuss measurement error further in section 6.

Note that as written, M(β) is potentially over-parameterized, particularly if the dimension of the
QoI is small and a large number of parameters have been employed to account for spatial variability.
This leaves open the opportunity of performing model order reduction, which seeks to eliminate some
parameters by selecting β′ ∈ Rp′ with p′ < p. We briefly discuss sensitivity-based model reduction
strategies in section 6.

3. Virtual populations

A virtual individual is a digital representation of a biological counterpart (e.g., a cell, mouse, or
patient), which is comprised of a set of parameters describing the biological characteristics of the
individual. Some parameters can be directly measured from the real individual, for example, the
results of a blood panel, gene sequencing data, imaging data, or other time series measurements.
Other parameters may not be directly measurable, but can be estimated by fitting a mathematical
model to available clinical or experimental data. For example, the logistic ordinary differential
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equation model can be used to estimate a patient’s tumoral carrying capacity from tumor volume data
over time [30, 43]. A virtual population, defined as an ensemble of many virtual individuals, provides
a natural in silico platform to investigate tumor heterogeneity.

Mathematically, a virtual individual is characterized by a vector parameter β, which can in principle
be high- or infinite-dimensional to model functional data such as time series, scalar and vector field
quantities. Spatiotemporal parameters can effectively quantify many forms of intra-patient and intra-
tumoral heterogeneity, and their (direct or indirect) measurement is usually possible in the laboratory
or clinic via biosensors and imaging techniques [49]. In this paper, we will assume for simplicity that
β ∈ Rp is finite-dimensional, so all spatiotemporal quantities are assumed to be approximated by an
appropriate linear or nonlinear synthesis map. For example, a spatially varying diffusion coefficient
D(x) could be approximated by its values on a discrete grid, or alternately by its projection onto a
finite-dimensional subspace.

Inter-patient (i.e., population) heterogeneity is then described by treating β as a random vector
with probability distribution Pβ. A realization of β is denoted as βk, corresponding to ‘virtual
individual k’, so that a collection of virtual individuals β1, . . . ,βK corresponds to a virtual population.
In the setting of precision medicine, it is frequently useful to incorporate patient-specific uncertainty
by considering samples from the conditional distribution Pβ|gk

, where gk is some patient-specific data
such as quantitative imaging and/or blood test results. We will provide a more detailed review on
patient-specific modeling in section 6. Note that unless otherwise necessary, we will use the same
notation for both a population and patient-specific random vector, namely the random vector β has
realizations βk and distribution Pβ, but it is important to recognize that that this vector is random for
different reasons in the population and patient-specific cases. In a Bayesian mindset, a sample from a
population is analogous to a sample from a prior distribution, while a patient-specific virtual patient is
a sample from a posterior distribution. Note also that the statistical description of Pβ can either be
parametric, i.e., Pβ = Pβ(θ), with θ being a finite-dimensional population parameter, or
non-parametric where no such parametric assumption is made. Sections 3,4,6 and 7 focus on
parametric descriptions, while section 5 discusses a patient-specific non-parametric estimation
technique.

3.1. The virtual population framework

When the probability distribution Pβ is known either explicitly or implicitly, a virtual population
can be generated directly by drawing samples β1, . . . ,βK from Pβ, as will be demonstrated in
section 3.3. Depending on the complexity of Pβ, this may be computationally straightforward, e.g.,
for low-dimensional uniform or Gaussian random β, or more demanding, for example when β
parameterizes functional parameters such as diffusion coefficients or a drug concentration c(x, t)
which may require solving an auxiliary random PDE in order to sample, or when β is conditional on
patient-specific data, i.e., sampling a posterior distribution Pβ|gk

.
In practice, however, the probability distribution Pβ is often partially or completely unknown. In

such situations, one can estimate the underlying population probability distribution, Pβ, from
empirically sampled data that may be directly or indirectly related to β [50, 51]. One possible
approach is to define pre-specified parameter ranges that are known to generate biologically feasible
output from the mathematical model. For example, supposing that β = (D0, ρ0, κ0) is a spatially
homogeneous parameter in (2.1), it may be possible to determine a set of intervals for each
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component of β that will lead to biologically plausible output from the QoI model, for instance
non-negative finite tumor sizes. Generating virtual patients by initially sampling uniformly from this
predefined plausible parameter range allows us to sufficiently explore the broad range of responses
that are possible. However, these preliminary model predictions might not reflect the distribution of
some observed population-level data, which means the generated virtual populations do not have the
correct population characteristics.

Several methods have been developed to address this issue [50–53]. For example, in the method
presented by Allen et al. [50], a “plausible patient population” is generated by first matching
predefined input (parameter) ranges and output (quantity-of-interest) ranges. Following our notation,
this method supposes initially that Pβ is a uniform distribution on some set L(input) ⊂ Rp. Then,
defining a plausible range of outputs y(model) ∈ L(output) ⊂ Rq, we say that a parameter βk ∈ Pβ is
plausible ifM(βk) ∈ L(output). The method proposed in [50] suggests generating a virtual population
by first sampling plausible patients by applying a simulated annealing algorithm to an optimization
objective designed to enforce the plausibility constraint. Then, a given plausible patient βk is included
in the final virtual population with some probability, calculated based on an observed QoI distribution.
The inclusion probability is based on: i) probability of inclusion for the whole plausible population,
and ii) the ratio of the output probability density of the observed population to an estimated
probability density for the plausible population. In this sampling step, the probability of inclusion for
the whole plausible population is optimized until the generated virtual population (which is a subset
of plausible patients) matches the distribution of the observed population data by some measure of
statistical similarity such as the Kolmogorov-Smirnov test statistic.

It is worth noting that the ordinary accept-reject sampling approach presented in [50] suffers from
poor sampling efficiency since it searches a large space of parameters and generates a significant
number of plausible but unlikely parameter realizations that are ultimately rejected. Rieger et al. [51]
improved upon this methodology by introducing more efficient sampling methods which include
nested simulated annealing, a genetic algorithm, and Metropolis-Hastings-based importance
sampling, and compared these different methods in their work. Another approach called the MAPEL
(Mechanistic Axes Population Ensemble Linkage) algorithm, presented in [53], also follows the
two-step process of generating a cohort of plausible patients followed by matching statistics to an
observed population. Instead of rejecting plausible patients, however, the MAPEL method computes a
prevalence weight for each plausible patient, with the prevalence weight computed to match the
model output statistics to response bins measured in a clinical trial, according to a composite
goodness-of-fit objective that acts at the level of histogram bins. While in theory each virtual patient
could have a distinct prevalence weight, the MAPEL method elects to divide the parameter axes into
bins, assigning a uniform prevalence weight to each bin (effectively modeling the parameter
distribution Pβ as a multinomial distribution). A Nelder-Mead optimization method is then employed
to update the prevalence weights.

Other methods for generating virtual patient populations for use in in silico clinical trials may
also be applicable for the study of tumor heterogeneity. We refer readers to Chapter 5 of [54] for a
more complete overview of recent successes in computer-aided clinical trials, and to [55] for a more
theoretical discussion of virtual clinical trials.
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3.2. Previous literature of virtual populations for tumor heterogeneity

Virtual populations have been employed in various contexts that are relevant to the study of tumor
heterogeneity in both the drug development and clinical contexts. Specifically, virtual cell
populations, mouse populations and human patient populations can be employed to understand the
sources of heterogeneity at different stages of drug development.

The main motivation for generating virtual cell populations is to characterize population-level
responses to a perturbation such as anti-cancer treatments. Due to the variations in the concentration
of intracellular signaling species at the time of the perturbation, different cells can have different
response to the same perturbation. Albeck et al. [56] study variability in cell apoptosis by generating a
virtual cell population from a mathematical model of intracellular signaling networks. They validated
this model with experimental data, and suggest that this virtual population technique can be applied to
the development of pro-apoptotic cancer therapies. Note that an initial distribution of cell states is
needed in order to simulate the cell population’s response. For example, in [57] a gamma distribution
was assumed for the concentrations of intracellular signaling species [58].

Once a potential anti-cancer treatment has been discovered, virtual mouse populations may aid the
analysis and therapeutic design for preclincial studies of a potential drug treatment. In [25], a technique
called the Virtual Expansion of Populations for Analyzing Robustness of Therapies (VEPART) was
introduced and used to study the robustness of a tumor population in response to different treatment
protocols. Given time course data on tumor volume and a mathematical model that has been initially
fit to aggregate data, a non-parametric bootstrap technique is used to amplify the sample population to
a large cohort of statistically plausible patients. This method is illustrated on mice with melanoma that
receive oncolytic virus (OV) or dendritic cell (DC) vaccines. The virtual population was then used to
design the optimal ordering of three doses of the OV and three doses of the DC vaccine (e.g., OV-OV-
OV-DC-DC-DC designates three consecutive OV doses followed by three administrations of the DC
vaccine over 6 days). Each treatment was ranked by how often it was found to be the optimal treatment
for the entire virtual population. The current standard of care was ranked as the best treatment in some
cases, but only lead to tumor eradication in 43% or less of the virtual population. By changing the
doses of OV and DC, however, the authors showed that a different treatment schedule can lead to a
robust treatment that eradicates tumors in 84% of the virtual population.

Moving up to a clinically relevant scale, virtual patient populations have been employed in a wide
array of medical contexts, ranging from predicting outcomes for blunt force trauma patients [59] to
studying insulin sensitivity in type 2 diabetes [52], and have been suggested as a method for
evaluating patient-specific chemotherapy regimens [55]. For drug development, it is important to
predict not only the mean response to an intervention but also the overall distribution of the
population responses. In particular, virtual populations have been employed to help identify the key
mechanistic parameters that give rise to variation in the response [53]. Virtual patient populations
have also been used for evaluating medical radiation safety and performance of imaging
systems [60, 61] and to evaluate various radiotherapy protocols [62]. In the context of medical device
assessment, a virtual patient is usually called a computational human phantom, and several phantom
models employ randomization, morphing and posing to generate a virtual patient population that
mimics a real population. While computational phantoms have historically emphasized anatomical
structures, others are working to also incorporate functional (i.e., physiological) mechanisms, and
thus may eventually provide a compelling platform for treatment evaluation in cancer therapy.
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See [61] for a review of the current state-of-the-art in computational human phantoms.
In addition to the development and optimization of therapeutic agents, virtual populations have

been used to guide the design of cancer biomarkers. Depending on the cancer, more than a decade
may be needed to finish the Randomized Controlled Trials (RCTs) to validate the effectiveness of
diagnostic markers. In contrast, emerging biomarkers may diffuse into clinical practice long before
survival data becomes available. In the interim, Comparative Effectiveness (CE) studies typically
collect data on how testing for a biomarker impacts an intermediate endpoint for treatment
recommendations. For example, [63] shows an example of using a virtual population to help evaluate
the effectiveness of biomarkers to target cancer treatment. It presents a statistical simulation tool that
facilitates the modeling of the mortality impact of interventions. Given CE studies of typical
intermediate endpoints, i.e., the common pre-mortality outcomes used to demonstrate the
effectiveness of interventions, bootstrapping was used to generate a virtual population to mimic the
population in the CE study. The treatment and mortality of the virtual population was then modeled to
understand the long-term potential of emerging diagnostic biomarkers. In [64], a virtual population is
generated to simulate the population response to a clinically tested therapy. This provides a
mechanistic explanation into the heterogeneous response to the treatment and also helps identify
several potential prognostic biomarkers.

