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Abstract: Vaccination strategy is considered as the most cost-effective intervention measure for con-
trolling diseases. It will strengthen the immunity and reduce the risks of infections. In this paper, a new
delayed epidemic model with interim-immune and mixed vaccination strategy is studied. The disease-
free periodic solution is obtained by twice stroboscopic mapping and the corresponding dynamical
behavior is analyzed. We determine a threshold parameter R1, the disease-free periodic solution is
proved to be global attractive if R1 < 1. We also establish a threshold parameter R2 for the permanence
of the model, i.e., if R2 > 1, the infectious disease will exist persistently. Then, we provide numerical
simulations to illustrate our theoretical results intuitively. In particular, a practical application for new-
type TB vaccine under mixed vaccination strategy is presented, based on the proposed theory and the
data reported by NBSC. The mixed vaccination strategy can achieve the End TB goal formulated by
WHO in limited time. Our study will help public health agency to design mixed control strategy which
can reduce the burden of infectious diseases.
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1. Introduction

The threat of various infectious diseases always perplexes human society and the battle against in-
fectious diseases has a long history. Nowadays, dozens of species of infectious diseases are spreading
among individuals, and more worryingly, it is reported that the number of the newly discovered infec-
tious diseases is increasing around one type annually [1]. For a variety of reasons, such as incessant
mutability of viruses, gene defects, diversity and complexity of the transmission routes and so on, in-
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fectious diseases are difficult to be deracinated once and for all. However, with the development of
health care, the control of infectious diseases has been improved greatly. The prevention and control
system of infectious diseases consisted of infectious disease warning, mechanism response, and later
control keep humanity off worldwide plague for nearly a century.

For the control of diseases, treatment is just a link. Even worse, improper treatment can lead to the
overflow of drug resistance and a higher cost. Immunization saves millions of lives every year and has
been widely recognized as one of the world’s most successful and cost-effective health interventions.
Therefore, the key of disease control is the effective prevention. The research and development for
vaccine and corresponding control strategies have made some breakthrough in many malignant infec-
tious diseases. In 1980, with a historic global campaign of surveillance and vaccination, the World
Health Assembly declared that smallpox had been eradicated by vaccine. Ebola virus disease (EVD),
formerly known as Ebola haemorrhagic fever, was first discovered in 1976 and the existing vaccine
rVSV-ZEBOV GP was put into clinical trials in 2015 [2]. The disease can be spread through the con-
tact with the body fluids of infected people, particularly, the custom of burial in some areas plays a
significant role in the transmission of Ebola. According to the characteristics, a time-delayed epidemic
model is established and the corresponding threshold theory is given [3], and the vaccination strategy of
Ebola has been explored theoretically [4]. In Democratic Republic of the Congo (DRC), it is reported
that more than 111, 000 people have been vaccinated since the outbreak was declared in August 2018.
These vaccines have already been used successfully in the field [5]. Most encouragingly, in 2019, the
first malaria vaccine in childhood vaccination is being put into use in selected areas in Africa [6], which
will promote the control essentially.

In view of the irreversible damage of population experiment, the most common method of study-
ing infections is establishing reasonable mathematical models. The most commonly used vaccination
strategy is constant vaccination, which is perfect in theory [7–10]. However, the major spread vec-
tor of infectious diseases is adults who are frequently engaged in social activities. Hence vaccination
only for newborns is insufficient to achieve the control of infectious diseases in a limited time [20].
Compared with constant vaccination, pulse vaccination strategy is a more flexible one which can vac-
cinate different groups in targeted batches. In Central and South America, poliomyelitis and measles
have been controlled effectively with pulse vaccination strategy [11–13]. There are many researches
on pulse vaccination strategy, which focus on variety of factors. Gao et al. propose a delayed SEIRS
epidemic model with pulse vaccination strategy and varying total population size. The threshold con-
ditions of stability for the model are given and proved strictly [14]. In [15], the authors propose a
discretization method, which provides a way to design the pulse vaccination strategy with less burden
of measurements and related computations. More researches on pulse vaccination strategy can be seen
in [16, 17].

