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Abstract: A new COVID-19 epidemic model with media coverage and quarantine is constructed. The
model allows for the susceptibles to the unconscious and conscious susceptible compartment. First,
mathematical analyses establish that the global dynamics of the spread of the COVID-19 infectious
disease are completely determined by the basic reproduction number R0. If R0 ≤ 1, then the disease
free equilibrium is globally asymptotically stable. If R0 > 1, the endemic equilibrium is globally
asymptotically stable. Second, the unknown parameters of model are estimated by the MCMC algo-
rithm on the basis of the total confirmed new cases from February 1, 2020 to March 23, 2020 in the
UK. We also estimate that the basic reproduction number is R0 = 4.2816(95%CI : (3.8882, 4.6750)).
Without the most restrictive measures, we forecast that the COVID-19 epidemic will peak on June 2
(95%CI : (May 23, June 13)) (Figure 3a) and the number of infected individuals is more than 70%
of UK population. In order to determine the key parameters of the model, sensitivity analysis are also
explored. Finally, our results show reducing contact is effective against the spread of the disease. We
suggest that the stringent containment strategies should be adopted in the UK.

Keywords: COVID-19; basic reproduction number; global stability; Lyapunov functional; parameter
estimation

1. Introduction

Since December 2019, the outbreak of the novel coronavirus pneumonia firstly occurred in Wuhan,
a central and packed city of China [1,2]. The World Health Organization(WHO) has named the virus as
COVID-19 On January 12, 2020. Recently, COVID-19 has spread to the vast majority of countries, as
United States, France, Iran, Italy and Spain etc. The outbreak of COVID-19 has been become a globally
public health concern in medical community as the virus is spreading around the world. Initially,
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the British government adopted a herd immunity strategy. As of March 27, cases of the COVID-19
coronavirus have been confirmed more than 11,000 mostly In the UK. The symptoms of COVID-19
most like SARS(Severe acute respiratory syndrome) and MERS(Middle East respiratory syndrome),
include cough, fever, weakness and difficulty breath [3]. The period for such symptoms from mild
to severe respiratory infections lasts 2–14 days. The transmission routes contain direct transmission,
such as close touching and indirect transmission consist of the air by coughing and sneezing, even
if contacting some contaminated things by virus particles. There are many mathematica models to
discuss the dynamics of COVID-19 infection [4–8].

Additionally, coronaviruses can be extremely contagious and spread easily from person to person
[9]. So a series of stringent control measures are necessary. For some diseases, such as influenza and
tuberculosis, people often introduce the latent compartment (denoted by E), leading to an SEIR model.
The latent compartment of COVID-19 is highly contagious [10, 11]. Such type of models have been
widely discussed in recent decades [12–14].

Media coverage is a key factor in the transmission process of infectious disease. People know
more about the COVID-19 and enhance their self-protecting awareness by the media reporting about
the COVID-19. People will change their behaviours and take correct precautions such as frequent
hand-washing, wearing masks, reducing the party, keeping social distances, and even quarantining
themselves at home to avoid contacting with others. Zhou et al. [15] proposed a deterministic dynami-
cal model to examine the interaction of the disease progression and the media reports and to investigate
the effectiveness of media reporting on mitigating the spread of COVID-19. The result suggested that
media coverage can be considered as an effective way to mitigate the disease spreading during the
initial stage of an outbreak.

Quarantine is effective for the control of infectious disease. Chinese government advises all the
Chinese citizens to isolate themselves at home, and people exposed to the virus have the medical
observation for 14 days. In order to get closer to the reality, many scholars have introduced quarantine
compartment into epidemic model. Amador and Gomez-Corral [16] studied extreme values in an
SIQS model with two different states for quarantine, termed quarantined susceptible and quarantined
infective, and limited carrying capacity for the quarantine compartment. Gao and Zhuang proposed a
new VEIQS worm propagation model with saturated incidence and strategies of both vaccination and
quarantine [17].

Motivated by the above, we consider a new COVID-19 epidemic model with media coverage and
quarantine. The model assumes that the latent stage has certain infectivity. And we also introduce the
quarantine compartment into the epidemic model, and the susceptible have consciousness to checking
the spread of infectious diseases in the media coverage.