Virtual population techniques have also been used to understand the impact of healthcare system
administration on real patients. In [65], for example, an agent-based model representing colon and
colorectal cancer patients was developed which includes a biological cancer evolution model and
patients that interact with the healthcare system, including physicians, nurses and equipment.
Simulations show promising interpolation results with respect to chemotherapy dosage and
radiotherapy dosage. However, the model’s ability to interpolate different administration protocols is
still limited, and therefore calibration is required for each protocol.

3.3. Case study: Virtual population data generation from the Fisher-KPP model

In this section, we present the details of generating simulated tumor growth data with the
Fisher-KPP model. We will generate two such virtual populations arising from either: i) a
spatially-homogeneous model with inter-patient heterogeneity or ii) a spatially-heterogeneous model
with intra-patient heterogeneity. These two datasets provide an ideal platform for demonstrating the
performance of various methods for quantifying tumor heterogeneity presented in the subsequent
sections. In Table 1, we detail which methods will be used to interpret these datasets through case
studies found throughout this article. Each virtual population is produced by simulating a randomized
Fisher-KPP model, with differences between the virtual populations arising from differences between
the random field synthesis method employed for the model parameters (D, ρ, κ), as well as different
underlying probability distributions Pβ.

We will select a statistical description for β and corresponding random field synthesis method to
demonstrate two tumor types: Spatially homogeneous and spatially heterogeneous tumors. For
homogeneous tumors, (D, ρ, κ) are the same for all spatial points, i.e., D ≡ D, ρ ≡ ρ and κ ≡ κ, and
hence β = (D, ρ, κ) ∈ R3. We will only randomize the growth parameter ρ, fixing
D = 10−6, κ = 10.001. Note that the nominal value of κ = 10.001 selected here was chosen arbitrarily
since it does not influence any subsequent analysis performed on the homogeneous dataset; a more
biologically realistic value would be straightforward to incorporate. We sample ρ from the probability
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Table 1. Description of which datasets will be investigated in through case studies in later
sections of this article. “Homogeneous” refers to the dataset arising from the spatially-
homogenous Fisher-KPP model with inter-patient heterogeneity. “Heterogenous” refers to
the dataset arising from the dataset arising from the spatially heterogeneous Fisher-KPP
model with intra-patient heterogeneity.

Method Sections Dataset
NLME 4.3 Homogeneous
Non-parametric Estimation 5.2 Homogeneous
Bayesian Methods 6.5 Homogeneous
Virtual Populations 3.3 Heterogeneous
Machine Learning 7.2,7.3 Heterogeneous

distribution given by
ρ = ρ0 + IkρM (3.1)

where
ρ0 ∼ N(µ0, σ

2
0), ρM ∼ N(µM, σ

2
M) (3.2)

and Ik = 0 for patients with benign tumors and Ik = 1 for patients with malignant tumors. We obtain a
set of 25 tumor density data yk = yi, j,k, with yi, j,k ≈ nk(xi, t j) denoting the approximated cell density at
spatiotemporal point (xi, t j) and k = 1, 2, . . . , 25 representing the virtual patient. We produced 15
benign tumors and 10 malignant tumors. The parameter ρ thus samples from a bimodal distribution
comprised of benign (low ρ values) and malignant (high ρ values) tumors. The parameter µ0

corresponds to the mean benign tumor rate of growth, and µM, corresponds to the mean increase in the
rate of growth for malignant tumors. The population parameters σ2

0, σ2
M are the variances associated

with these values. We set µ0 = 1 × 10−3, σ0 = 2 × 10−4, µM = 0.03, and σM = 1 × 10−2 for this data
set. Once we have sampled ρk from Eq (3.1), we generate βk = (D, ρk, κ) and simulate the Fisher-KPP
solution as yk = M(βk) using a numerical approximation to Eq (2.6). The data set generated in this
homogeneous setting will be analyzed in sections 4.3 and 5.2.

For spatially heterogeneous tumors, (D, ρ, κ) are assumed to be realizations of spatial random
fields as described below. The inhomogeneous data will be employed for Bayesian-specific Bayesian
inference in section 6.1 and for methods of machine learning in sections 7.2 and 7.3. We assume that
D = D(x), ρ = ρ(x) and κ = κ(x), and model each as independent realizations of a ‘lumpy-type’
random field model [66, 67]. For instance, D is generated by

D(x, ω) =

L(ω)∑
l=1

` (x − cl(ω);γ) , (3.3)

and the formula for generating κ and ρ can be written analogously. In (3.3), the ‘lump’ function
`(x;γ) is always bounded, integrable and strictly positive throughout the support set V . The number
of ‘lumps’ L(ω) is Poisson distributed with mean L̄, and the random ‘lump centers’ cl are independent
and identically distributed (i.i.d.) with distribution cl ∼ Pc. We will assume for simplicity that the
lumps have fixed shape γ = γ0, that the centers are uniformly distributed in V . We also assume the
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lump function is an isotropic Gaussian:

`(x;γ) = A exp
(
−

1
2σ2 ‖x‖

2
)
, γ = (A, σ2). (3.4)

In this case, the random field model is fully specified by the population parameter (L̄, A, σ2). This
parameter can be estimated for a given population by applying statistical estimation techniques; see
e.g., [68] and section 6 below. Generalizations of these assumptions lead to more intricate field
statistics, but at the expense of more parameters to specify and hence significantly more clinical data
from which to infer reasonable distributions (see [69], for example). Note that we have also assumed
that the three fields are statistically independent; this assumption is likely not supported by clinical
data, but could be generalized, for instance by introducing a nontrivial statistical coupling between the
lump centers in (3.3). Inferring the actual structure of this coupling, for instance the mutual
covariances between the field parameters, would require extensive data and is a topic of future work.
See also [70] in this issue for further discussion.

The model (3.3) is flexible and rapid to simulate, and realizations can be guaranteed to satisfy
conditions required for well-posedness of (2.1) such as strict positivity. The random field β is fully
specified by the 9-dimensional population parameter θ = (L̄ρ, L̄D, L̄κ, Aρ, AD, Aκ, σ

2
ρ, σ

2
D, σ

2
κ); the

choice of θ we employed for the example virtual population is shown in Table 2, and example
realizations are shown in Figure 1. Once a sample of the parameter vector β has been drawn, the PDE
model (2.1) is simulated forward in time for each βk using a finite difference method-of-lines
approach [71], employing Matlab’s ode45 integrator for the time stepping. The result is a vector
y(model)

k = y(model)
i, j,k = M(βk), where y(model)

i, j,k is the approximate cell density yi, j,k ≈ n(model)
k (xi, t j) for

‘patient’ k at grid position xi and time t j (see [70] for further discussion of this numerical technique).

Table 2. Population parameters θ employed to generate the test tumor population. These
parameters were hand-tuned to obtain reasonable model output.

Parameter L̄ A σ2

Growth rate ρ(x) 200 1e-2 2e-3

Diffusion coefficient D(x) 20 8e-8 4e-2

Carrying capacity κ(x) 20 5e7 5e-2

Using the population parameters θ provided in Table 1 for the lumpy model (3.3), we generate a
set of K = 128 sampled realizations of β and y(model)

k = M(βk). In the top row of Figure 1, four
realizations of the tumor cell density at a fixed time are shown, demonstrating a wide variety of tumor
morphology during the initial growth phase. In the bottom row of Figure 1, we compare these virtual
tumor cell densities to a collection of four Apparent Diffusion Coefficient (ADC) maps obtained from
a publicly available clinical imaging dataset [72]. A 2D slice of the 3D ADC map for each tumor
was extracted using a segmentation mask provided in the dataset. While ADC maps have been related
to tumor cellularity [41], we provide these images for qualitative comparison only, and no parameter
estimation step was attempted to match the virtual tumors to the real ADC maps. Such parameter
estimation is discussed in [70]. In Figure 2, a single realization is shown for four time points, together
with the corresponding random field realizations and the total cell number N(t). In Figure 3, population
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heterogeneity in the quantity-of-interest N(t) is demonstrated by plotting each of the 128 sample yk =

Nk(t) computations together with the sample average N̄(t) and the resulting histogram of pN(x,t) for
several time points. In Figure 4, we display the sample average tumor cell density for four times,
which demonstrates a distinctly uniform ‘spheroid’ growth.

For the illustration of methods for quantifying heterogeneity in subsequent sections, we take the
resulting simulated tumor cell density population y1, . . . , yK , and any quantity-of-interest functionals
computed from these solutions, to be the ground-truth for subsequent experiments. Thus, we treat a
given realization of the coefficient field generated using (3.3) to be the true latent parameter, and the
corresponding QoI functionals applied to the model solution (2.6) as ytrue. Subsequent models may
make further simplifying assumptions, such as spatial homogeneity, which will introduce modeling
errors εmodel relative to our simulated ground-truth. While we have elected to use virtual tumors as the
ground-truth in this review, this is only for clarity and simplicity in describing subsequent statistical
methodologies. Applying these methodologies to real clinical or preclinical data is feasible, but
requires more careful data processing and is the topic of future work.

4. Nonlinear mixed effects modeling

Nonlinear mixed effects (NLME) modeling, also known as hierarchical nonlinear modeling, is a
statistical framework for simultaneously characterizing both population-level behavior and individual
variations. The response behavior can be described using a parameterized mathematical model, from
which we can deduce both the average population parameter values as well as how individual parameter
values vary from these mean values. The ultimate aim is to characterize the typical behavior of the
population, and the extent to which the behavior varies across the individuals, as well as whether or
not the variation is associated with individual attributes [73].