With rapid advance of technology, it is possible to combine variety of control strategies together.
As a result, a series of mixed control strategies are designed. For infants, the vaccination system is
comparatively mature and the physiological indexes are different from the adults, it is necessary to
reserve the vaccine program for newborns. Mixed vaccination strategy, consisting of constant and
pulse vaccination strategies, combines the beneficial qualities of both and optimizes the prevention
effects. An SEIR model with mixed vaccination strategy is proposed by d’Onofrio [18]. Based on
Floquet’s matrix and numerical simulations, the global asymptotic stability of the eradication solution
is given. Gao et al. consider the mixed vaccination strategy with seasonality [19]. In our previous
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study, we investigate how the parameters in mixed vaccination strategy control infectious diseases and
design various control strategies for tuberculosis in China [20]. This practical research is admitted by
Rebecca C Harris et al. [21]. Based on the previous work, we explore the global asymptotic behavior
for mixed vaccination strategy with interim-immune in this paper.

When an individual is vaccinated, usually it will take a certain time that the body can make an-
tibodies [22]. An example is HepB, which will be fully effective after thrice vaccination. Actually,
this phenomenon should not be ignored to consider this phase in total analysis of infectious diseases.
To our knowledge, at present few researchers address this point about mixed vaccination strategy. In
this paper, we formulate a delayed epidemic model with interim-immune class for mixed vaccina-
tion strategy to analyze and control the dynamical behavior of infectious diseases. Incorporating the
interim-immune class into the model increases the difficulties of analyzing the model and solving the
solution. In our analysis, we use the twice stroboscopic mapping to calculate disease-free periodic so-
lutions. By the comparison theorem of impulsive differential equation and Lyapunov-like function, we
establish two thresholds for global attractivity of the disease-free periodic solution and permanence of
the disease, respectively. Some numerical simulations are also given to show the asymptotic behaviour
in our model with different thresholds. Furthermore, we present a practical application of mixed vac-
cination for TB. Basing on the data reported by the National Bureau of Statistics of China, we design a
mixed vaccination programme with threshold condition R1 < 1 (i.e., the disease-free periodic solution
is globally asymptotically stable), that can finish the End TB Goal formulated by WHO within the
allotted time. With our strategy, the End TB Goal will be achieved around 2034.

This paper is organized as follows. In Section 2, some preliminaries and lemmas for model are
given. Then we calculate and discuss the disease-free periodic solution and its global asymptotic
stability in Section 3. In Section 4, we investigate the permanence of the model and provide relevant
threshold condition. In Section 5, some numerical simulations are given to illustrate our results. We
conclude with a summary in Section 6.

2. Model formulation and preliminary

Nowadays, with the rapid research and development of new-type vaccines, the range of vaccinated
individuals is gradually extending, and effective rate and expiration period of new-type vaccines have
also being improved. For instance, new-type vaccine for TB has already passed the phase III clinic
trials and will be put into service soon. As a consequence, research is important in the early stage, and
then design control strategies. In this section, we formulate an epidemic model with time delay and
pulse to analyze the dynamical behavior of mixed vaccination strategy for infectious diseases. This
model satisfies the following assumptions:

(1) All coefficients involved in the model are positive constants and Z+ denotes the set of positive
integers.

(2) The birth rate and the death rate are constant and equal. This implies that the total population
size remains constant and it is normalized to one.

(3) The vaccine is not fully effective after individuals are just vaccinated, i.e., it will take a certain
time that the vaccine is fully effective. Furthermore, the immune efficacy will maintain in the whole
life.

Additionally, the disease may recrudesce after recovered. It means that if one has been infected,
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the immunity is temporary after recovered. The immunity from recovery is different from vaccine.
Yuan et al. considered an SEIRS model with latency and temporary immunity. For their continuous
model, the reproduction number and globally asymptotically stability are discussed adequately [23].
Pulse vaccination strategy is introduced into an SEIRS model in [14]. In our study, we extend the
general SEIRS epidemic model with the time delay, interim-immune and mixed vaccination strategy
as follows: 

dS
dt

=µ(1 − p) − βS I + cR − µS ,

dE
dt

=βS I − βe−µωS (t − ω)I(t − ω)

+ σβVsI − σβe−µωVs(t − ω)I(t − ω) − µE,
dI
dt

=βe−µωS (t − ω)I(t − ω)

+ σβe−µωVs(t − ω)I(t − ω) − µI − γI,
dR
dt

=γI − µR − cR,

dVs

dt
=µp − µVs − mVs − σβVsI,

V =1 − S − E − I − R − Vs,



t , nT,

n ∈ Z+,

S (t+) = (1 − pc)S (t),
Vs(t+) = Vs(t) + pcS (t),

 t = nT, n ∈ Z+.