The organization of this paper is as follows. In the next section, the epidemic model with media
coverage and quarantine is formulated. In section 3, the basic reproduction number and the existence of
equilibria are investigated. In Section 4, the global stability of the disease free and endemic equilibria
are proved. In Section 5, we use the MCMC algorithm to estimate the unknown parameters and initial
values of the model. The basic reproduction number R0 of the model and its confidence interval are
solved by numerical methods. At the same time, we obtain the sensitivity of the unknown parameters
of the model. In the last section, we give some discussions.
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2. The model formulation

2.1. System description

In this section, we introduce a COVID-19 epidemic model with media coverage and quarantine.
The total population is partitioned into six compartments: the unconscious susceptible compartment
(S 1), the conscious susceptible compartment (S 2), the latent compartment (E), the infectious compart-
ment (I), the quarantine compartment (Q) and the recovered compartment (R). The total number of
population at time t is given by

N(t) = S 1(t) + S 2(t) + E(t) + I(t) + Q(t) + R(t).

The parameters are described in Table 1. The population flow among those compartments is shown in
the following diagram (Figure 1).

Figure 1. The transfer diagram for the model (2.1).

The transfer diagram leads to the following system of ordinary differential equations:



S 1
′ = Λ − βES 1E − βIS 1I − (p + µ)S 1,

S 2
′ = pS 1 − βEσS 2E − βIσS 2I − µS 2,

E′ = βEE(S 1 + σS 2) + βI I(S 1 + σS 2) − (r + µ)E,
I′ = (1 − q)rE − (µ + d + ε)I,
Q′ = qrE + εI − (µ + d + ξ)Q,
R′ = ξQ − µR.

(2.1)
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Table 1. Parameters of the model.

Parameter Description
Λ The birth rate of the population

βE Transmission coefficient of the latent compartment

βI Transmission coefficient of the infectious compartment

σ The fraction of S 2 being infected and entering E

p The migration rate to S 2 from S 1,reflecting the impact of media coverage

r The rate coefficient of transfer from the latent compartment

q The fraction of the latent compartment E jump into the quarantine compartment Q

1 − q The fraction of the latent compartment E jump into the infectious compartment I

ε The transition rate to I for Q

ξ The recovering rate of the quarantine compartment

µ Naturally death rate

d The disease-related death rate

Since the sixth equation in system (2.1) is independent of other equations, system (2.1) may be
reduced to the following system:

S 1
′ = Λ − βES 1E − βIS 1I − (p + µ)S 1,

S 2
′ = pS 1 − βEσS 2E − βIσS 2I − µS 2,

E′ = βEE(S 1 + σS 2) + βI I(S 1 + σS 2) − (r + µ)E,
I′ = (1 − q)rE − (µ + d + ε)I,
Q′ = qrE + εI − (µ + d + ξ)Q.

(2.2)

2.2. Basic properties

2.2.1. Positivity of solutions

It is important to show positivity for the system (2.1) as they represent populations. We thus state
the following lemma.
Lemma 1. If the initial values S 1(0) > 0, S 2(0) > 0, E(0) > 0, I(0) > 0, Q(0) > 0 and R(0) > 0, the
solutions S 1(t), S 2(t), E(t), I(t), Q(t) and R(t) of system (2.1) are positive for all t > 0.
Proof. Let W(t) = min{S 1(t), S 2(t), E(t), I(t),Q(t),R(t)}, for all t > 0.

It is clear that W(0) > 0. Assuming that there exists a t1 > 0 such that W(t1) = 0 and W(t) > 0, for
all t ∈ [0, t1).

If W(t1) = S 1(t1), then S 2(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, R(t) ≥ 0 for all t ∈ [0, t1]. From the
first equation of model (2.1), we can obtain

S 1
′ ≥ −βES 1E − βIS 1I − (p + µ)S 1, t ∈ [0, t1]

Thus, we have
0 = S 1(t1) ≥ S 1(0)e−

∫ t1
0 [βE E+βI I+(p+µ)]dt > 0,

which leads to a contradiction. Thus, S 1(t) > 0 for all t ≥ 0.
Similarly, we can also prove that S 2(t) > 0, E(t) > 0, I(t) > 0, Q(t) > 0 and R(t) > 0 for all t ≥ 0.
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2.2.2. Invariant region

Lemma 2. The feasible region Ω defined by

Ω = {(S 1(t), S 2(t), E(t), I(t), Q(t), R(t)) ∈ R6
+ : N(t) ≤

Λ

µ
}

with initial conditions S 1(0) ≥ 0, S 2(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 is positively
invariant for system (2.1).
Proof. Adding the equations of system (2.1) we obtain

dN
dt

= Λ − µN − d(I + Q)

≤ Λ − µN.