As an example, assume we aim to understand the intra-subject processes underlying tumor spread
and growth from a large dataset of measured patient tumor volumes over space and time. An example
of such dataset could be the virtual population data described in section 3.3. Applying the NLME
framework for the fully inhomogeneous random differential equation would be a challenging task due
to the large number of parameters required to account for spatial variability. Thus, in this section we
will consider the homogeneous model for which (D, ρ, κ) = (D, ρ, κ) ∈ R3. By fitting this
deterministic PDE model to patient data, we can understand the average rates of spread, growth, and
maximal tumor volume for the population as well as the level of uncertainty in these parameter
estimates. Such an understanding may serve as a first step in developing treatment and dosing
strategies as well as guidelines for clinical studies [24]. When certain attributes of patients in the
population are known (e.g., age, benign/malignant diagnosis, weight), the NLME framework allows
one to further understand how these attributes influence the average behavior or uncertainty in the
underlying processes.

We first describe the generic NLME framework in section 4.1 and then review previous applications
of this framework to investigate tumor heterogeneity in section 4.2. Then, in section 4.3, we illustrate
how to apply this framework to infer the underlying patient proliferation rate distribution from the
homogeneous virtual population data described in section 3.3.
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Figure 1. In the top row, we show a virtual population of tumor cell densities n(x, t), at t =

335.2 days. These were generated using Eq (2.1) with lumpy random field coefficients using
parameters given in Table 2. We give a common color scale to illustrate heterogeneity within
the population. In the bottom row, we show MRI-based Apparent Diffusion Coefficient
(ADC) maps for a collection of four human brain tumors gathered from the Brain-Tumor-
Progression dataset on The Cancer Imaging Archive [72, 74]. We provide these images for
qualitative comparison only; the virtual tumors and real ADC maps are not intended to match.

Figure 2. Example time course of a single simulated random heterogeneous tumor, with the
random coefficient fields and the resulting N(t) displayed below.
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Figure 3. Plot of the predicted total tumor burden N(t) (in number of cells) for each of the
K = 128 simulated heterogeneous tumors. The estimated mean N̄(t) is shown in bold, while
an estimated N̄(t)±σ(t) confidence band is shown with the dashed lines. Histogram estimates
of the time-dependent probability density pN(x,t) are shown for four times.

Figure 4. Plot of the simulated sample average tumor cell density n̄i j = 1
K

∑K
k=1 ni j,k for four

time points and K = 128 samples. See Figure 3 for a plot of the average N(t).

4.1. The general NLME framework

We will briefly summarize the main procedure of NLME modeling and refer the reader to [73] for
an exhaustive review. The general NLME framework consists of two stages: an individual-level model
and a population level model. Let yi, j,k represent the quantity of interest at time t j and spatial location
xi from the kth patient. The individual-level model is then given by

yi, j,k = f (xi, t j;βk(uk)) + εi, j,k, (4.1)

where f represents a function governing within-individual behavior, βk represents the p × 1 vector of
model parameters specific for patient k (which may depend on the patient’s covariates uk, which may
include age, weight, diagnosis, etc.), and εi, j,k denotes realizations from both ε(meas) and ε(model) from
Eq (2.9) representing the combination of many potential errors, including random intra-individual
uncertainties, natural inter-individual variations, and measurement error). We assume for simplicity
that E(εi, j,k|βk) = 0. For the problem of tumor spread and growth, yi, j,k represents the tumor density at
spatio-temporal point (xi, t j) for patient k, and f is the solution to the homogenous Fisher-KPP PDE,
given by Eq (2.1) with β = (D, ρ, κ) ∈ R3. The vector βk contains the individual patient parameter
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values βk = (Dk, ρk, κk).
The population-level model describes how variations in the model parameters between individuals

are due to both individual attributes and random variations. The general formulation for the population
model is given by

βk = d(uk,β
( f ixed)
k ,β(rand)

k ), (4.2)

where the function d has a p-dimensional output, uk denotes the covariate vector for patient∗ k, β( f ixed)
k

represents fixed effects (i.e., nonrandom population parameters), and β(rand)
k represents random effects

(i.e., random parameters). A simple and common example for function d is given by

βk = β( f ixed)
k + β(rand)

k , (4.3)

in which the parameters representing each patient are assumed centered about the fixed effect β( f ixed)
k

that is common for the whole population with the same covariates, uk, with random variation β(rand)
k .

There are cases where parameter values depend on patients’ covariate values. For example, for the
problem of tumor spread and growth described earlier, the growth rate ρ for the malignant patients
should be higher than that for benign patients. In this case, we can write the growth rate as:

ρk = ρ0 + Ikρm, (4.4)

where ρ0 denotes the growth rate for benign tumors and ρm denotes the increase in the growth rate for
malignant tumors, and Ik is a discrete variable designated as 0 for benign patients and 1 for malignant
patients. Consequently, the parameter vector βk has the form:

βk =


1 0 0 0
0 1 Ik 0
0 0 0 1




D
ρ0

ρm

κ

 + β(rand)
k . (4.5)

There are cases where the parameter values for one patient type have less variation than that for other
patient type. This leads to the general linear population model provided by

βk = Akβ
( f ixed)
k + Bkβ

(rand)
k . (4.6)

Here Ak is a design matrix determining how patients’ covariates influence model parameters and Bk is
a design matrix describing the variation associated with each of these estimates for different groups.

The function f may not capture all within-individual processes, or may exhibit local fluctuations. As
such, f may be viewed as an average over all possible realizations for patient k and βk parameterizes
these different possible realizations. For example, we observe in Figure 4, that averaged RDE data
appears similar to a homogoenous simulation of the Fisher-KPP simulation.

∗Note that in the typical NLME framework, xi, t j, and uk would be concatenated together into one variable, e.g., Xi, j,k = (xi,k, t j,k,uk),
but we have chosen to write them as separate variables in this study to be consistent with typical mathematical modeling literature. If
one only has access to time-varying values, then we would have X j,k = (t j,k,uk).
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4.2. Previous literature of NLME for tumor heterogeneity

In tumor biology, it is fundamental to understand both the population-wide behavior driving growth
and progression as well as the inherent differences between individuals due to heterogeneity in immune
responses and spatial microenvironment variables. This has prompted the common use of nonlinear
mixed effects modeling in studies in tumor growth. Previous studies of tumor heterogeneity that use
NLME modeling include [75–80]. Here, we review in detail a few studies that use NLME modeling to
predict tumor responses to drug treatment [81,82] and the differences in metastatic spreading between
patients [28,29]. For a broader review on the use of NLME for anticancer drug treatment, the reader is
referred to [83].

Ferenci et al. [81] use empirical models to describe the effect of an angiogenesis inhibitor,
bevacizumab, on final tumor size in mice. Tumor size was measured over time with digital calipers
and small animal MR images during the initial growth phase of a xenograft tumor after mice were
implanted with colon adenocarcinoma. Patients were divided into two groups: One receiving a large
dose on the first and seventeenth day of the experiments, and the other group receiving a smaller daily
dose. The considered models include the exponential, logistic, and Gompertz equations. Accordingly,
βk contains the parameters for growth rate, carrying capacity, and time scaling for the different
models. If I(group)

k denotes the patient groups (two large doses or daily small doses) and I(meas)
k denotes

the type of measurement (digital caliper or MRI), then the population model is given by

βk = β(mean) + β(rand)
k + β(group)I(group)

k + β(meas)I(meas)
k (4.7)

where β(group) denotes the changes to the mean population response, β(mean), for different groups and
β(meas) denotes the changes for the different measurement sources. Ultimately the authors determined
that the exponential model could describe patient data robustly, whereas the sigmoidal models had large
amounts of uncertainty in parameter estimates. The exponential model exhibited decreased growth
rates for the daily dosing regime as compared to the mean population growth parameter, suggesting
that smaller daily doses are more effective in preventing tumor growth than a small number of larger
doses.

In [82], a compartmental ODE model was used to study the reduction in size of low-grade glioma
(LGG) in response to three types of therapy: Procarbazine and vincistrine (PCV) chemotherapy,
temozolomide (TMZ) chemotherapy, and radiotherapy. The dependent variables in the model consist
of proliferative cells, quiescent cells, damaged quiescent cells, and concentration of the treatment.
The model is fit to data measuring mean tumor diameter (MTD) from MRI scans for 21 PCV patients,
24 TMZ patients, and 25 radiotherapy patients. Each parameter in the compartmental model assumes
log-normal random effects. The model for TMZ patients was validated on 96 other TMZ patients, and
can accurately predict 5%, 50%, and 95% percentiles of the observed MTD time course using 200
virtual patients from the model. The model was further able to fit individual MTD trajectories based
on treatment type and pretreatment MTD. The accuracy of this model in predicting both
population-level distributions and individual trajectories suggests it is a viable tool for future use in
predicting treatment efficacy for individual patients.

In [29], a transport model was used to describe metastasitic spreading during orthotopic breast
tumor xenograft experiments in immunodeficient mice. Tumor size was measured over time with 3D
bioluminescence imaging. An ODE model is used to describe tumor growth at the primary tumor site
in combination with a size-structured PDE transport model to describe how metastatic cells spread to
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other areas of the body. The empirical 10–90% intervals of metastatic mass data for all patients varied
over two orders of magnitude at all time points, demonstrating the large inter-individual variation in the
data. The authors used log-normally distributed parameter values to match the model to these empirical
distribution values, and concluded that the total metastatic burden was a sufficient metric from which
to infer the rates of tumor growth and spread. Their use of NLME in this study demonstrated that
individual differences in the primary tumor size lead to increased rates of spreading in patients.

Morrell et al. [28] investigate longitudinal levels of prostate-specific antigen (PSA), which is a
biomarker for prostate cancer. From a longitudinal study [84], the PSA levels before, during, and after
prostate cancer diagnosis were available from 18 men: 11 who had local or regional tumors and 7
who had advanced or metastatic tumors. The authors used a NLME framework to understand if the
PSA levels behave different for the two types of patient classifications. To do so, a piecewise linear-
exponential model was fit to PSA levels over time, with random effects incorporated into the transition
time between the linear and exponential phases as well as the growth rates of the exponential phase.
This analysis demonstrated that a significant difference between metastatic and benign diagnoses is the
lag between this transition time and time of diagnosis, suggesting that early detection of the tumor is
the key to preventing harmful spreading.