(2.1)

Where S (t), E(t), I(t),R(t) and V(t) denote the proportion of susceptible, exposed, infectious, recovered
and vaccinated individuals at time t, respectively. The class Vs denotes the class in which the vaccine
is not fully effective. We define this class as the interim-immune class.

In system (2.1), we adopt bilinear incidence rates to describe the infection of disease and parameter
β denotes the average number of adequate contacts of an infectious individual per unit time. The birth
rate and the death rate are equal and denoted by µ. We use delay parameter to present the incubation
period, denoted by ω during which the exposed individual develops, and only after that time the ex-
posed individual becomes an infectious individual. The recurrence rate of R(t) is denoted by c, and
the infectious period is 1/γ. We assume that µ > c, that is the natural death rate is higher than the
recurrence rate of the disease. The immune efficacy in interim-immune class is measured by 1 − σ,
where 0 < σ < 1. The parameter m is the rate at which the interim-immune class develops into vac-
cinated class. Parameters p and pc are the proportions of constant vaccination for newborns and pulse
vaccination for susceptible individuals, respectively.

Obviously, system (2.1) is positively invariant in the set

Ω = {(S , E, I,R,Vs) ∈ R5
+ : 0 ≤ S , E, I,R,Vs ≤ 1, 0 < S + E + I + R + Vs < 1},

with the initial value:

φ(ξ) = (S (ξ), E(ξ), I(ξ),R(ξ),Vs(ξ)) ∈ C([−τ, 0],R5
+), φ(0) > 0.

Lemma 2.1. [24] Consider the following delay differential equation:

x′(t) = ax(t − τ) − bx(t)
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where a, b, τ > 0 and x(t) > 0 for t ∈ [−τ, 0]. The following hold:
(i) if a < b, then limt→∞x(t) = 0,
(ii) if a > b, then limt→∞x(t) = ∞.

Lemma 2.2. Consider the following impulsive differential equations:u′(t) = a − bu(t), t , nT, n ∈ Z+,

u(t+) = (1 − θ)u(t), t = nT, n ∈ Z+,
(2.2)

where a > 0, b > 0, 0 < θ < 1. Then there exists a unique positive periodic solution of (2.2):

ue(t) =
a
b

+
(
u∗ −

a
b
)
e−b(t−nT ), nT < t ≤ (n + 1)T,

which is globally asymptotically stable, where

u∗ =
a(1 − θ)(1 − e−bT )
b(1 − (1 − θ)e−bT )

.

Lemma 2.3. Consider the following impulsive differential equations:x′(t) = a − bx(t), t , nT, n ∈ Z+,

x(t+) = x(t) + c, t = nT, n ∈ Z+,
(2.3)

where a, b, c > 0. Then there exists a unique positive periodic solution xe(t) of (2.3):

xe(t) =
a
b

+
ce−b(t−nT )

1 − e−bT , nT < t ≤ (n + 1)T,

which is globally asymptotically stable.

Proof. Integrate and solve the first equation of system (2.3) between pulses:

x(t) =
a
b

+ e−b(t−nT )(x(nT ) −
a
b
)
, nT < t ≤ (n + 1)T,

where x(nT ) is the initial value at time nT . Combining with the second equation of system (2.3), we
construct the stroboscopic mapping such that

x((n + 1)T ) =
a
b

+ e−bT (x(nT ) −
a
b
)

+ c , F(x(nT )), (2.4)

where
F(u) =

a
b

+ e−bT (u − a
b
)

+ c.

Obviously, the mapping F has a unique positive equilibrium:

x∗ =
a
b

+
c

1 − e−bT .

It follows the corresponding periodic solution xe(t) of equation (2.3):

xe(t) =
a
b

+
ce−b(t−nT )

1 − e−bT , nT < t ≤ (n + 1)T.
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We claim that xe(t) is globally asymptotically stable. Let y(t) be any solution of (2.3) with initial value
y(0), and denote z(t) = y(t) − xe(t). We obtain the following equation without pulse:z′(t) = −b(y(t) − xe(t)) = −bz(t), t , nT, n ∈ Z+,

z(t+) = y(t+) − xe(t+) = z(t), t = nT, n ∈ Z+.
(2.5)

The solution of system (2.5) is z(t) = z(0)e−bt, and obviously z(t) → 0 when t → ∞. The proof is
completed. �

3. Existence and global attractivity of disease-free periodic solutions

In this section, we demonstrate the existence and global attractivity of disease-free periodic solu-
tions of system (2.1). In this case, the infectious individuals are entirely absent from the population,
that is, I(t) = 0 for all t ≥ 0. Then system (2.1) can be reduced to the following impulsive system
without delay: 

dS
dt

= µ(1 − p) + cR − µS ,

dE
dt

= −µE,

dR
dt

= −µR + cR,

dVs

dt
= µp − µVs − mVs,


t , nT, n ∈ Z+,

S (t+) = (1 − pc)S (t),
Vs(t+) = Vs(t) + pcS (t),

 t = nT, n ∈ Z+.