It follows that
0 ≤ N(t) ≤

Λ

µ
+ N(0)e−µt,

where N(0) represents the initial values of the total population. Thus lim
t→+∞

sup N (t) ≤ Λ
µ

. It implies

that the region Ω = {(S 1(t), S 2(t), E(t), I(t), Q(t), R(t)) ∈ R6
+ : N(t) ≤ Λ

µ
} is a positively invariant set

for system (2.1). So we consider dynamics of system (2.1) and (2.2) on the set Ω in this paper.

3. The basic reproduction number and existence of equilibria

The model has a disease free equilibrium (S 0
1, S

0
2, 0, 0, 0), where

S 0
1 =

Λ

p + µ
, S 0

2 =
pΛ

µ(p + µ)
.

In the following, the basic reproduction number of system (2.2) will be obtained by the next generation
matrix method formulated in [18].

Let x = (E, I, Q, S 1, S 2)T , then system (2.2) can be written as

dx
dt

= F (x) −V(x),

where

F (x) =


βEE(S 1 + σS 2) + βI I(S 1 + σS 2)

0
0
0
0


, V(x) =



(r + µ)E
(µ + d + ε)I − (1 − q)rE
(µ + d + ξ)Q − qrE − εI

βES 1E + βIS 1I + (p + µ)S 1 − Λ

βEσS 2E + βIσS 2I + µS 2 − pS 1


.

(3.1)
The Jacobian matrices of F (x) andV(x) at the disease free equilibrium P0 are, respectively,

DF (P0) =

(
F3×3 0

0 0

)
, DV(P0) =


V3×3 0 0

βES 0
1 βIS 0

1 0 p + µ 0
βEσS 0

2 βIσS 0
2 0 −p µ

 , (3.2)
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where

F =


βE(S 0

1 + σS 0
2) βI(S 0

1 + σS 0
2) 0

0 0 0
0 0 0

 , V =


r + µ 0 0
−(1 − q)r µ + d + ε 0
−qr −ε µ + d + ξ

 .
The model reproduction number, denoted by R0 is thus given by

R0 = ρ(FV−1) =
(S 0

1 + σS 0
2)[βE(µ + d + ε) + βI(1 − q)r]
(r + µ)(µ + d + ε)

=
(S 0

1 + σS 0
2)(βEA + βI B)

(r + µ)A
. (3.3)

where
A = µ + d + ε, B = (1 − q)r. (3.4)

The endemic equilibrium P∗(S ∗1, S
∗
2, E

∗, I∗,Q∗) of system (2.2) is determined by equations

Λ − βES 1E − βIS 1I − (p + µ)S 1 = 0,
pS 1 − βEσS 2E − βIσS 2I − µS 2 = 0,
βEE(S 1 + σS 2) + βI I(S 1 + σS 2) − (r + µ)E = 0,
(1 − q)rE − (µ + d + ε)I = 0,
qrE + εI − (µ + d + ξ)Q = 0.

(3.5)

The first two equations in (3.5) lead to

S 1 =
Λ

βEE + βI I + (p + µ)
, S 2 =

pΛ

[βEE + βI I + (p + µ)](βEσE + βIσI + µ)
. (3.6)

From the fourth equation in (3.5), we have

E =
µ + d + ε

(1 − q)r
I

=
A
B

I. (3.7)

Substituting (3.7) into the last equation in (3.5) gives

Q =
q(µ + d + ε) + (1 − q)ε

(1 − q)(µ + d + ξ)
I

=
Aqr + Bε

(µ + d + ξ)B
I. (3.8)

For I , 0, substituting (3.7) into the third equation in (3.5) gives

S 1 + σS 2 =
(r + µ)A
βEA + βI B

(3.9)
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From (3.6) and (3.7), we have

S 1 + σS 2 =
Λ

βEE + βI I + (p + µ)
+

σpΛ

[βEE + βI I + (p + µ)](βEσE + βIσI + µ)

=
Λ

βEE + βI I + (p + µ)
· [1 +

σp
σ(βEE + βI I) + µ

]