4.3. Case study: Applying NLME to infer inter-patient heterogeneity

In this section, we illustrate the use of NLME on the spatially homogeneous virtual dataset
generated from Eq (2.1) in section 3.3 with D = D ∈ R, ρ = ρ ∈ R, κ = κ ∈ R. To recap, there are 25
tumor profiles, {yk}k=1,...,25, where yk = n(x, t;βk) from Eq (2.6) denotes each tumor’s spatiotemporal
volume over time. Note that for simplicity in this tutorial we are assuming that y(meas) = y(true). We
assume some of the patients have been diagnosed as malignant and the others have been diagnosed as
benign: Each patient is given a covariate variable, Ik, which is 0 if they are benign and 1 if they are
malignant. For simplicity in this section, we assume D and κ are known: we only need to infer ρ. We
let this growth rate take the population model given by

ρ = ρ0 + IkρM (4.8)

where
ρ0 ∼ N(µ0, σ

2
0), ρM ∼ N(µM, σ

2
M). (4.9)

The parameter ρ0, thus corresponds to the benign tumor rate of growth, ρM, corresponds to the
increase in the malignant rate of growth, and the σ2

0, σ2
M parameters are the variation associated with

these values. Note that several of the NLME studies discussed in section 4.2 assumed log-normal
distributions for some parameters. Such parameters in these situations are log-transformed during
computation so that the parameters being inferred are normally distributed. We thus have the
population-level model given by

βk =


1 0 0 0
0 1 Ik 0
0 0 0 1




D
ρ0

ρM

κ

 +


0 0
1 Ik

0 0


[
σ0

σM

]
(4.10)

and we aim to infer θ = (ρ0, ρM, σ0, σM) from {yk}k=1,...,25. Recall that this synthetic data set was
generated by setting µ0 = 1 × 10−3, σ0 = 2 × 10−4, µM = 0.03, and σM = 1 × 10−2.
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Figure 5. Using the NLME framework to infer the distribution underlying ρ for the
homogeneous data set. The solid green curves represent the true underlying distribution
for ρ and The red dashed lines represent our inferred distribution for ρ using NLME. The
purple histograms correspond to the number of realizations of ρ for the K = 25 patients.
The left panel corresponds to benign patients and the right panel corresponds to malignant
patients.

We performed estimation of this distribution for ρ using MATLAB’s nlmefit command. This
function estimates the underlying distribution by maximizing an approximation to the marginal
likelihood assuming that the random effects are normally distributed and observation errors are
independent of the random effects and i.i.d. normally distributed [85]. We computed this with an
absolute tolerance of 1.0.

Our NLME implementation accurately inferred each of the four distribution parameters as:
µ̂0 = 9.440 × 10−4, σ̂0 = 2.239 × 10−4, µ̂M = 3.44 × 10−2, and σ̂M = 1.01 × 10−2. The distribution
(Eq (4.9)) generated by these estimated values, is depicted against the true underlying data
distribution in Figure 5. The inferred distribution closely matches the true underlying distribution;
using a two-sample Kolmogorov-Smirnov test between the true and inferred distributions (using 15
benign and 10 malignant samples from both distributions), we fail to reject the null hypothesis (that
these two samples are from different distributions) at the 5% significance level.

5. Non-parametric estimation

As mentioned in section 3, the parameters in random differential equations are random variables,
i.e., they are associated with a probability distribution. In this section, we describe the techniques for
estimating these probability distribution using spatio-temporal aggregate data. The focus is on
non-parameteric frameworks that make no assumptions about the form of the probability distribution.
This framework has previously been used to estimate the distribution of growth-rates of shrimp
populations [86, 87] and to identify the inter-individual heterogeneity in the relationship between

Mathematical Biosciences and Engineering Volume 17, Issue 4, 3660–3709.



3681

alcohol transdermal sensor measurements and blood alcohol concentration [88]. In the context of
cancer modeling, this framework has been used to characterize the heterogeneity within a tumor [89].
In Rutter et al. [89], a reaction-diffusion equation was proposed in which the growth rate, ρρρ, and the
diffusion rate DDD are random variables. Synthetic data were generated with a variety of underlying
distributions for the parameter (such as bigaussian to represent a situation in which a portion of the
tumor cells grew faster and the remainder grew slower, as well as point distributions to represent the
traditional reaction diffusion equation with constant parameters). The authors then used the prohorov
metric framework (PMF) to estimate the probability distribution of the random variables. Probability
distributions of the parameter were succesfully recovered even with the introduction of 5% noise [89].
Below, we illustrate the application of the PMF for the inverse problem associated with the
Fisher-KPP model using the same synthetic data as in section 4.

5.1. The prohorov metric framework

We consider the case of the Fisher-KPP model where only the growth rate ρρρ is a random variable
defined on a probability space, denoted by Ω, and the diffusion rate D and carrying capacity κ are
constant. First, we rewrite the random differential equation for the Fisher-KPP model in a more explicit
form as follows:

∂n(x, t,D, ρρρ)
∂t

= ∇ · (D∇n(x, t,D, ρρρ)) + ρρρn(x, t,D, ρρρ)
(
1 −

n(x, t,D, ρρρ)
κ

)
, (5.1)

and calculate the average tumor volume, n̄(x, t), aggregated over the individuals by taking the
expectation over the probability distributions:

n̄(x, t) = E
[
n(x, t, ·, ·), Pρρρ

]
=

∫
Ω

n(x, t,D, ρρρ)dPρρρ. (5.2)

One of the many advantages to this approach is that it is flexible enough to model the regular reaction-
diffusion equation (where ρρρ has an underlying point distribution).

We describe the method here for completeness, but refer the reader to [90, 91] (and the references
therein) for proofs regarding the consistency and convergence of the inverse problem. The inverse
problem is formulated to find an estimated probability distribution P̂ρ that minimizes the least squares
problem:

P̂ρ = argmin
PM
ρρρ (Ω)

∑
i, j

(
yi j −

∫
Ω

n(xi, t j; D, ρρρ)dPM
ρρρ

)2

(5.3)

where yi j represents the data at spatial location i and time j, where i = 1, ..,Nx and j = 1, ...,Nt, and
n represents the numerical approximations to the solution for the partial differential equation, and M
represents the number of elements (or nodes) used in the finite-dimensional approximation (denoted
PM
ρρρ ) of the underlying distribution P̂ρ.

When the underlying distributions are discrete, we use discrete approximations for which delta
functions are equispaced over the desired parameter space. For example, if ρρρ lies in a finite interval,
a parameter mesh grid of equispaced M nodes between the end points can be used: ρρρM = {ρk, k =

1, ...,M}. The inverse problem is simplified to:

P̂ρ = argmin
R

∑
j,i

yi j −

∑
k

n(xi, t j; D, ρk)wk

2

(5.4)
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where wk are the weights of the respective points. Thus, we aim to determine the weights wk that
minimize the distance between the computed solution and the data. Since the wk describe a probability

distribution, we require that wk ≥ 0 and
M∑

k=1
wk = 1.

When the underlying distributions are continuous, we can use spline approximations composed of
hat functions to parameterize a continuous distribution. Similar to the discrete case, we generate a
mesh of M nodes for the random variable: ρρρM = {ρl, l = 1, ...,M}. However, in this case the nodes ρl

are used for constructing hat functions as follows

sl(ρ) =


ρ−ρl−1
ρl−ρl−1

if ρ ∈ [ρl−1, ρl]
ρl+1−ρ

ρl+1−ρl
if ρ ∈ [ρl, ρl+1]

0 otherwise

(5.5)

where l = 1, ...,M. Then, the inverse becomes to find the probability distribution such that:

P̂ρ = argmin
R

∑
i, j

yi j −

∑
l

al

∫
Ωρ

n(xi, t j; D, ρρρ)sl(ρρρ)dρ

2

(5.6)

where al can be considered as weights of the hat functions. Since pl = alsl(ρρρ) represents the probability

density, it is required that
M∑

l=1
al

∫
Ωρ

sl(ρρρ)dρ = 1. The goal is to find values of al that minimize the

distance between the computed solution and the data.
Generally we do not know whether the underlying distribution is discrete or continuous. In order to

decide which method, spline approximations or discrete approximations, and how many nodes to use,
we need an unbiased measure. We use the Akaike Information Criteria (AIC) [92] that penalizes for
using a higher number of nodes.

5.2. Case study: Applying the PMF to infer inter-patient heterogeneity

In previous work involving subpopulation identification for intra-tumoral heterogeneity, the data v ji

was the aggregate tumor cell population for a single individual at spatial location j and time i. In our
case we aim to understand inter-tumor heterogneity. Instead of identifying subpopulations of cells that
grow at different rates, we want to identify subpopulations of individuals that grow at different rates.
To accomplish this, we aggregate over the entire population. For example, if individuals 1 through K
had a tumor cell population vk

ji, the aggregate population would be
∑K

k=1 vk
ji.

We implemented the PMF for the same 25 synthetic tumors described in section 4, of which 15
tumors are benign and 10 tumors are malignant. We used a discrete approximation to estimate the
underlying distribution. In particular, we found that 380 nodes, equispaced between 0 and 0.06,
resulted in the lowest AIC scores. The resulting estimation exhibited a clear difference between
growth rates for benign tumors (< 0.005) and growth rates for malignant tumors (0.02–0.06). In
particular, 60% of the tumors are identified as benign which reflects the true number of benign
patients (15 of the 25 synthetic tumors are benign).

Figure 6 displays the ‘true’ underlying distribution (in purple rectangles) and the best discrete
approximation (in red). The lines connecting the discrete approximations are for ease of reading the
trends only. The PMF method is able to correctly determine that the underlying distributions is
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Figure 6. The true (purple) and predicted (red) growth rates for the 25 individuals using a
discrete approximation. The left panel corresponds to benign patients and the right panel
signifies malignant patients. The true (purple) and predicted (red) growth rates using a
discrete approximation for the 15 benign individuals (left panel) and 10 malignant patients
(right panel).

bi-modal with a peak in the low growth rates and a second peak in the higher growth rates. The total
amount of the predicted distribution lying between the benign and malignant cases is less than 0.09%.
Examining the recovered distributions in the benign case (left), we can see that the recovered
distribution has slightly over-estimated the peak of the benign growth rates and the recovered
distribution is slightly wider than the true underlying distribution. When examining the malignant
case, the discrete approximation does a good job in approximating the true underlying distribution.
We hypothesize that since the sample rate is sparse (only 10 patients), we do not recover the ‘true’
underlying normal distribution. Like many numerical schemes, the PMF framework is sensitive to the
discrete mesh used in the approximation. In particular, the parameter mesh must be fine enough to fit
the benign growth rates, which may result in overfitting of the malignant growth rates.

