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Abstract: Energies and spectrum of graphs associated to different linear operators play a significant
role in molecular chemistry, polymerisation, pharmacy, computer networking and communication
systems. In current article, we compute closed forms of signless Laplacian and Laplacian spectra
and energies of multi-step wheel networks Wn,m. These wheel networks are useful in networking and
communication, as every node is one hoop neighbour to other. We also present our results for wheel
graphs as particular cases. In the end, correlation of these energies on the involved parameters m ≥ 3
and n is given graphically. Present results are the natural generalizations of the already available results
in the literature.
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1. Introduction

Graph theory is instrumental in providing the most diversified applications in almost all
phenomenons and disciplines. One of the major areas, that connects graph theory with physical and
computer sciences is the use of characteristic polynomial, which plays a comprehensive role in
quantum chemistry, physical chemistry, molecular topology, networking and communication
systems [1–3]. Mathematicians are playing their part in this joint ventures due to the fascinating
problems, that take birth because of involment of the discrete geometrical structures. The roots of this
polynomial are called eigenvalues corresponding to some particular directions called eigenvectors.
Applications of eigenvalues and eigenvectors are perhaps countless. For example, in quantum
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mechanics, eigen-state and wave-function are often used interchangeably. Eigenvalue actually
represents the value of a measurable quantity associated with the wave-function. As an example,
when computing the eigen-states of the Hamiltonian H, the associated eigenvalues represent energies
and within the context of the momentum operators, the associated eigen-states refer to the momentum
of the particle. Other well-known application is the Schrodinger equation in which each energy level
is associated to an energy eigenvalue [4, 5]. Generally speaking, many chemical processes can be
modeled as a system of first-order differential equations. The associated homogeneous part has
solution space with eigenvalues of the linear operators of associated matrices, which represents
solution to that chemical process. In architecture and mechanical engineering, stability is a classic
application of eigenvalue analysis. It is also well-known that principal directions and principal
curvatures are the eigenvalues of the classical Weingartan map of surfaces and measure the maximum
and minimum normal sectional curvature of any surface.

Other application of eigenvalues can be given in image compression, where it is done by throwing
away the small eigenvalues of AAT . Clustering has dynamic role in data analysis in modern age,
whether it is in medical imaging, biology and plants, marketing and business or connection amongst
fields on facebook. It provides subsystems inside huge data sets [1,2]. Spectral clustering is important
such method, which uses the eigenvalues of graph associated to the given network.

The largest eigenvector of the graph of the internet gives the information that, how the pages are
ranked [3]. In the same way, Netflix predicts the rating of the movies. This is what most of the
websites operate, [1–3].

Energy of a graph is defined as sum of the absolute values of eigenvalues [6] by Gutman et al.. But
the main inspiration for his definition had a long history linking with popular ”Huckel Molecular
Orbital Theory”, [7–9]. New theoretical ideas relating to different energies keep on emerging on the
scene. Adjacency energy of a graph which is the sum of the absolute values of the eigenvalues of its
adjacency matrix is related to the total π-electron energy of conjugated hydro-carbon molecules. In
recent times more than twenty different energies have been introduced, based on eigenvalues of
different matrices associated to graphs, [10–13].

Laplacian energy was introduced by Gutman et al., [14, 15] in 2006. Eigenvalues and eigenvectors
of the Laplacian matrix are useful in clustering of data. In a network, two largest clusters can be found
using the Laplacian Matrix. The eigenvector corresponding to second smallest eigenvalue helps in
this regard [1–3]. Results about distance energies have been given in [16, 17]. Some energies are
derived by Nikiforov in [18] for non-regular graphs. Authors computed signless Laplacian energies
in [19] for some finite graphs.

We compute the formulas for Laplacian and signless Laplacian energies of a multi-step wheel
network and then by specialising our results we derive the closed forms of these energies for classical
wheel graph. These graphs are particularly important in communication systems. One of the most
attractive features of this graph is its one-hop neighborhood, including vertices and edges. This
feature makes this graph more reliable and self-stable as communication system [20, 21]. So it is
desirable to formulate analytical closed expressions for the different spectra and energies of this
graph. This graph can be considered as molecular graph of some molecular chains where vertices are
representatives of atoms and edges are the bonds between them. In this sense different energies and
different eigen values present potential applications relating to properties of these molecular
compounds.

Mathematical Biosciences and Engineering Volume 17, Issue 4, 3649–3659.