=
Λ

βEE + βI I + (p + µ)
·
σ(βEE + βI I) + µ + pσ
σ(βEE + βI I) + µ

=
Λ

βE A+βI B
B I + (p + µ)

·
σβE A+βI B

B I + µ + pσ

σβE A+βI B
B I + µ

=
BΛ

(βEA + βI B)I + (p + µ)B
·
σ(βEA + βI B)I + (µ + pσ)B

σ(βEA + βI B)I + µB
. (3.10)

Substituting (3.9) into (3.10) yields

H(I) :=
B[σ(βEA + βI B)I + (µ + pσ)B]

[(βEA + βI B)I + (p + µ)B][σ(βEA + βI B)I + µB]
−

(r + µ)A
(βEA + βI B)Λ

= 0. (3.11)

Direct calculation shows

H
′

(I) =
H1(I)

{[(βEA + βI B)I + (p + µ)B][σ(βEA + βI B)I + µB]}2
,

Denote C = βEA + βI B,

H1(I) = Bσ(βEA + βI B)[(βEA + βI B)I + (p + µ)B][σ(βEA + βI B)I + µB] − B[σ(βEA + βI B)I
+ (µ + pσ)B](βEA + βI B){[σ(βEA + βI B)I + µB] + σ[(βEA + βI B)I + (p + µ)B]}
= σBC[CI + (p + µ)B][σCI + µB] − BC[σCI + (µ + pσ)B]{σCI + µB + σ[CI + (p + µ)B]}
= BC{σ[CI + (p + µ)B][σCI + µB] − [σCI + (µ + pσ)B][σCI + µB + σ[CI + (p + µ)B]]}
= BC{(σµB − µB)(σCI + µB) − [σCI + (µ + pσ)B]σ[CI + (p + µ)B]}
= −BC{µB(σCI + µB) + σ[σC2I2 + σpBCI + C(µ + pσ)BI + [(µ + pσ)p + pσµ]B2]}
= −BC{(σC)2I2 + 2σBC(µ + σp)I + B2[µ2 + µpσ + p(p + µ)σ2]} < 0.

then
H
′

(I) < 0.

then function H(I) is decreasing for I > 0. Since [(βEA + βI B)I + (p + µ)B][σ(βEA + βI B)I + µB] >
(βEA + βI B)I[σ(βEA + βI B)I + (µ + pσ)B], then

H(I) <
B

(βEA + βI B)I
−

(r + µ)A
(βEA + βI B)Λ

.

Thus,

H(0) =
µ + pσ
µ(p + µ)

−
(r + µ)A

(βEA + βI B)Λ

Mathematical Biosciences and Engineering Volume 17, Issue 4, 3618–3636.



3625

=
(S 0

1 + σS 0
2)

Λ
−

(r + µ)A
(βEA + βI B)Λ

=
(βEA + βI B)(S 0

1 + σS 0
2) − (r + µ)A

(βEA + βI B)Λ

=
(r + µ)AR0 − (r + µ)A

(βEA + βI B)Λ

=
(r + µ)A

(βEA + βI B)Λ
(R0 − 1),

and

H(
Λ

µ
) <

µB
(βEA + βI B)Λ

−
(r + µ)A

(βEA + βI B)Λ

=
µB − (r + µ)A
(βEA + βI B)Λ

=
µ(1 − q)r − (r + µ)(µ + d + ε)

(βEA + βI B)Λ

= −
(r + µ)(d + ε) + (qr + µ)µ

(βEA + βI B)Λ
< 0.

Therefore, by the monotonicity of function H(I), for (3.11) there exists a unique positive root in the
interval (0, Λ

µ
) when R0 > 1; there is no positive root in the interval (0, Λ

µ
) when R0 ≤ 1. We summarize

this result in Theorem 3.1.
Theorem 3.1. For system (2.2), there is always the disease free equilibrium P0(S 0

1, S
0
2, 0, 0, 0). When

R0 > 1, besides the disease free equilibrium P0, system (2.2) also has a unique endemic equilibrium
P∗(S ∗1, S

∗
2, E

∗, I∗,Q∗), where

S ∗1 =
BΛ

(βEA + βI B)I∗ + (p + µ)B
,

S ∗2 =
pΛB2

[(βEA + βI B)I∗ + (p + µ)B][(βEA + βI B)σI∗ + µB]
,

E∗ =
A
B

I∗,

Q∗ =
Aqr + Bε

(µ + d + ξ)B
I∗.

and I∗ is the unique positive root of equation H(I) = 0.