6. Bayesian methods

As we have seen, tumor growth models and their associated QoI can vary widely in complexity.
For example, the 2-dimensional RDE model (2.1) with homogeneous coefficients (D, ρ, κ) together
with Eq (2.7) leads to a QoI (2.5) with input and output dimensions p = 3 and q = 1, respectively
(for each fixed time t = T ). Alternatively, incorporating spatial heterogeneity into each of the RDE
parameter fields using a lumpy-type random field model (3.3), described by a fixed lump function `(x)
and a fixed number of lumps L, requires 2L scalar parameters (the (x, y) location of each lump) for
each of the parameter fields, resulting in a total of p = 6L scalar parameters required to specify the
fields and simulate the model output (2.6) and subsequent QoI models (2.5). If, instead of a scalar
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QoI, we require a prediction of the cell density on a spatial grid or for multiple time points, the output
dimension q can be very large indeed. In addition, boundary conditions can influence the output in a
nontrivial way, and ad-hoc choices can lead to inaccurate model predictions.

In an ideal situation, one would have access to patient-specific estimates of the coefficient fields
D(x), ρ(x), κ(x) and the initial condition n0(x), from which the forward model (2.6) could be run to
assist in prognostic and therapeutic decision making. The growth factor ρ(x) can be related directly to
glioma cell proliferation rate, and hence estimated in vivo using a molecular proliferation marker such
as the Positron Emission Tomography (PET) tracer 18F-FLT [93]. Diffusion Tensor Imaging (DTI)
may offer a pathway to estimating the cellular diffusion rate D(x) [94], but this technique requires
further clinical validation. To our knowledge, there is no convenient clinical technique to measure
either the initial condition n0(x) nor the carrying capacity κ(x), and neither 18F-FLT or DTI are
currently considered standard clinical practice. Thus, the typical strategy is instead to obtain
patient-specific estimates of tumor cell density y(meas)

k = n(meas)(xik, t jk), using models that relate
cellular density to more commonly available imaging data such as Diffusion Weighted MRI
(DWMRI) [40, 41, 95] or FET-PET [96]. These estimates can then be combined with a parameter
estimation step to make either population-level inferences about the distribution of β, or
patient-specific prognostic and therapeutic decisions. Another possibility is to modify the original
growth model in such a way that the model parameters correspond more closely to directly
measurable physiological processes instead of phenomenological parameters, a technique emphasized
in [48].

Alternatively, one might attempt to pursue a more classical approach to statistical model
calibration by supposing that a set of calibration data of known ground-truth (free from or with
minimal measurement error) values of both model inputs β and true outputs y(true) is available. Such
data can be used to infer both the distribution of β and the model discrepancy εmodel. However, there is
typically a paucity of such data with which to calibrate tumor growth models, in particular it is usually
challenging to control or form independent estimates of the latent parameter β in a context that is
useful for clinically relevant patient-specific inference. For instance, it may be possible to construct in
vitro or small animal experiments to control β (for instance by modifying nutrient availability and
using synthetic ECM such as Matrigelr), but the resulting inferred distributions may not apply to the
clinical context. As discussed above, a wide range of clinical imaging data is typically available
(e.g., [74] is an open-access database), but imaging data is always noisy, incomplete, and at best only
indirectly related to the model parameter of interest, so classical calibration is nearly impossible with
such data. With the issues outlined here and in the paragraph above, how do we proceed? A variety of
Bayesian techniques are available for performing model calibration at the population level and
patient-specific parameter estimation, as well as providing uncertainty quantification on parameter
estimates and model outputs, even in the case when patient data is noisy and incomplete.

Broadly speaking, a Bayesian technique assumes that all parameters are random variables, including
population parameters which may ostensibly be non-random. For example, in the RDE model with
homogeneous coefficients β = (D, ρ, κ), we account for population heterogeneity by assuming that β is
random with probability density p(β|θ), where θ is a population parameter such as the population mean
β̄ = (D̄, ρ̄, κ̄) and covariance matrix Kβ. While such population parameters are well-defined as large-
sample averages, and hence non-random, a Bayesian technique will assign a probability distribution to
them anyway. Probabilistic conditioning on available data – whether it be population-level calibration
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data or patient-specific data – then specifies the distribution to be used for subsequent inference. Such a
distribution is called a posterior. With the notation and setup outlined in section 3, we assume that β ∼
p(β|θ), where θ is a population parameter and p(·) is a Probability Density Function (PDF). Bayesian
techniques are capable of performing inference on θ (to assess inter-patient heterogeneity), as well as
on a patient-specific realization βk (to assess intra-patient heterogeneity and quantify uncertainties).
We discuss each case separately, starting with the patient-specific case, since population inference can
only proceed with a collection of samples from individual patients.

6.1. The patient-specific Bayesian inference framework

In the context of patient-specific inference, we wish to use available data to make inferences about
an individual patient’s parameter, which we denote by βk here. As throughout this review, we assume
that βk is a realization of the random vector β, which we assume to have PDF p(β|θ). While the true
population distribution p(β|θ) may be partly or completely unknown, one can assume a particular form
for patient k, for instance by selecting a convenient nominal value of θ. The assumed distribution
for patient k is called the prior and is denoted p(prior)(βk). Ideally, the choice of prior is informed by
calibration data and not simply convenience; non-informative priors such as uniform and maximum
entropy distributions are an alternate choice if such data are unavailable [45, 47].

The next component of a patient-specific Bayesian procedure is an explicit measurement model
relating y(meas)

k to y(true)
k . Such models typically take the form

y(meas)
k =H

(
y(true)

k

)
+ ε(meas)

k , (6.1)

where y(meas)
k ∈ Rm is the measured data for patient k, andH : Rq → Rm is the measurement operator.

For imaging data, m is typically quite large (O(106−108), especially for volumetric images). For a well-
calibrated measurement model, it is usually reasonable to assume that E

[
y(meas)

k |y(true)
k

]
= H(y(true)

k ) –
that is, there is no systematic model bias forH . Furthermore, the complete statistics of y(meas)

k |y(true)
k are

typically well understood. For instance, most photon-based imaging systems obey Poisson or Gaussian
statistics very closely, meaning that y(meas)

k |y(true)
k is accurately described as being either Poisson with

meanH(y(true)
k ) or Gaussian with meanH(y(true)

k ) and covariance matrix K(meas) [67]. The probability
density of y(meas)

k |y(true)
k is denoted p(meas)(y(meas)|y(true)); as a function of y(true), this density is called

the measurement likelihood and is written L(meas)(y(true)|y(meas)) = p(meas)(y(meas)|y(true)). Solving the
statistical inverse problem (6.1) is considered standard practice, with both frequentest and Bayesian
techniques being available [67, 97, 98]. In both cases, one has a choice to produce either a point
estimate ŷ(true)

k , or a full Bayesian posterior p(y(true)
k |y(meas)

k ). In the latter case, the prior and likelihood
are combined to write

y(true)
k |y(meas)

k ∼ p(y(true)
k |y(meas)

k ) =
L(y(true)

k |y(meas)
k )p(prior)(y(true)

k )

p(data)(y(meas)
k )

(6.2)

However, as discussed throughout this review, we may be more interested in the latent model
parameter β than we are in the state y(true)

k ; as highlighted in [23, 24, 99] and elsewhere, the parameters
D and ρ in the Fisher-KPP model correlate with prognostic outcome more so than cell density n(x, t).

Combining (6.1) with the model (2.6), we have

y(meas)
k =H

(
M(βk) + ε(model)

k

)
+ ε(meas)

k . (6.3)
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IfH is linear (a reasonable assumption for many imaging systems, for instance), this reduces to

y(meas)
k =HM(βk) +Hε(model)

k + ε(meas)
k . (6.4)

Equation (6.4) highlights a fundamental issue, namely that it is difficult to deconvolve the influence of
model discrepancy and measurement error: The measured data may differ from the model predicted
output both due to model error and measurement noise, and in the absence of noise-free data, it can
be difficult to calibrate ε(model) [100]. This leads many to assume (possibly erroneously) that either
ε(model)

k = 0, or that it lies in the null space ofH , so that the nonlinear statistical inverse problem

y(meas)
k =HM(βk) + ε(meas)

k (6.5)

can be solved in a manner similar to (6.1) to obtain either a point estimate β̂k or Bayesian posterior
βk|y

(meas)
k . Denoting the composition of the measurement and model by F = H ◦M : Rp → Rm, we

write (6.5) as

y(meas)
k = F (βk) + ε(meas)

k (6.6)

A Bayesian solution to (6.6) will be similar to (6.2), except that we are inferring βk instead of y(true)
k :

βk|y
(meas)
k ∼ p(βk|y

(meas)
k ) =

L(βk|y
(meas)
k )p(prior)(βk)

p(data)(y(meas)
k )

(6.7)

In general, drawing samples from the posterior (6.7) requires the usage of a Markov Chain Monte Carlo
method such as the Metropolis-Hastings algorithm or one of its more sophisticated variants [47,97]. If
one can assume that ε(meas)

k is conditionally independent of y(meas)
k , then the likelihood in (6.7) can be

written as

L(βk|y
(meas)
k ) = pε(meas)(y(meas)

k − F (βk)) (6.8)

For example, if the measurement noise is Gaussian, we would have

L(βk|y
(meas)
k ) ∝ exp

(
−

1
2

(y(meas)
k − F (βk))

ᵀK−1
ε(meas)(y(meas)

k − F (βk))
)

(6.9)

6.2. Previous literature of patient-specific Bayesian inference for tumor heterogeneity

Several groups have pursued the usage of Bayesian strategies for patient-specific model calibration
in the context of mathematical oncology. For a tutorial review on this topic in the context of an ODE
tumor growth model, see [101]. We provide a brief review of several approaches here.

In [102], a reaction-diffusion system that couples proliferating and migrating cells to an extra-
cellular matrix is combined with a measurement model similar to (6.5) to formulate patient-specific
tumor growth prediction as a data assimilation problem. In data assimilation, measured data y(meas)

i,k ,
collected for patient k at a series of time points t = ti, is used to sequentially update the estimate
of the state y(true)

i,k . The authors employ a technique called the Local Ensemble Transform Kalman
Filter (LETKF), which employs an ensemble (i.e., sample) of state estimates to emulate the posterior
distribution p(y(true)|y(meas)). They do not attempt to perform the simultaneous parameter estimation
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problem (i.e., solving the statistical inverse problem (6.5)), instead selecting nominal values for β with
which to perform the forward prediction y(model) = M(β). Their approach is thus more akin to a data
assimilation solution to (6.1) in the case when y(meas) is time-resolved.