(3.1)

Since R(t) and E(t) are not affected by impulsive effects, we have limt→∞E(t) = 0 and limt→∞R(t) = 0.
Now, we are in the position to prove that S (t) and Vs(t) oscillate with period T in synchronization with
impulsive vaccination. Consider the following limiting system of system (3.1):

dS
dt

= µ(1 − p) − µS ,

dVs

dt
= µp − µVs − mVs,

 t , nT, n ∈ Z+,

S (t+) = (1 − pc)S (t),
Vs(t+) = Vs(t) + pcS (t),

 t = nT, n ∈ Z+.

(3.2)

Because Vs(t) does not appear in the following impulsive subsystem of (3.2):
dS
dt

= µ(1 − p) − µS , t , nT, n ∈ Z+,

S (t+) = (1 − pc)S (t), t = nT, n ∈ Z+,
(3.3)

by Lemma 2.2, the above system (3.3) exists a unique globally asymptotically stable periodic solution
S̃ (t):

S̃ (t) = (1 − p) + (s∗ − (1 − p))e−µ(t−nT ), nT < t ≤ (n + 1)T, (3.4)
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where

s∗ =
(1 − p)(1 − pc)(1 − e−µT )

1 − (1 − pc)e−µT .

Then consider the limiting subsystem of (3.2):
dVs

dt
= µp − µVs − mVs, t , nT, n ∈ Z+,

Vs(t+) = Vs(t) + pcs∗, t = nT, n ∈ Z+.
(3.5)

By Lemma 2.3, similarly, system (3.5) exists a unique globally asymptotically stable periodic solution
Ṽs(t):

Ṽs(t) =
µp
µ + m

+
e−(µ+m)(t−nT ) pcs∗

1 − e−(µ+m)T , nT < t ≤ (n + 1)T.

By
S (t) + E(t) + I(t) + R(t) + Vs(t) + V(t) = 1,

we have
Ṽ(t) = 1 − S̃ (t) − Ṽs(t).

Then the disease-free periodic solution of system (2.1) is (S̃ (t), 0, 0, 0, Ṽs(t), Ṽ(t)).
Denote

R1 =
βe−µω(δ − σδ + σ)

(µ + r)
,

where

δ =
µ(1 − p) + c(µ(1 − p) + σβ)/(σβ + µ)

c + µ
+

( (µ(1 − p) + c(µ(1 − p) + σβ)/(σβ + µ))(1 − pc)(1 − e−(c+µ)T )
(c + µ)(1 − (1 − pc)e−(c+µ)T )

−
µ(1 − p) + c(µ(1 − p) + σβ)/(σβ + µ)

c + µ

)
· e−(c+µ)T

Theorem 3.1. If R1 < 1, then the disease-free periodic solution (S̃ (t), 0, 0, 0, Ṽs(t), Ṽ(t)) of system (2.1)
is globally attractive.

Proof. In what follows, for the sake of simplicity, let Nk(k ∈ {1, . . . , 4}) be sufficiently large integers
such that N1 < N2 < N3 < N4 and all εk(k ∈ Z+) be sufficiently small. Denote

M(t) = 1 − V(t) − Vs(t) = S (t) + E(t) + I(t) + R(t),

and add the first four equations of system (2.1) to get,

dM(t)
dt

= µ(1 − p) + σβVsI − µM(t)

≤ µ(1 − p) + σβ − (µ + σβ)M(t).
(3.6)

Because Vs(t) ≤ 1 − M(t) and I(t) ≤ 1. Then we have

lim sup
t→∞

M(t) ≤
µ(1 − p) + σβ

σβ + µ
. (3.7)
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Then
R(t) = 1 − V(t) − Vs(t) − S (t) − E(t) − I(t)

= M(t) − S (t) − E(t) − I(t)
≤ M(t) − S (t)

≤
µ(1 − p) + σβ

σβ + µ
− S (t).