4. Global stability of equilibria

Theorem 4.1. For system (2.2), the disease free equilibrium P0 is globally stable if R0 ≤ 1; the endemic
equilibrium P∗ is globally stable if R0 > 1.
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4.1. Global stability of the disease free equilibrium

For the disease free equilibrium P0(S 0
1, S

0
2, 0, 0, 0), S 0

1 and S 0
2 satisfies equationsΛ − βES 1E − βIS 1I − (p + µ)S 1 = 0,

pS 1 − βEσS 2E − βIσS 2I − µS 2 = 0,
(4.1)

then (2.2) can be rewritten as follows:

S 1
′ = S 1[Λ( 1

S 1
− 1

S 0
1
) − βEE − βI I],

S 2
′ = S 2[p(S 1

S 2
−

S 0
1

S 0
2
) − βEσE − βIσI],

E′ = (βEE + βI I)[(S 0
1 + σS 0

2) + (S 1 − S 0
1) + σ(S 2 − S 0

2)] − (r + µ)E,
I′ = (1 − q)rE − (µ + d + ε)I,
Q′ = qrE + εI − (µ + d + ξ)Q

(4.2)

Define the Lyapunov function

V1 = (S 1 − S 0
1 − S 0

1 ln
S 1

S 0
1

) + (S 2 − S 0
2 − S 0

2 ln
S 2

S 0
2

) + E +
(r + µ) − βE(S 0

1 + σS 0
2)

(1 − q)r
I. (4.3)

The derivative of V1 is given by

V1
′ = (S 1 − S 0

1)[Λ(
1

S 1
−

1
S 0

1

) − βEE − βI I]

+(S 2 − S 0
2)[p(

S 1

S 2
−

S 0
1

S 0
2

) − βEσE − βIσI]

+(βEE + βI I)[(S 0
1 + σS 0

2) + (S 1 − S 0
1) + σ(S 2 − S 0

2)] − (r + µ)E

+
(r + µ) − βE(S 0

1 + σS 0
2)

(1 − q)r
[(1 − q)rE − (µ + d + ε)I]

= βI(S 0
1 + σS 0

2)I −
[(r + µ) − βE(S 0

1 + σS 0
2)](µ + d + ε)

(1 − q)r
I + F(S , I)

=
(r + µ)(µ + d + ε)

(1 − q)r
(R0 − 1)I + F(S , I),

=
(r + µ)A

B
(R0 − 1)I + F(S , I),

(4.4)

where

F(S , I) = Λ(S 1 − S 0
1)(

1
S 1
−

1
S 0

1

) + p(S 2 − S 0
2)(

S 1

S 2
−

S 0
1

S 0
2

).

Denote x = S 1
S 0

1
, y = S 2

S 0
2
, then

F(S , I) = Λ(x − 1)(
1
x
− 1) + pS 0

1(y − 1)(
x
y
− 1) =: F(x, y). (4.5)
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Applying (4.1) to function F(x, y) yields

F(x, y) = Λ(2 − x −
1
x

) + pS 0
1(x − y −

x
y

+ 1)

= (2Λ + pS 0
1) − (Λ − pS 0

1)x − Λ
1
x
− pS 0

1y − pS 0
1

x
y

= 3pS 0
1 + 2µS 0

1 − µS 0
1x − (pS 0

1 + µS 0
1)

1
x
− pS 0

1y − pS 0
1

x
y

= pS 0
1(3 −

1
x
− y −

x
y

) + µS 0
1(2 − x −

1
x

). (4.6)

We have F(x, y) ≤ 0 for x, y > 0 and F(x, y) = 0 if and only if x = y = 1. Since R0 ≤ 1, then
V1
′ ≤ 0. It follows from LaSalle invariance principle [19] that the disease free equilibrium P0 is

globally asymptotically stable when R0 ≤ 1.

4.2. Global stability of the endemic equilibrium

For the endemic equilibrium P∗(S ∗1, S
∗
2, E

∗, I∗,Q∗), S ∗1, S
∗
2, E

∗, I∗, and Q∗ satisfies equations

Λ − βES 1E − βIS 1I − (p + µ)S 1 = 0,
pS 1 − βEσS 2E − βIσS 2I − µS 2 = 0,
βEE(S 1 + σS 2) + βI I(S 1 + σS 2) − (r + µ)E = 0,
(1 − q)rE − (µ + d + ε)I = 0,
qrE + εI − (µ + d + ξ)Q = 0.