In [103], the authors discuss an application of the Bayesian calibration and validation framework
presented in [104] to a class of diffuse interface/continuum mixture models of tumor growth, and
discuss methods of evaluating model fit and selecting the ‘best fit’ model by comparing quantity-of-
interest PDFs from calibration and validation scenarios. The QoI they aim to predict is the same as
our Eq (2.7), namely the total tumor burden at some future time t = t3, which we write as y(QoI).
Using calibration data from t = t1 and validation data from t = t2, they form two posterior PDFs
(in our notation) p(calib) = p(post)(y(QoI)|y(meas)(t1)) and p(valid) = p(y(QoI)|y(meas)(t2)). These posterior
distributions are then compared using a metric between probability distributions such as total variation
to evaluate goodness of fit, the idea being that the posterior formed with the calibration data should
not be significantly different than the posterior formed with the validation data. They compare three
models to each other, concluding that a model that incorporates only simple proliferation is rejected
in that it cannot reproduce the QoI data generated by a more sophisticated model that incorporates
both proliferation and apoptosis as well as oxygen dependence; however, the model with proliferation,
apoptosis and oxygen dependence cannot be rejected as a surrogate for a model which incorporates
time-dependent parameters. While these conclusions are fully in silico and hence do not have direct
clinical significance, they demonstrate Bayesian calibration methodologies in the context of tumor
growth modeling. A later article by the same group provides an extensive review of the application of
Bayesian methodologies to multiscale tumor growth modeling [105].

In [106], the authors assume a Fisher-KPP tumor growth model with homogenous diffusion and
growth parameters D(x) ≡ D and ρ(x) ≡ ρ, and κ ≡ 1, then use a combination of T1Gd (T1-weighted
Gadolinium contrast enhanced) and T2-FLAIR (T2-weighted FLuid-Attenuated-Inversion-Recovery)
MRI images to form a Bayesian posterior for the parameters (D, ρ). They choose a likelihood model
based on the Hausdorff distance between segmented MRI images and the model predicted tumor, use a
variety of priors including a log-uniform, and employ a variant of Hamiltonian Monte Carlo (HMC) to
perform the posterior sampling. They do not account for uncertainty in the image segmentation itself,
nor do they appear to account for spatial inhomogeneity in either model parameter.

The recent article [107] assesses uncertainty and robustness of a treatment response metric called
Days Gained (DG), which is a QoI derived from a Fisher-KPP model by comparing a patient’s actual
post-treatment tumor size to a virtual untreated control, simulated using the RDE model. The evaluated
robustness and uncertainty in DG by accounting for uncertainty in both the segmentation and in the
time of tumor initiation, and also evaluate the effect of prior selection, comparing a Gaussian prior
calibrated to a real population of glioblastoma patients to an ad-hoc uniform prior. Their results appear
to indicate that DG is robust to both the uncertainties assessed as well as the choice of prior.

6.3. The population-level Bayesian inference framework

While the Bayesian techniques discussed in section 6.1 apply to the case of patient-specific
uncertainty analysis, it is also useful to apply Bayesian strategies to the population inference case. As
we have discussed throughout this review, a heterogeneous population is described by a parameter
distribution Pβ, which may depend on a population parameter θ. In 6.1, Bayesian analysis is applied
to β; a population Bayesian analysis would apply to θ.
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Assuming a prior PDF p(prior)(θ) and a collection of calibration data
Y(calib) = (y(meas)

1 , . . . , y(meas)
K ) ∈ (Rq)K , a Bayesian method for θ would produce a posterior PDF

pcalib(θ|Ycalib) for the population parameter θ by applying Bayes rule:

p(calib)
(
θ|Y(calib)

)
=

p(meas)
(
Y(calib)|θ

)
p(prior)(θ)

p(data)
(
Y(calib)

) (6.10)

where p(data)(Y (calib)) =
∫

p(meas)
(
Y(calib)|θ

)
p(prior)(θ) dθ.

6.4. Sensitivity analysis and model reduction framework

When there are many parameters to calibrate, a first step is often to reduce the dimensionality of the
problem by performing a sensitivity analysis. Heuristically, sensitivity analysis tries to identify those
input parameters that most influence the output values. For example, in the RDE model (2.1), of the
original p parameters, it may be that only a few play a significant role in the output QoI. Sensitivity
analysis techniques are usually categorized as being local or global, with the former studying the effect
of parameter variation around a fixed, nominal value, and the latter evaluating the effect of parameter
variation across a wide range of possible values. The simplest form of local sensitivity analysis, at least
conceptually, is to compute a finite difference approximation of the partial derivatives

∂Mi

∂β j
≈

1
δi j

(
Mi(β + δi je j) −Mi(β)

)
. (6.11)

Other techniques for local sensitivity analysis include forming and solving the forward and adjoint
sensitivity equations (the ‘FSAP’ and ‘ASAP’ methods), or using automatic differentiation [45, 47].

A common approach to global sensitivity analysis is a technique called Sobol analysis [45,47,108].
If the effect of the parameters on the output are all statistically independent, Sobol indices measure
the relative influence of each of the parameters β1, β2, ..., βp. In essence, the method decomposes the
total change in the output into a sum of the changes due to each individual βi parameters, plus the
changes due to every pair of parameters (βi, β j), plus every triple of parameters, and so on. The first
order Sobol indices yield results similar to the classical Analysis of Variance (ANOVA) technique in
statistics. Many times, however, the parameters are not independent, and in such a case, the Sobol
approach can give misleading results.

A different methodology is called the active subspace model [109]. In essence, active subspaces
approximate the gradient of the outputs y(model) with respect to the inputs β, leading to the matrix

Ĉ = (∇M(β)) (∇M(β))T . (6.12)

The k largest eigenvalues of Ĉ, and the associated eigenvectors, define the most influential set of
parameters. Often one chooses k large enough to capture some threshold of the total variability—say
90%—the premise being that k � p. Active subspaces generalizes the more classical technique of
Principal Components Analysis (PCA), which finds linear subspaces in which the majority of
variability resides. By contrast, active subspaces can produce a nonlinear manifold which contains
most of the variability.

A simpler but related approach is to use Morris indices [47, 110]. Assuming the input parameters
have been scaled to the unit hypercube β ∈ [0, 1]p, one selects a point at random to start and computes
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the output value for this input. One then moves a small step (typically 5–10%) in the direction of one
of the input dimensions and re-computes outputs. One then proceeds dimension-by-dimension until
all dimensions have been sampled, keeping track of the outputs obtained. One can (approximately)
integrate along this path to obtain a value of the total variability of the outputs.

Having identified the important input parameters, perhaps re-parameterizing the problem in the
process, one can then explore the reduced parameter space in greater detail. A common way to
proceed is as follows. First, in the less important parameter dimensions, set the parameter values to
some nominal accepted values; second, one can apply a design of experiment approach that samples
widely in the remaining parameter dimensions, and lastly, one can employ MCMC methods to
calibrate the distribution of the important inputs that best represent any available data. Since
MCMC-based calibration can be computationally demanding, it is often helpful to construct a
statistical emulator, that is, a surrogate model that very quickly estimates the simulation output at
untested input values and, importantly, provides an estimate of the error in this estimation procedure.
Gaussian Stochastic Processes provide a robust method for emulator construction [111, 112].

As part of the calibration process, it is important to check whether the MCMC has overfit the
parameters. That is, sometimes the posterior distribution of the parameter inputs are concentrated,
but at an incorrect value. Such a finding would suggest an overly high degree of confidence in the
parameter estimate, even though that parameter distribution does not cover the “correct’’ value. The
most common cause of such over-fitting is model discrepancy—that is, the model does not include all
the features that nature is using. This discrepancy is the source of ε(model) in Eq (2.8). Although the
calibration and model error cannot be distinguished independently, one can estimate the size of the
error across likely input values, to estimate the extent of the model error [113]. Typically, the model
error ε(model) is modeled as a Gaussian Process.

6.5. Case study: Patient-specific Bayesian inference

In Figure 7, we demonstrate a basic application of (6.7) in the case of a linear measurement operator
H , making the homogeneous parameter assumption that β = (D, ρ, κ) are spatially constant.

We simulate imaging data by assuming the measurement operatorH from (6.1) is a linear blurring
operator, that is, the imaging data consists of noisy linear functionals of the form
ymeas

m = (h ∗ n)(xm, tm) + εmeas
m , with 1 ≤ m ≤ M. In this model, h is a Gaussian point spread (blurring)

function, ∗ denotes convolution, (xm, tm) are the locations and times of the imaging sensors, and εmeas

is a mean-zero Gaussian noise vector. We assume that M = 2 × 472, i.e., two 47 × 47 pixel images are
taken at two separate time points, namely t = 40.6 and t = 81.1 days; see Figure 8. This image data
model is a reasonable approximation to many light-based microscope measurements, as well as some
reconstructed tomographic images. More detailed imaging system models are discussed
elsewhere [67] and are not the purpose of this review. For the experiment shown in Figure 7, the prior
pprior(β) is assumed to be uniform on the set (D, ρ) ∈ [0, 1e − 4] × [0, 1], while κ is assumed fixed at
some nominal value. We employ a standard Metropolis-Hastings MCMC method to draw samples
from ppost(D, ρ), taking the maximum likelihood estimate of (D, ρ) as the initial point and a Gaussian
proposal density with standard deviation (σD, σρ) = (1e − 11, 1e − 7), leading to an acceptance rate of
around 50%. Note that in Figure 7, a marked concentration effect is taking place whereby the
accepted values of (D, ρ) seem to concentrate around a 1D submanifold of the parameter space,
indicating that the two images available are not sufficient to fully identify the parameter (D, ρ). If
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Figure 7. Histogram estimate of the posterior distribution on (D, ρ) in the homogeneous
parameter case. Note that the posterior samples seem to concentrate on a 1D subset of
the parameter space, demonstrating a possible identifiability issue for (D, ρ) from n(x, t)
measurements alone.

additional imaging measurements were available, for instance molecular imaging of cell proliferation
as discussed in the introduction to this section, this identifiability issue might be mitigated; see [70]
for more information.

7. Machine learning

Machine learning has recently emerged as a powerful tool to automate tedious tasks such as image
classification and segmentation [114–116]. Many of the concepts used in machine learning practice
can be applied to personalized medicine—for a recent review on machine learning applications in
healthcare, see [117]. One advantage of using machine learning methods is the ability to find patterns
in data without requiring human input, i.e., feature engineering. However, this advantage comes with
some drawbacks, such as lack of interpretability and generalizability.