3651

2. Preliminaries

In this section, we put together main ideas and preliminary notions. Let G = (V, E) be a simple
connected graph with edge set E(G) and vertex set V(G). Number of vertices and number of edges are
called order and size of graph respectively. Number of vertices adjacent to a vertex v is called degree
of v and denoted as dv. The Laplacian matrix Ln×n, [14, 17] of G of order n is

L = D − A

where D and A are degree and adjacency matrices of G. Defined as

D = [di j] =

{
dui, i = j;
0, otherwise

and

A = [ai j] =

{
1 {vi, v j} ∈ E(G)
0 otherwise

From definition it is clear that

[Li j] =


dvi, i = j;
−1, i , j and vi and v j are adjacent;
0, otherwise

The signless Laplacian matrix Qn×n [19] associated to G of order n is

Q = D + A

In most of the cases, associated matrices are symmetric and real so eigenvalues are necessarily real.
The set consisting of all eigenvalues forms the spectrum of G. The trace is the sum of all eigenvalues.
If a graph G is not regular, then its Laplacian and signless Laplacian energies are defined as

LE(G) =

n∑
i=1

∣∣∣λi −
2m
n

∣∣∣ (2.1)

where λ1, ..., λn are the eigenvalues of L. Here m is size of G.

QE(G) =

n∑
i=1

∣∣∣ Pi −
2m
n

∣∣∣ (2.2)

where P1, ..., Pn are the eigenvalues of Q. In [18], author computed some matrices and energies of
graphs. Recently in [22], authors computed distance and incidence energies of classical wheels and
generalized wheels. Jia-bao et al. computed incidence energies and asymptotic Laplacian of some
lattices in [23, 24]. It makes sense to ask for the other popular closed forms of energies and spectra of
this graph. These different forms of energies and spectra of this graphs have potential applications in
network, chemistry, molecular topology, physics and other areas.
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3. Generalized wheel networks

A generalized or multi-step wheel network, Wn,m, is a graph derived from m copies of cycles Cn and
one vertex v, in such a way that all vertices of each Cn are adjacent to v. Thus order of Wn,m is nm + 1.
The main hub vertex is called center and other vertices are called n-rim vertices. The diameter of this
graph is 2 and can be seen easily as he maximum distance between any two vertices. Figure 1 presents
an instance of the wheel graph W12,m having M levels.

Figure 1. An m-level wheel W12,m.

Vertices situated at the same cycle Cn are called rim vertices. This graph is a natural generalization
of classical wheel graph Wn. Figure 2 is an example of wheel graph W6.

Figure 2. W6.

In vulnerability of networks and wireless sensor networks, the wheel graph is being used, see [20,
21]. Jia-Bao et al. computed closed formulas of adjacency and distance energies of these graphs [22].
The wheel graph has many good properties such as the every other vertex is adjacent to the central
or hub vertex. Many mathematicians studied different properties of wheel graphs. For comprehensive
overview see [20, 25–27]. In this article we are interested to compute closed forms of Laplacian and
signless Laplacian energies and spectra of this graph. We also want to obtain these results for classical
wheels as special cases of our newly obtained results.

4. Main results

In this section, some results on Laplacian, and signless Laplacian energies are given for wheel
related graphs Wn,m.
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Theorem 4.1 The Laplacian energy of wheel graph Wn,m is

LE(Wn,m) = 4mn (4.1)

Proof. Let A denotes the adjacency matrix of Cm, given as

A =



0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0 0 0 0 . . . 0 1
1 0 0 0 . . . 1 0


where ai j = 1 whenever |i − j| = 1 or m − 1 and all ai j = 0 otherwise.

The m-cycles has adjacency spectrum

S pec(Cm) = 2 cos(
2π j
m

) where j = 0, 1, ..., n − 1

So the Laplacian matrix of Wn,m in the block matrix form is

Lm×m =



mn J1×m J1×m . . . J1×m

Jm×1 [G]m×m [0]m×m . . . [0]m×m

Jm×1 [0]m×m [G]m×m . . . [0]m×m

. . . . . . .

. . . . . . .

. . . . . . .

Jm×1 [0]m×m [0]m×m . . . [0]m×m

Jm×1 [0]m×m [0]m×m . . . [G]m×m


where

J1×m =
(

1 1 . . . 1
)

Gm×m =



3 −1 0 . . . −1
−1 3 −1 . . . 0
0 −1 3 . . . 0
. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . . −1
−1 0 0 . . . 3


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By using binomial series, we get the Laplacian spectrum of Wn,m as

S pecL(Wn,m) =

(
0 1 mn + 1 −λi + 3
1 n − 1 1 n

)
i = 2, ...,m

where λi are the eigenvalues of A.
Since λi > 0 for all i = 2, 3, ..., p. Now by using definition, we have LE(Wn,m) = 4mn. �

Theorem 4.2 The signless Laplacian energy of Wn,m is given by

QE(G)(Wn,m) = 3mn − 5 +
√

(mn)2 − 6mn + 25 (4.2)

Proof. Since adjacency matric of cycle graph is

A =



0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0 0 0 0 . . . 0 1
1 0 0 0 . . . 1 0


where ai j = 1 whenever |i − j| = 1 or m − 1 and all ai j = 0 otherwise.