(4.7)

By applying (4.7) and denoting

S 1

S ∗1
= x,

S 2

S ∗2
= y,

E
E∗

= z,
I
I∗

= u,
Q
Q∗

= v

we have 

x′ = x[ Λ
S ∗1

( 1
x − 1) − βEE∗(z − 1) − βI I∗(u − 1)],

y′ = y[ pS ∗1
S ∗2

( x
y − 1) − βEσE∗(z − 1) − βIσI∗(u − 1)],

z′ = z{βE[S ∗1(x − 1) + σS ∗2(y − 1)] +
βI I∗

E∗ [S ∗1( xu
z − 1) + σS ∗2( yu

z − 1)]},
u′ = u (1−q)rE∗

I∗ ( z
u − 1),

v′ = v[ qrE∗

Q∗ ( z
v − 1) + εI∗

Q∗ (
u
v − 1)].

(4.8)

Define the Lyapunov function

V2 = S ∗1(x − 1 − ln x) + S ∗2(y − 1 − ln y) + E∗(z − 1 − ln z) +
βI(r + µ)
βEA + βI B

I∗(u − 1 − ln u). (4.9)

The derivative of V2 is given by

V2
′ = S ∗1

x − 1
x

x′ + S ∗2
y − 1

y
y′ + E∗

z − 1
z

z′ +
βI(r + µ)
βEA + βI B

I∗
u − 1

u
u′
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= (x − 1)[Λ(
1
x
− 1) − βES ∗1E∗(z − 1) − βIS ∗1I∗(u − 1)]

+(y − 1)[pS ∗1(
x
y
− 1) − βEσS ∗2E∗(z − 1) − βIσS ∗2I∗(u − 1)]

+(z − 1){βEE∗[S ∗1(x − 1) + σS ∗2(y − 1)] + βI I∗[S ∗1(
xu
z
− 1) + σS ∗2(

yu
z
− 1)]}

+
βI(r + µ)
βEA + βI B

(u − 1)(1 − q)rE∗(
z
u
− 1)

= Λ(x − 1)(
1
x
− 1) − βIS ∗1I∗(x − 1)(u − 1)

+pS ∗1(y − 1)(
x
y
− 1) − βIσS ∗2I∗(y − 1)(u − 1)

+βIS ∗1I∗(z − 1)(
xu
z
− 1) + βIσS ∗2I∗(z − 1)(

yu
z
− 1)

+
βI(r + µ)
βEA + βI B

(1 − q)rE∗(u − 1)(
z
u
− 1)

= Λ(2 − x −
1
x

) − βIS ∗1I∗(xu − x − u − 1) + pS ∗1(x − y −
x
y

+ 1)

−βIσS ∗2I∗(yu − y − u + 1) + βIS ∗1I∗(xu − z −
xu
z

+ 1) + βIσS ∗2I∗(yu − z −
yu
z

+ 1)

+
βI(r + µ)
βEA + βI B

(1 − q)rE∗(z − u −
z
u

+ 1)

= 2Λ + pS ∗1 +
βI(r + µ)
βEA + βI B

(1 − q)rE∗ − x(Λ − βIS ∗1I∗ − pS ∗1) − Λ
1
x
− y(pS ∗1 − βIσS ∗2I∗)

−pS ∗1
x
y
− βIS ∗1I∗

xu
z
− βIσS ∗2I∗

yu
z
−

βI(r + µ)
βEA + βI B

(1 − q)rE∗
z
u

= (Λ − βIS ∗1I∗ − pS ∗1)(2 − x −
1
x

) + (pS ∗1 − βIσS ∗2I∗)(3 −
1
x
− y −

x
y

)

+βIS ∗1I∗(3 −
1
x
−

xu
z
−

z
u

) + βIσS ∗2I∗(4 −
1
x
−

x
y
−

yu
z
−

z
u

) (4.10)

Since the arithmetical mean is greater than, or equal to the geometrical mean, then, 2 − x − 1
x ≤ 0 for

x > 0 and 2 − x − 1
x = 0 if and only if x = 1; 3 − 1

x − y − x
y ≤ 0 for x, y > 0 and 3 − 1

x − y − x
y = 0 if and

only if x = y = 1; 3 − 1
x −

xu
z −

z
u ≤ 0 for x, z, u > 0 and 3 − 1

x −
xu
z −

z
u = 0 if and only if x = 1, z = u;