(3.8)

From the first equation of (2.1), we have

dS
dt
≤ µ(1 − p) + c(

µ(1 − p) + σβ

σβ + µ
− S ) − µS

≤ µ(1 − p) +
c(µ(1 − p) + σβ)

σβ + µ
− (c + µ)S .

(3.9)

Consider the following comparison impulsive differential system:z′(t) = µ(1 − p) +
c(µ(1 − p) + σβ)

σβ + µ
− (c + µ)z(t), t , nT, n ∈ Z+,

z(t+) = (1 − pc)z(t), t = nT, n ∈ Z+.

(3.10)

By Lemma 2.2, system (3.10) exists a unique globally asymptotically stable periodic solution:

ze(t) =
µ(1 − p) + c(µ(1 − p) + σβ)/(σβ + µ)

c + µ
+

(
z∗ −

µ(1 − p) + c(µ(1 − p) + σβ)/(σβ + µ)
c + µ

)
· e−(c+µ)(t−nT ), nT < t ≤ (n + 1)T,

(3.11)

where

z∗ =
(µ(1 − p) + c(µ(1 − p) + σβ)/(σβ + µ))(1 − pc)(1 − e−(c+µ)T )

(c + µ)(1 − (1 − pc)e−(c+µ)T )
.

By the comparison theorem of impulsive differential equation [25], there exists an integer N1 such
that

S (t) < z(t) < ze(t) + ε1, nT < t ≤ (n + 1)T, n > N1. (3.12)

Then
S (t) < ze(t) + ε1 ≤ ze((n + 1)T ) + ε1 , η. (3.13)

Further, by the third equation of system (2.1), for t > nT + ω, n > N1, we have

I′(t) ≤ βe−µω((1 − σ)η + σ)I(t − ω) − (µ + γ)I(t). (3.14)

Because R1 < 1, for any ε1 small enough, we have

βe−µω(δ + ε1 − σ(δ + ε1) + σ)
µ + γ

< 1,

that is
βe−µω(η − ση + σ)

µ + γ
< 1. (3.15)
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Consider the following comparison equation respect to Eq (3.14),

y′(t) = βe−µω(η − ση + σ)y(t − ω) − (µ + γ)y(t), (3.16)

By Lemma 2.1 and (3.15), we have limt→∞ y(t) → 0 with the initial value I(ξ). Then, there exists an
integer N2 and sufficiently small ε2, for t > N2T + ω, such that

I(t) ≤ y(t) < ε2. (3.17)

By the fourth equation of system (2.1), for t > N2T + ω, we have

dR(t)
dt
≤ ε2γ − (µ + c)R. (3.18)

Similarly, by the comparison theorem, there exists an integer N3, we have

R(t) ≤
ε2γ

µ + c
, t ≥ N3T. (3.19)

In a similar manner, there exists an integer N4, such that

E(t) ≤
βε2(η + σ − ση)

µ
, t > N4T. (3.20)

Since ε2 is arbitrarily small, it follows form (3.17), (3.19) and (3.20), we obtain that

I(t)→ 0, E(t)→ 0,R(t)→ 0, t → ∞,

with initial value I(ξ), E(ξ) and R(ξ). Therefore, it is sufficient to consider the limiting subsystem of
system (2.1): 

dS
dt

= µ(1 − p) − µS ,

dVs

dt
= µp − µVs − mVs,

 t , nT, n ∈ Z+,

S (t+) = (1 − pc)S (t),
Vs(t+) = Vs(t) + pcS (t),

 t = nT, n ∈ Z+.

By Lemma 2.2 and 2.3, we proved the existence of globally asymptotically stable periodic solution S̃ (t)
and Ṽs(t) for subsystem (3.2). Therefore, the disease-free periodic solution (S̃ (t), 0, 0, 0, Ṽs(t), Ṽ(t)) is
globally attractive. �

4. Permanence

In this section, we will study the permanence of system (2.1).

Definition 4.1. System (2.1) is said to be permanent if there exists a compact region Ω0 ⊂ int Ω such
that every solution of system (2.1) will eventually enter and remain in region Ω0.
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Denote

R2 =
βe−µω

µ + γ

(µ(1 − p)(1 − pc)(1 − e−µT )
1 − (1 − pc)e−µT

+
σµp
µ + m

+
σpc(1 − p)(1 − pc)(1 − e−µT )

(1 − e−(µ+m)T )(1 − (1 − pc)e−µT )

)
.

Theorem 4.2. If R2 > 1, then there exists a positive κ such that each positive solution of system (2.1)
satisfies I(t) ≥ κ for t large enough.