Since

S pec(Cm) = 2 cos(
2π j
m

) where j = 0, 1, 2, ...n − 1

Then the signless Laplacian matrix of Wn,m is

Qm×m =



mn J1×m J1×m . . . J1×m

Jm×1 [H]m×m [0]m×m . . . [0]m×m

Jm×1 [0]m×m [H]m×m . . . [0]m×m

. . . . . . .

. . . . . . .

. . . . . . .

Jm×1 [0]m×m [0]m×m . . . [0]m×m

Jm×1 [0]m×m [0]m×m . . . [H]m×m


where

J1×m =
(

1 1 . . . 1
)

and
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Hm×m =



3 1 0 . . . 1
1 3 1 . . . 0
0 1 3 . . . 0
. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . . 1
1 0 0 . . . 3

.


We get the signless Laplacian spectrum of Wn,m by using binomial series and adjacency spectrum

of a cycle graph.

specQ(Wn,m) =

(
mn + 5 ± 1

2

√
(mn)2 − 6mn + 25 5 λi + 3

1 n − 1 n

)
i = 2, 3, ...m

where λi are the eigenvalues of A.
Since all λi > 0, Now by using definition, we arrive at the desired result of signless Laplacian energy

QE(G)(Wn,m) = 3mn − 5 +
√

(mn)2 − 6mn + 25.

�Now we derive the particular cases for classical wheel graph.
Theorem 4.3 Laplacian energy of wheel graph W1,m is

LE(W1,m) = 4m. (4.3)

Proof. The generalized wheels for n = 1 becomes classical wheel graph. Then reiterating the first
result we arrive at the desired result. �

Theorem 4.4 Signless Laplacian energy of W1,m is

QE(G)(W1,m) = 3m − 5 +
√

m2 − 6m + 25 (4.4)

Proof. The generalized wheels for n = 1 becomes classical wheel graph. Then reiterating the second
result we arrive at the desired result. �

5. Conclusions and analysis

The present article has been devoted to computation of general forms of Laplacian and signless
Laplacian energies of multi-level wheels. These networks are used for communication in networks
and mathematical modeling of different chemical structures. We have computed closed analytical
expressions of Laplacian and signless Laplacian energies of these graphs which have applications in
different areas of networking and molecular topology. keeping the notations intact we obtained the
following results,

Theorem The Laplacian energy of Wn,m is

LE(Wn,m) = 4mn (5.1)

Mathematical Biosciences and Engineering Volume 17, Issue 4, 3649–3659.
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Theorem The signless Laplacian energy of Wn,m is given by

QE(G)(Wn,m) = 3mn − 5 +
√

(mn)2 − 6mn + 25 (5.2)

Theorem Laplacian energy of W1,m is

LE(W1,m) = 4m. (5.3)

Theorem Signless Laplacian energy of W1,m is

QE(G)(W1,m) = 3m − 5 +
√

m2 − 6m + 25 (5.4)

Our next attempt is the study of behavior of calculated energies on the number of rim vertices and
steps of the generalized wheels. Results clearly indicate that two parameters m and n are important for
us. We want to correlate these energies with these parameters. We use maple to draw two dimension
surfaces for the energies of graphs. Keeping on of the parameter m and n constant, we can easily trace
how the energies behave. In the next figures, dependencies of LE on the parameters m and n are given.
Results clearly indicate that Laplacian energies rise with increase in both of these parameters.

Figure 3. View of Laplacian energy of Wn,m.

The above surface shows the dependence of Laplacian energy on m and n.
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Figure 4. Laplacian energy of Wn,m while keeping m constant.
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Figure 5. Laplacian energy of Wn,m while keeping n constant.

In the next figures, dependencies of QE on the parameters m and n are given. Clearly signless
Laplacian energy rises with rise in both of the parameters.

Figure 6. View of QE of Wn,m.
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Figure 7. QE of Wn,m while keeping m constant.
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Figure 8. QE of Wn,m while keeping n constant.
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In this paper, we computed closed forms of Laplacian and signless Laplacian energies of generalized
wheels and classical wheel. Since generalized wheel is important cyclic structure having common hub,
so our results are helpful for the chemists working in industry. The pictorial dependence of different
energies on the involved parameters are presented in an easy understandable way. It is important to
remark that by removing some spokes of the wheel graphs we obtain a new wheel graph with lesser
number mand n so closed formulas are still applicable.
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