4− 1
x −

x
y −

yu
z −

z
u ≤ 0 for x, y, z, u > 0 and 4− 1

x −
x
y −

yu
z −

z
u = 0 if and only if x = y = 1, z = u. Therefore,

V2
′ ≤ 0 for x, y, z, u > 0 and V2

′ = 0 if and only if x = y = 1, z = u, the maximum invariant set of system
(2.2) on the set {(x, y, z, u) : V2

′ = 0} is the singleton (1, 1, 1, 1). Thus, for system (2.2), the endemic
equilibrium P∗ is globally asymptotically stable if R0 > 1 by LaSalle Invariance Principle [19].

5. A case study

In this section, we estimate the unknown parameters of model (2.2) on the basis of the total con-
firmed new cases in the UK from February 1, 2020 to March 23, 2020 by using MCMC algorithm.
By estimating the unknown parameters, we estimate the mean and confidence interval of the basic
reproduction number R0.
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5.1. Parameter estimation and model fitting

The total confirmed cases can be expressed as follows

dC
dt

= qrE + εI,

where C(t) indicates the total confirmed cases.

As for the total confirmed new cases, it can be expressed as following

NC = C(t) −C(t − 1), (5.1)

where NC represents the total confirmed new cases.

We use the MCMC method [20–22] for 20000 iterations with a burn-in of 5000 iterations to fit the
Eq (5.1) and estimate the parameters and the initial conditions of variables (see Table 2). Figure 2
shows a good fitting between the model solution and real data, well suggesting the epidemic trend in
the United Kingdom. According to the estimated parameter values and initial conditions as given in Ta-
ble 2, we estimate the mean value of the reproduction number R0 = 4.2816 (95%CI : (3.8882, 4.6750)).

Table 2. The parameters values and initial values of the model (2.2).

Parameters Mean value Std 95% CI Reference
Λ 0 − − Estimated
µ 0 − − Estimated
d 1/18 − − [23]
γ 1/7 − − [24]
ξ 1/18 − − [23]
βE 5.1561 × 10−9 5.1184 × 10−10 [0.4153 × 10−8, 0.6159 × 10−8] MCMC
βI 2.3204 × 10−8 3.1451 × 10−9 [0.1704 × 10−7, 0.2937 × 10−7] MCMC
p 0.5961 0.0377 [0.5223, 0.6700] MCMC
q 0.2250 0.0787 [0.0707, 0.3793] MCMC
σ 0.3754 0.0135 [0.3490, 0.4018] MCMC
ε 0.2642 0.0598 [0.1470, 0.3814] MCMC
S 1(0) 3.3928 × 107 2.9130 × 106 [2.8219 × 107, 3.9638 × 107] Calculated
S 2(0) 3.2645 × 107 2.9130 × 106 [2.6936 × 107, 3.8355 × 107] MCMC
E(0) 12.8488 3.2238 [6.5302, 19.1674] MCMC
I(0) 0.8070 0.7739 [0, 2.3239] MCMC
Q(0) 2 − − [25]
R(0) 0 − − Estimated
N(0) 66573504 − − [26]
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Figure 2. The fitting results of the total confirmed new cases from February 1, 2020 to March
23, 2020. The blue line is the simulated curve of model (2.2). The red dots represent the
actual data. The light blue area is the 95% confidence interval (CI) for all 5000 simulations.

5.2. Prediction of epidemiological quantities

Applying the estimated parameter values, without the most restrictive measures in UK, we forecast
that the peak size is 1.2902 × 106 (95%CI : (1.1429 × 106, 1.4374 × 106)), the peak time is June 2
(95%CI : (May 23, June 13)) (Figure 3a), and the final size is 4.9437 × 107 (95%CI : (4.7199 ×
107, 5.1675 × 107)) in the UK (Figure 3b).
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Figure 3. (a) Forecasting trends of total confirmed new cases. (b) Forecasting trends of
total confirmed cases. The blue line is the simulated curve of model (2.2). The red dots
represent the actual data. The light blue area is the 95% confidence interval (CI) for all 5000
simulations.
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5.3. Sensitivity analysis

In this section, we do the sensitivity analysis for four vital model parameters σ, p, q and ε, which
reflect the intensity of contact, media coverage and isolation, respectively.