Proof. Rewrite the third equation of system (2.1) by

dI(t)
dt

=I(t)(βe−µωS (t) + σβe−µωVs(t) − (µ + γ))

− βe−µω
d
dt

∫ t

t−ω
(S (u)I(u) + σVs(u)I(u))du.

(4.1)

Consider any positive solution (S (t), E(t), I(t),R(t),Vs(t)) and define

L(t) = I(t) + βe−µω
∫ t

t−ω
(S (u)I(u) + σVs(u)I(u))du. (4.2)

Obviously, L(t) is bounded, that is

L(t) ≤ 1 + βω(1 + σ)e−µω.

Derivate L(t) along the solution of system (2.1):

L′(t) = I(t)(βe−µωS (t) + σβe−µωVs(t) − (µ + γ))

= (µ + γ)I(t)
(βe−µω(S (t) + σVs(t))

µ + γ
− 1

)
.

(4.3)

We claim that for any t0 > 0 and any fixed I∗, it is impossible that I(t) < I∗ for all t ≥ t0. Assuming
that the claim is invalid, there is a t0 > 0 such that I(t) < I∗ for all t ≥ t0. Then, from the first equation
of system (2.1), we have

dS (t)
dt

> µ(1 − p) − (βI∗ + µ)S (t). (4.4)

Consider the following impulsive differential system for t ≥ t0:v′(t) = µ(1 − p) − (βI∗ + µ)v(t), t , nT, n ∈ Z+,

v(t+) = (1 − pc)v(t), t = nT, n ∈ Z+.
(4.5)

By Lemma 2.2, system (4.5) exists a unique globally asymptotically stable positive periodic solution

ṽ(t) =
µ(1 − p)
βI∗ + µ

+
(
v∗ −

µ(1 − p)
βI∗ + µ

)
e−(βI∗+µ)(t−nT ), nT < t ≤ (n + 1)T, (4.6)

where

v∗ =
µ(1 − p)(1 − pc)(1 − e−(βI∗+µ)T )
(βI∗ + µ)(1 − (1 − pc)e−(βI∗+µ)T )

.
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By the comparison theorem for impulsive differential equation [25], there exists t1 > t0 + ω, when
t > t1,

S (t) > v(t) ≥ ṽ(t) − ε3 ≥ v∗ − ε3 , θ1 > 0. (4.7)

Similarly, it follows from the fifth equation of system (2.1) that we have

dVs(t)
dt

≥ µp − (µ + m + σβI∗)Vs(t). (4.8)

Consider the comparison impulsive differential system:w′(t) = µp − (µ + m + σβI∗)w(t), t , nT, n ∈ Z+,

w(t+) = w(t) + pcθ1, t = nT, n ∈ Z+.
(4.9)

By Lemma 2.3, system (4.9) exists a unique globally asymptotically stable positive periodic solution

w̃(t) =
µp

µ + m + σβI∗
+

pcθ1

1 − e−(µ+m+σβI∗)T e−(µ+m+σβI∗)(t−nT ). (4.10)

Define
w∗ =

µp
µ + m + σβI∗

+
pcθ1

1 − e−(µ+m+σβI∗)T .

By the comparison theorem for impulsive differential equation, there exists t2 > t1 + ω, when t > t2,

Vs(t) > w(t) > w̃(t) − ε4 ≥ w∗ − ε4 , θ2. (4.11)

By (4.3), (4.7) and (4.11), we have

L′(t) > (µ + γ)I(t)
(βe−µω

µ + γ
(θ1 + σθ2) − 1

)
. (4.12)

Because R2 > 1 and for sufficiently small constant I∗ > 0, we have

βe−µω

µ + γ

(µ(1 − p)(1 − pc)(1 − e−(βI∗+µ)T )
1 − (1 − pc)e−(βI∗+µ)T +

σµp
µ + m + σβI∗

+
σpc(1 − p)(1 − pc)(1 − e−(βI∗+µ)T )

(1 − e−(µ+m+σI∗β)T )(1 − (1 − pc)e−(βI∗+µ)T )

)
> 1,

(4.13)

that is
βe−µω

µ + γ
(θ1 + σθ2) − 1 > 0.

Denote
Il = min

t∈[t2,t2+ω]
I(t).