Recent applications of machine learning to cancer research include data processing such as image
processing, analysis of genomic data, and quantification of electronic health records. For example,
image processing tasks encompass lesion detection [118, 119], cell segmentation [116, 120], and
tumor segmentation [121, 122] which feature heterogeneity in image modality (phase contrast, MR,
CAT, etc.), machine type, and across patients. For a recent review on deep learning methods for
personalizing medicine via imaging, see [123] and the references therein. Recent work includes
survival prediction given imaging data and demographic information [124–126] in a very
heterogeneous patient pool. Genomic expression data has been used to predict tumor type [127] and
predict survival time in conjunction with histological imaging in gliomas [128]. For a tutorial and
review on deep learning models for genomic data, see [129]. Machine learning has also been applied
to translating electronic health records (EHR) [130] for use in predicting sepsis [131] and
diabetes [132]. Within the context of cancer, machine learning can be used to process EHRs to detect
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Figure 8. Simulated image data used in the patient-specific Bayesian demonstration. We
assume that direct imaging of n(x, t) is available in the form of ymeas = Hn + εmeas withH
being a linear shift-invariant imaging operator and εmeas being a Gaussian noise. Each image
is 47 × 47 pixels.

colorectal cancer [133] and to predict pancreatic cancer using EHR data in conjunction with PubMed
keywords [134].

7.1. Previous literature of machine learning methods for tumor heterogeneity

Multi-task learning (MTL) [135], a machine learning methodology that considers learning more
than one task simultaneously (e. g., predicting both the type and color for a single image of a flower)
provides an opportunity to account for patient heterogeneity in prediction. By training tasks in
parallel, this technique enables shared feature learning through joint modeling of multiple tasks and
has also been shown to help with model regularization [135]. For a recent overview on multi-task
learning approaches, see [136] and the references therein. Recent work proposed a MTL architecture
in which predicting outcomes for separate individuals are considered as multiple tasks [137]. The
objective of this work was to predict the health, stress, and happiness of an individual from
longitudinal time-series data of a set of 343 features extracted from sensors, smartphones logs,
behavioral surveys, and weather information. The authors discovered that higher prediction accuracy
was achieved when a multi-task neural network model was used, in essence treating each prediction
for each individual as a separate task. The key feature in this multi-task approach is that the task
separation occurs by using a single neural network architecture, in which the first few layers in the
network are shared among all individuals, and the last last layers branch out to predict each
individual’s outcome separately. By defining a separate prediction task for an individual or “user”, in
this way, population level information is leveraged and population features are “shared” among
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individuals. Notably, it was shown that the multi-task model with users-as-tasks was significantly
more accurate than the typical single-task modeling approach in which a separate neural network
model is used for each individual. This multi-task learning approach could be applied to create
individualized predictions of cancer growth in similar settings for which too few data points exist to
train an accurate machine learning model for each patient, but data exists for a large population of
patients.

More recent work has proposed combining mathematical modeling and machine learning to
enhance accuracy and interpretability. The 2019 Mathematical Onocology Roadmap [138] urged the
community to begin examining the ways machine learning and mathematical modeling can be
integrated. For example, physics-informed neural networks (PINNs) [139] were shown to help
constrain the neural networks that are used for learning equations [140, 141] to obey the laws of
physics. Other examples have shown that taking a hybrid approach to prediction by combining
characteristics of both mechanistic modeling and data-driven modeling can offer improvements in
prediction accuracy and parameter estimation over the standalone methodologies [142, 143]. Within
the context of GBM, recent work showed that constraining machine learning models with the
proliferation-invasion model (Eq (2.1)) resulted in more accurate predictions of tumor cell density
than mathematical models or machine learning models alone [144].

In the remainder of this section, we focus on an example machine learning methodology for
generating virtual data that are similar to the real/original data: Generative networks (VAEs, GANs,
etc.). Generative modeling in machine learning attempts to produce new samples from some unknown
probability distribution Pdata given a set of observations from that distribution. In other words, given
input data (y ∈ RΩ), a model can be trained to generate data like it (ŷ ∈ RΩ). Thus, generative
modeling, similarly to virtual populations, can provide a platform to investigate heterogeneity. Note
that while conceptually similar to the process of generating virtual population data in section 3 where
patient-specific virtual populations are generated based on the patient-specific distribution of
parameters (derived from patient-specific data), generative models in machine learning are trained
based on the patient-specific distribution of the data itself (e.g., images of tumor density).
Additionally, these methods frequently assist in other ways such as increasing the amount of available
training data and discovering a data set’s salient features.

In most recent applications, generative models typically adopt one of two neural network
approaches: Variational auto-encoders (VAEs) or generative adversarial networks (GANs). In the
following subsections we provide high level overviews of each method as well as examples where
they have been utilized in precision medicine. In section 7.2 and 7.3, we show examples of generative
model predictions based on the virtual population data described in section 3.3 of this paper and
provide open-source code for these examples. We conclude by applying these methods to the virtual
population data from section 3, providing open-source code in Python 3.7 using the PyTorch deep
learning library.

7.2. Case study: Variational auto-encoders for virtual population generation

Variational auto-encoders [145] are an extension of auto-encoders which specialize in compressing
and decompressing data. Auto-encoders (AEs) are an unsupervised learning method that leverage
neural networks to learn lower-dimensional representations of data without the need for feature
engineering. Traditionally, AEs are composed of two distinct neural networks, known as an encoder
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and a decoder. The encoder neural network uses input data y ∈ RΩ (e.g., images where Ω is large) and
through a series of feature extraction and down-sampling layers “compresses” each input into an
`-dimensional vector of latent variables z ∈ R` where ` � Ω. The decoder network uses z as an input
and, through a series of feature extraction and up-sampling layers, “decompresses” the latent vector
into an output ŷ ∈ RΩ which is a reconstruction the original input data y. The low dimensional
bottleneck between the input data and their reconstructions forces the AE to learn a maximally
informative compressed representation of the input data. AEs are trained end-to-end using the
reconstruction error (typically mean squared error) between inputs y and reconstructions ŷ.
Concretely, given an encoder NE(y; θE) : RΩ → R` parameterized by θE and decoder
ND(z; θD) : R` → RΩ parameterized by θD, the objective of auto-encoders is to minimize the cost
function

JAE(y, ŷ) = ‖y − ŷ‖22 (7.1)

where ŷ = ND(z) = ND(NE(y)). We note that the parameters θ described in this section refer to
the weights and biases of neural network models and do not describe the population parameters from
section 3. AEs in this form, however, are not generative since for a fixed input, the reconstructed output
is always the same.

VAEs extend auto-encoders to the class of generative models. Similarly to AEs, VAEs are also
composed of encoder and decoder networks. However, rather than having the encoder output the
latent vector z directly, the encoder network in a VAE instead outputs parameters which characterize a
probability distribution (typically a normal distribution) from which realizations of z can be sampled.
In this way, VAEs encode input data into latent distributions rather than latent samples. For example,
if we wish to encode input data y into an `-dimensional normal distribution from which we can easily
draw samples, we can modify the encoder neural network to output two vectors µ ∈ R` and σ ∈ R`.
Then, the decoder network uses as inputs a random sample z ∼ N(µ,Σ), where Σ is the diagonal
covariance matrix with diagonal elements σ1, . . . , σ`, and outputs a reconstruction ŷ of the original
input y. In this formulation, the `-dimensional normal distribution, characterized by µ and σ, is
composed of ` independent 1-D normal distributions.

Similar to auto-encoders, variational auto-encoders are also trained end-to-end by minimizing the
reconstruction error between inputs y and reconstructions ŷ. However, in addition to accurate
reconstruction quality, the optimization also accounts for similarity in latent representations.
Therefore, an additional constraint is added to the VAE objective function, specifically on the latent
probability distribution characterized by encoder outputs µ and σ. In practice, this constraint is the
Kullback-Leibler (KL) divergence between the latent distribution N(µ,Σ) and the standard normal
distribution N(0, I) where I is the `-dimensional identity matrix. Thus, the objective function for
VAEs takes the form

JVAE(y, ŷ) = ‖y − ŷ‖22 + KL
(
N(µ,Σ),N(0, I)

)
(7.2)

where the first term represents the reconstruction error and the second term represents the KL
divergence between the latent distribution and the standard normal distribution. By training the
encoder and decoder networks with this dual-objective function, the VAE learns to represent
high-dimensional input data in a continuous low-dimensional latent space where similar inputs are
characterized by similar latent distributions. Given the clear optimization problem with well-defined
inputs and outputs, training VAEs is systematic and stable, however the reconstruction quality can be
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unrealistic and “blurry” due to the nature of mean squared error as an objective function. The
interested reader can find a more detailed explanation of VAEs in [145, 146]. We next describe how
VAEs can be used to model virtual population data. However, other notable recent uses of VAEs
towards precision medicine include the best performing segmentation algorithm for the Brain Tumor
Segmentation Challenge (BRATS) [147] and Stacked Sparse Autoencoders (SSAEs) for nucleus
detection in H&E images [148]

We applied VAEs to modeling the virtual population data of 128 tumor cell density time series
generated in section 3.3. For the encoder and decoder we employ deep convolutional neural networks
(see https://github.com/jtnardin/Tumor-Heterogeneity/ for code) using a latent space of size ` = 100.
For training and validation data, we use the first 20 time points of each of the 128 virtual patients for
a total of 2560 observations. To pre-process the data, each 256 × 256 realization is linearly down-
sampled to 128 × 128 and normalized pixel-wise to [0, 1]. The data are then randomly partitioned
into 80% training and 20% validation sets. The training data are augmented using random rotations
of 90◦ during training while no augmentations are applied to the validation set. To train the encoder
and decoder networks, we minimize the VAE objective function in Eq (7.2) using the Adam optimizer
with default parameters except a learning rate of 1 × 10−4 for a total of 5000 epochs with a batch size
of 64. The KL Divergence term is scaled by 1 × 10−5 to keep it from dominating the reconstruction
error in the objective function. We report the results of the VAE that achieves the smallest error on the
validation set.

Original Reconstruction 1 Reconstruction 2 Reconstruction 3

Figure 9. A virtual patient’s tumor cell density (left image) is encoded into a latent
distribution by the encoder network, then three random samples from the latent distribution
are input to the decoder network to produce the three reconstructed images to the right of the
original.