Figure 4 and Table 3 show that reducing the fraction σ of the conscious susceptible S 2 contacting
with the latent compartment (E) and the infectious compartment (I) delays the peak arrival time, de-
creases the peak size of confirmed cases and decreases the final size. Reducing the fraction σ is in
favor of controlling COVID-19 transmission.

Figure 5 and Table 3 show that reducing migration rate p to S 2 from S 1,reflecting the impact of
media coverage advances the peak arrival time, increase the peak size of confirmed cases and the final
size.
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Figure 4. (a) Effects of different Parameter σ on The numbers of total confirmed new cases.
(b) Effects of different Parameter σ on The numbers of total confirmed cases.
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Figure 5. (a) Effects of different Parameter p on The numbers of total confirmed new cases.
(b) Effects of different Parameter p on The numbers of total confirmed cases.
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Table 3. Epidemic quantities for the UK.

Parameter Peak size Peak time Final size
σ = 0.3652 1.2056 × 106 May 23 4.9766 × 107

σ = 0.32 9.4930 × 105 June 25 4.5390 × 107

σ = 0.3 8.1063 × 105 July 13 4.3121 × 107

p = 0.5961 1.3056 × 106 May 23 4.9766 × 107

p = 1/20 1.3248 × 106 May 19 4.9864 × 107

p = 1/40 1.5009 × 106 May 3 5.0699 × 107

q = 0.2250 1.3056 × 106 May 23 4.9766 × 107

q = 0.3375 1.1379 × 106 June 6 4.8471 × 107

q = 0.4500 9.4266 × 105 June 27 4.6141 × 107

ε = 0.2642 1.3056 × 106 May 23 4.9766 × 107

ε = 0.3170 1.1766 × 106 June 2 4.8598 × 107

ε = 0.3963 9.9640 × 105 June 18 4.6145 × 107

Figures 6,7 and Table 3 show that, with increase the fraction q (Individuals in the latent compartment
E jump into the quarantine compartment Q) and the transition rate ε (the infectious compartment I
jump into the quarantine compartment Q), the peak time delays, the the peak size and the final size
decrease. This show that Increasing the intensity of detection and isolation may affect the spread of
COVID-19.

Then the test set data is used to verify the short-term prediction effect of the model (Figure 8). we
fit the model with the total confirmed new cases from February 1, 2020 to March 23, 2020, and verify
the fitting results with the new cases from March 24, 2020 to April 12, 2020. The model has a good fit
to the trajectory of the coronavirus prevalence for a short time in the UK.
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Figure 6. (a) Effects of different Parameter q on The numbers of total confirmed new cases.
(b) Effects of different Parameter q on The numbers of total confirmed cases.
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Figure 7. (a) Effects of different Parameter ε on The numbers of total confirmed new cases.
(b) Effects of different Parameter ε on The numbers of total confirmed cases.
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Figure 8. The test set data is used to verify the short-term prediction effect of the model.
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6. Discussions

We have formulated the COVID-19 epidemic model with media coverage and quarantine and in-
vestigated their dynamical behaviors. By means of the next generation matrix, we obtained their ba-
sic reproduction number, R0, which play a crucial role in controlling the spread of COVID-19. By
constructing Lyapunov function, we proved the global stability of their equilibria: when the basic re-
production number is less than or equal to one, all solutions converge to the disease free equilibrium,
that is, the disease dies out eventually; when the basic reproduction number exceeds one, the unique
endemic equilibrium is globally stable, that is, the disease will persist in the population and the num-
ber of infected individuals tends to a positive constant. We use the MCMC algorithm to estimate the
unknown parameters and initial values of the model (2.2) on the basis of the total confirmed new cases
in the UK. The sensitivity of all parameters are evaluated.

Through the mean and confidence intervals of the parameters in Table 2, we obtain the basic re-
production number R0 = 4.2816(95%CI : (3.8882, 4.6750)), which means that the novel coronavirus
pneumonia is still pandemic in the crowd. The sensitivity of the parameters provides a possible in-
tervention to reduce COVID-19 infection. People should wear masks, avoid contact or reduce their
outings, take isolation measure to reduce the spread of virus during COVID-19 outbreaks.
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