We claim that I(t) ≥ Il for t ≥ t2. If not, there exists T > 0 such that I(t) ≥ Il for t ∈ [t2, t2 + ω + T ],
I(t + ω + T ) = Il, and I′(t + ω + T ) ≤ 0. From the third equation of system (2.1), we have

I′(t2 + ω + T ) ≥ βe−µωθ1Il + σβe−µωθ2Il − (µ + γ)Il

= (µ + γ)Il

(βe−µω

µ + γ
(θ1 + σθ2) − 1

)
> 0.

(4.14)
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It is a contradiction. By (4.12),

L′(t) > (µ + γ)Il

(βe−µω

µ + γ
(θ1 + σθ2) − 1

)
> 0, (4.15)

which implies that L(t) → ∞ as t → ∞. So this contradicts with the boundedness of L(t). Therefore,
what we need to consider is the following two cases:

(i) I(t) ≥ I∗ for t large enough;
(ii) I(t) oscillates about I∗ for t large enough.
The case (i) is evident for taking κ = I∗. It is sufficient to consider case (ii). If I(t) oscillates

about I∗, there exists t∗ (t∗ large enough such that S (t) ≥ θ1 and Vs(t) ≥ θ2 for t ≥ t∗) and k such that
I(t∗) = I(t∗ + k) = I∗. Denote

κ = min
{1
2

I∗, I∗e−(µ+γ)ω}. (4.16)

We need to prove that I(t) ≥ κ, for t > t∗. Since the positive solution of system (2.1) is ultimately
bounded and I(t) is not affected by pulse, I(t) is uniformly continuous. There exists T0 > 0 (T0 is
independent of t∗), we have

I(t) ≥
1
2

I∗, t ∈ [t∗, t∗ + T0]. (4.17)

There are three cases to be discussed.
(1) k < T0. Take κ = 1

2 I∗, to achieve our aim obviously.
(2) T0 ≤ k ≤ ω. By I′(t) ≥ −(µ + γ)I(t), it follows that

I(t) ≥ I(t∗)e−(µ+γ)(t−t∗) ≥ I∗e−(µ+γ)ω.

Take κ = min{ 12 I∗, I∗e−(µ+γ)ω}.
(3) ω < k. In this case, we have

I(t) ≥ I(t∗)e−(µ+γ)(t−t∗) ≥ I∗e−(µ+γ)ω, t ∈ [t∗, t∗ + ω],

I(t) ≥ I(t∗ + k)e−(µ+γ)(t−(t∗+k)) ≥ I∗e−(µ+γ)ω, t ∈ [t∗ + ω, t∗ + k].

Similarly, take κ = min{ 12 I∗, I∗e−(µ+γ)ω}.
Notice that the choice of oscillation interval [t∗, t∗ + k] is independent of positive solution of system

(2.1), we have I(t) ≥ κ for t large enough. the proof is completed. �

Theorem 4.3. If R2 > 1, system (2.1) is permanent.

Proof. Let (S (t), E(t), I(t),R(t),Vs(t)) be any solution of system (2.1) with initial value
(S (ξ), E(ξ), I(ξ),R(ξ),Vs(ξ)). From the first equation of system (2.1), we have

dS (t)
dt
≥ µ(1 − p) − (β + µ)S (t), t , nT, n ∈ Z+,

S (t+) = (1 − pc)S (t), t = nT, n ∈ Z+.
(4.18)

By the impulsive differential comparison theorem,

lim inf
t→∞

S (t) ≥
µ(1 − p)(1 − pc)(1 − e−(β+µ)T )

(β + µ)(1 − (1 − pc)(1 − e−(β+µ)T ))
, h,
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From the fourth equation of system (2.1),

dR(t)
dt
≥ γm − (µ + c)R,

similarly, we have

lim inf
t→∞

R(t) ≥
γm
µ + c

, i.

Similarly,

E′(t) ≥ βθ1m + σβθ2m − βe−µω − σβe−µω − µE(t),

we have

lim inf
t→∞

E(t) ≥
β(θ1m + σθ2m − e−µω − σe−µω)

µ
, q.

At last, consider the fifth equation of system (2.1)

dVs(t)
dt

≥ µp − (µ + m + σβ)Vs(t),

and the corresponding comparison impulsive system:
dx(t)

dt
= µp − (µ + m + σβ)x(t), t , nT, n ∈ Z+,

x(t+) = x(t) + h, t = nT, n ∈ Z+.

In a similar manner, we have

lim inf
t→∞

Vs(t) ≥
µp

µ + m + σβ
+

h
1 − e−(µ+m+σβ)T , j.