The trained VAE can be used for generating new data and producing new realizations of already
existing data, which could be used synergistically with virtual populations for enhanced investigation
into heterogeneity. In practice, the generated data can be used in conjunction with observed data for
better mathematical model calibration or improving the performance of other machine learning models
for tasks like classification or segmentation. In Figure 9 we demonstrate how the trained variational
auto-encoder (VAE) can be used to produce new realizations of a given observation. An example
observation (left) is selected and encoded into a latent distribution characterized by µ, σ ∈ R100. Then
the next three plots show various decoder reconstructions from samples z ∼ N(µ,Σ). Figure 9 also
illustrates some of the strengths and weaknesses of VAEs. In particular, VAEs allow scientists to
encode observed data into a lower-dimensional latent representation from which we can sample new
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realizations that are similar to the observation itself. However the sampled reconstructions can be
blurry, as shown most clearly in VAE Reconstruction 3 (Figure 9) in which the boundaries around the
tumor are more diffuse.

7.3. Case study: Generative adversarial networks for virtual population generation

Generative adversarial networks (GANs) [149] are another generative modeling approach with
widespread use in the field of machine learning. Like VAEs, GANs are also composed of two neural
networks, called a generator and discriminator, but rather than being trained end-to-end to minimize
reconstruction error, the generator and discriminator train competitively against each other.
Intuitively, the generator network attempts to fool the discriminator network by producing realistic
looking data while the discriminator is trained to distinguish between real and generated data. This
method is formalized in the following paragraph.

The objective of GANs is to produce new samples ŷ ∈ RΩ by approximating the unknown
probability distribution Pdata that generates the observed data y ∈ RΩ in the training set. Since the true
probability distribution is unknown, we instead wish to sample from a lower-dimensional probability
distribution Pz that is chosen a priori (e.g., standard normal) and map it through a sufficiently
complex function (i.e., generator neural network) to approximate the true distribution Pdata. Let z ∈ R`

be a sample from Pz, then the generator NG(z; θG) : R` → RΩ parameterized by θG outputs a generated
data sample ŷ. The discriminator ND(y; θD) : RΩ → (0, 1) parameterized by θD, where (0, 1) denotes
the open interval between 0 and 1, inputs real and generated data and tries to predict the binary
classification (i.e., 1 for real, 0 for fake) of its inputs. In this way the discriminator represents the
probability that a generated sample ŷ came from the true probability distribution Pdata.

Since GANs are composed of neural networks, they can be trained by minimizing a common
objective function

JGAN = Ey∼Pdata[log ND(y)] + Ez∼Pz[log(1 − ND(NG(z)))] (7.3)

where NG(z) = ŷ. The first component of Eq (7.3) trains the discriminator to maximize the probability
of correctly classifying incoming real and generated data while the second component trains the
generator to fool the discriminator. Once the GAN is trained, the generator network can be used to
generate new samples from the learned true data distribution Pdata by simply drawing samples from
Pz. Due to the adversarial objective function, training GANs can be unstable for several reasons,
including mode collapse [150] where the generator outputs the same sample regardless of the input,
and oscillating/vanishing gradients [151] where the adversarial network parameter updates during
training unfairly benefit either the discriminator network or the generator network. Provided that a
GAN is trained sufficiently well, the resulting generator model is significantly more accurate at
generating realistic looking samples than VAE reconstructions. The interested reader can find a more
detailed explanation of GANs in [149, 152].

GANs have been used increasingly in precision medicine applications. For example, they have been
used to increase the amount of available training data for the task of liver lesion classification which
boosted classification accuracy from 78.6% sensitivity and 88.4% specificity to 85.7% sensitivity and
92.4% specificity [153]. GANs have also been leveraged to address imbalanced brain tumor MRI
data and to serve as an anonymization tool for patient data [154]. Several modifications of the GAN
architecture exist that extend their capability to more complex domains. In particular, a GAN variant
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known as CycleGAN enables unpaired image-to-image translation by combining two GANs under a
single adversarial objective function [155]. This modification allows for conversion of images from
one domain to another, e.g., apples to oranges, horses to zebras, etc. without the need for aligned
image pairs. In precision medicine, a CycleGAN was used to translate X-ray images into synthetic CT
scans for more accurate image segmentation [156].

We now demonstrate an implementation of GANs applied to the virtual population data of 128
tumor cell density time series generated in section 3.3. Similarly to the encoder and decoder for
VAEs, for the generator and discriminator we employ deep convolutional neural networks (see
https://github.com/jtnardin/Tumor-Heterogeneity for code) using a latent space of size ` = 100.
Further, we use the same 2560 observations with identical pre-processing and rotation augmentations.
To train the generator and discriminator networks, we minimize the GAN objective function in
Eq (7.3) using the Adam optimizer with default parameters except for learning rate 2 × 10−4 and first
moment weight 0.5. These values were chosen based on [152]. The GAN is trained for a total of
50,000 iterations, where in each iteration we randomly sample and augment a batch of 64
observations. Developing metrics to know when a GAN model has converged remains the subject of
ongoing research, thus we report the results from the generator that produces the best qualitative
results.

GANs share many of the same applications as VAEs in which generated data can be used for
model calibration and improved classification and segmentation accuracy. GANs can also work
synergistically with virtual populations as a platform to investigate tumor heterogeneity. In Figure 10
we demonstrate how the trained generative adversarial network (GAN) can be used to produce new
realizations of the observed data. The four plots show various generator realizations from samples
z ∼ N(0, I). Figure 10 also illustrates some of the strengths and weaknesses of GANs. In particular,
we use the GAN to generate realistic looking samples, however we lack the ability to sample
reconstructions from fixed observations in the training set since the GAN implementation lacks an
‘encoding’ step. In other words, VAEs have the ability to produce a latent sample z from an input
image but when utilizing GANs one must draw z randomly each time since there is no encoder
network. Therefore, GANs produce realizations where VAEs produce reconstructions.

Realization 1 Realization 2 Realization 3 Realization 4

Figure 10. Plot of example virtual patient tumor cell densities obtained by inputting four
random samples z ∼ N(0, I) to the generator network of a GAN. See Figure 1 to compare
the GAN generated images with examples from the virtual population data used for training.
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8. Discussions

Understanding how heterogeneity between and within tumors allows cancer to harmfully spread
and survive is crucial for determining strategies to develop robust patient-specific decisions for
precision medicine. Several recent biological studies [157, 158] have highlighted the central role of
heterogeneity for tumor survival and spread, underscoring the importance for mathematical modelers
to combine models with measures of heterogeneity to help inform how heterogeneous growth and
spread processes lead to tumor progression. In this review, we have detailed several methods,
including virtual populations, NLME, non-parametric estimation, Bayesian statistics, and machine
learning as options for modelers to use for inferring and quantifying tumor heterogeneity with the
application of a mathematical model. Each of these methods have strengths and weaknesses that
should be considered before implementation.

To demonstrate the strength and weakness of each method, we showcase their practical
implementation in this review. We used synthetically generated data for which the true underlying
distribution are known and therefore can be compared with the inferred distribution. Although these
methods were not applied to clinical data in this manuscript, we included possible references and
guides for the interested reader. Due to the severity of brain cancer, many open-source imaging
datasets, such as the cancer imaging archive [74] consist mainly of one time point (references with
one time point), which are not appropriate for all described methods. GANs are one method that can
be used to analyze datasets with one time point. In order to infer parameters for underlying PDEs,
multiple time points may be necessary. Multiple time-point in vitro [13], preclinical [159, 160], and
clinical data of brain cancer could be used to quantify intertumoral heterogeneity using NLME, PMF,
Bayesian, and Machine Learning Methods. Such methods could also infer heterogeneity from
time-dependent in-vitro tumor volume data [161–163]. An interesting extension of this work would
be to compare and contrast the ability of these methods to predict tumor growth in preclinical/clinical
data when the underlying distribution is unknown.

Virtual populations quantify how heterogeneity arising from the distribution of model parameters,
Pβ, leads to differences in some population-wide quantity of interest. Virtual populations are
frequently used to infer Pβ, discover anti-cancer treatment, investigate therapeutic drug designs, and
predict sensitivity of patients to different treatment regimens. We generated two virtual populations in
this work: One with spatially-homogeneous model parameters and another with
spatially-heterogeneous model parameters to exhibit the capabilities of the following techniques for
quantifying or inferring tumor heterogeneity.

NLME is a statistical framework to infer some underlying parameter distribution for a
parameterized mathematical model from distributed data. We were able to use this framework to
accurately identify the underlying proliferation rate distribution from homogeneous data for benign
and malignant patients with only a few virtual patient realizations (K=25). The high computational
cost of this NLME did not allow us to investigate intertumoral heterogeneity through the spatially
heterogeneous virtual population dataset. We suggest that extending this NLME framework to be
used with a random field model is an interesting area for future research.

Non-parametric estimation within the prohorov metric framework (PMF) allows for accurate
distribution inference from aggregate data without a priori knowledge of the underlying distribution.
One drawback to non-parametric estimation is that it requires enough data in order to accurately
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resolve parameter distributions. Due to potential parameter identifiability issues with estimating
parameters for the random field as well as the random parameters, we only addressed inter-patient
heterogeneity with non-parametric estimation in this review and did not address intratumoral
heterogeneity. The PMF has previously been used to estimate intratumoral heterogeneity [89].
Optimization with respect to both intratumoral and inter-patient variability is left for future work.

Bayesian methods allow for a thorough understanding of the underlying uncertainty associated
with any mechanistic parameters. This uncertainty can be investigated with a sensitivity analysis to
determine which parameters most heavily influence the model output or by defining patient-specific
posterior distributions for patients.

Machine learning is a recent field with promise for automating and personalizing tasks in
medicine, including diagnosis and individualized therapeutic decision making. Generative modeling
from machine learning allows for the reconstruction/realization of tumor images from a collection of
real images. Such generated samples can be utilized to understand several underlying tumor
properties, including the progression in size over time, shape, as well as variability in these measures.
While we did not combine this aspect of our study with a mathematical model, the synergy of these
methods with mechanistic mathematical models is a promising avenue for future research to create
interpretable machine learning tools and better predict tumor invasion.

We used the Fisher-KPP model throughout this review as a model for tumor volume over space
and time, which can be used in combination with spatial imaging data. We note that the model used
will change between studies based upon the problem one is addressing as well as the available data.
Many different mathematical models may be substituted in with the methodologies discussed within
this review to aid the modeler in quantifying the heterogeneity present in their data.
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