Denote

Ω0 = {(S (t), E(t), I(t),R(t),Vs(t)), S (t) ≥ h, E(t) ≥ q, I(t) ≥ κ,R(t) ≥ i,Vs(t) ≥ j,

S (t) + E(t) + I(t) + R(t) + Vs(t) ≤ 1}.

Based on the above discussions, every solution of system (2.1) will eventually enter and remain in
region Ω0. Therefore, system (2.1) is permanent. The proof is completed. �

5. Numerical simulations

In this section, we present some numerical simulations to illustrate our results presented in previous
sections. Particularly, a practical application for new-type TB vaccine is given.

In Figure 1, we make two numerical experiments to simulate asymptotic behavior of the solution
of system (2.1) with the conditions of Theorem 3.1 and Theorem 4.3, respectively. In Figure 1(a),
under the threshold condition R1 < 1, as time t goes on, all components of solution tend to the disease-
free periodic solution of system (2.1). The proportion of infectious individuals denoted by I(t) tends
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asymptotically to zero, and in this case, the infectious disease will die out. The parameters are µ =

0.2, p = 0.1, β = 0.2, c = 0.01, ω = 1, σ = 0.9, v = 0.1,m = 0.02, pc = 0.3,T = 1. In Figure 1(b),
under the threshold condition R2 > 1, with time t going on, all components of solution maintain above
a certain value ‘κ’. Therefore, system (2.1) is permanent and infectious disease evolves into endemic
disease. The corresponding parameter β = 0.8, the values of the other parameters are the same as those
for Figure 1(a).

Table 1. Parameter values.

Parameter Value Resource
µ 0.0143 year−1 [26]
c 0.0015 year−1 [27]
γ 0.4055 year−1 [20]
ω 0.1667 year [27]
β 1.05 Assumed
p 0.6 [27, 28]
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Figure 1. The movement path of each component of system (2.1) as functions of time t. (a)
R1 = 0.5128 < 1, the infectious disease dies out. (b) R2 = 1.0940 > 1, the infectious disease
exists permanently.

Since the clinical Phase III for new-type TB vaccine has succeeded, it will be put into practical
control soon. The new-type TB vaccine has a wider scope of vaccination and is of a certain interim-
immune period, so it is necessary to design the corresponding implementation schedule.

In Figure 2, we present a practical numerical experiment to simulate trend of the control of tuber-
culosis after new vaccine puts into use. Based on the data reported by the National Bureau of Statistics
of China and some parameters estimated by our previous work [20], we make reasonable assumptions
which satisfy the model with mixed vaccination strategy in this paper. After primary vaccination, the
immune effective rate is 80%, that is, parameter σ = 0.2. It will take 0.5 year that new vaccine is
fully effective, thus the parameter m = 2. On the basis of existing constant vaccination strategy, we add
impulse-type vaccination strategy with parameters pc = 0.3, and T = 1 year. We assume that the mixed
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Figure 2. Time-series of the proportions of susceptible S , infectious I, and interim-immune
Vs individuals in system (2.1).

vaccination strategy will be put into use in 2020. Other parameters of the mixed vaccination strategies
are shown in Table 1. Using these parameters, we obtain R1 = 0.5447. By Theorem 3.1, infectious
disease will die out theoretically. The changing trends of susceptible, infectious, and interim-immune
individuals are shown in Figure 2. From Figure 2(b), the proportion of infectious individuals denoted
by I(t) declines rapidly, the red solid line represents the End TB goal which raised by WHO in 2015.
Under our mixed vaccination strategy, the disease-free periodic solution is globally asymptotically
stable and the goal will be achieved around 2034.

6. Conclusions

In the framework of differential equations with time delay and pulse, we formulate a mathematical
model with interim-immune class and mixed vaccination strategy to study the dynamical behavior of
infectious diseases. Two thresholds for global attractivity of the disease-free periodic solution and
permanence of the disease are established, respectively. If R1 < 1, the infectious disease will be
controlled and gradually die out. If R2 > 1, system (2.1) is permanent and the infectious disease will
evolve into endemic disease. In Section 5, two numerical simulations (Figure 1(a) and (b)) are given
to illustrate the asymptotic behavior of infectious disease with different threshold conditions. In view
of clinical Phase III new-type TB vaccine has passed and based on practical data in China, we design a
mature vaccination programme that can finish the End TB Goal formulated by WHO within the allotted
time (Figure 2). The results of numerical experiments are consistent with theoretical analysis that the
condition R1 = 0.5447 < 1 will lead to extinction of TB.
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