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Abstract: Biomedical named entity recognition (Bio-NER) is the prerequisite for mining knowledge
from biomedical texts. The state-of-the-art models for Bio-NER are mostly based on bidirectional long
short-term memory (BiLSTM) and bidirectional encoder representations from transformers (BERT)
models. However, both BiLSTM and BERT models are extremely computationally intensive. To this
end, this paper proposes a temporal convolutional network (TCN) with a conditional random field
(TCN-CRF) layer for Bio-NER. The model uses TCN to extract features, which are then decoded by
the CRF to obtain the final result. We improve the original TCN model by fusing the features extracted
by convolution kernel with different sizes to enhance the performance of Bio-NER. We compared our
model with five deep learning models on the GENIA and CoNLL-2003 datasets. The experimental
results show that our model can achieve comparative performance with much less training time. The
implemented code has been made available to the research community.

Keywords: biomedical named entity recognition; temporal convolutional network; conditional
random field

1. Introduction

Named entity recognition (NER) aims to identify the entities from text and classifying them into
predefined entity types. NER not only is a key initial step of information extraction but also plays a
crucial role in many other natural language processing (NLP) tasks. Biomedical named entity
recognition (Bio-NER) is the application of NER in the biomedical field and it recognizes biomedical
entities from texts, such as gene, protein, drug and disease names. Bio-NER is a fundamental task in
the biomedical knowledge discovery from texts. However, Bio-NER is particularly difficult because
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biomedical entities have large numbers of synonyms, often use abbreviations, and include letters,
symbols, and punctuation. Many studies have been conducted on these problems.

With the successful application of deep learning models in NLP, Recurrent neutral network (RNN)
model [1–3] and transformer-based models [28] are the most common used models in Bio-NER.
However, since RNN has a hidden layer to store the previous state information, and each unit needs
the information of the previous unit as the input, RNN is computationally intensive and cannot use
massive parallel processing to increase computational speed. Transformer-based models such as
BioBERT [28] achieve the state-of-the-art performance. However, they require more computation
than RNN due to huge number of parameters. To this end, we combine Temporal Convolutional
Network [4] with a Conditional Random Field (TCN-CRF) layer for Bio-NER. Compared to RNN,
TCN is more computationally efficient due to its simple structure and can be calculated in parallel
when dealing with large-scale data. In TCN-CRF, the CRF layer can better extract the dependencies
between labels of biomedical named entities. We also improve original TCN model by combining the
features extracted by the convolution kernels with different sizes, which can effectively enhance the
feature extraction ability for complex biomedical named entities. In summary, the main contribution
of the paper is as follows: (1) we proposed a TCN-CRF model for Bio-NER task, which greatly
improve the computation efficiency over BiLSTM and BERT models. (2) we integrated convolution
kernels with different kernel sizes in TCN to extract the features, which can enhance the performance
of Bio-NER task. (3) we put the CRF layer on the top of TCN to capture the dependencies between
labels in the named entities. This significantly enhances the performance of NER compared to the
TCN model. The source code of our model is available at
https://github.com/Nickname1230/TCN-CRF-NER.

2. Related work

NER tasks are typically considered as sequential annotation tasks, and are mainly divided into
statistical machine learning models and neural network-based deep learning models. Common
statistical machine learning models include the hidden markov model (HMM) [5] and conditional
random field (CRF) model [6]. Amongst them, the CRF model is widely used in various NER tasks
with supervised learning [7–10], and has achieved better results. However, these methods are difficult
to design, and have poor adaptability.

In recent years, deep learningmodels based on neural networks havemade significant breakthroughs
in performing various NLP tasks. Compared with traditional machine learning methods, the neural
network model can automatically extract features and carry out end-to-end training; thus, the neural
network model can achieve better results when performing NER. Collobert et al. [11] proposed a NER
model based on a neural network. The model uses a CNN to extract features and fuse other linguistic
features, such as part of speech tagging, even when only using word-level representation. Based on
Collobert’s work, Yao et al. [12] presented a multiple-layer neural network based on CNN and applied it
on biomedical NER task. Wu et al. [13] used a convolution layer to generate global features represented
by multiple global hidden nodes, and then input both the local and global features to standard affine
networks to identify named entities in clinical texts. However, these neural network models do not
consider the correlation between sequences. Therefore, in recent years, the use of RNNs has become the
main research trend with regard to NER. Huang et al. [14] utilized a BiLSTM-CRFmodel that combines
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spelling, part of speech, context, and other features to improve the model’s NER performance. Based
on the work of Huang et al., Lample et al. [15] further improved the performance of the model. Chiu
et al. [16] introduced a BiLSTM-CNN model to further improve NER performance. The model uses
a hybrid structure consisting of a BiLSTM and a character-level CNN to automatically acquire word-
level features, capitals, dictionaries, and character-level features. RNN model and its variants LSTM
were also applied to Bio-NER. Li et al. [17] proposed extended RNN for Bio-NER, which considers the
predicted information from the prior node and external context information. Gridach [18] employed a
BiLSTM-CRF model for Bio-NER and used word- and character-level representations as input. The
combination of word embeddings and character-level representation helped improve the accuracy of the
Bio-NER tasks. Qiu et al. [19] proposed a model named ID-CNN-CRF which feed the vector into the
residual network and the final CRF layer to improve the model performance. Jiang et al. [20] employed
BiLSTM networks with a CRF layer for Bio-NER. The model leverages both the pre-training and fine-
tuning word embeddings as input, and inserts the sentence-level reading control gate into the network
to obtain more abundant contextual information. Recently pre-trained model BERT [27] have achieved
state-of-the-art performance in many fields of NLP. Lee et al. [28] adapted BERT for biomedical field
and presented BioBERT (bidirectional encoder representations from transformers for biomedical Text
Mining), which has almost the same architecture with BERT but is pre-trained on large-scale biomedical
corpora. BioBERT largely outperforms BERT and previous state-of-the-art models in many biomedical
text mining tasks including BioNER.

3. Model

The TCN-CRFmodel consists of three layers, which are the feature representation layer, TCN layer,
and CRF layer. The overall architecture of the model is shown as Figure 1. The feature representation
layer is mainly composed of a word vector layer and a character vector layer. The word vector layer
and the character vector layer receive words and characters as inputs, respectively, and map discrete
one-hot representations into their respective successively dense low-dimensional feature spaces. Then,
the word vector and the character-level vectors are integrated together to represent the features of a
word in a semantic space. Subsequently, the fusion features are used as input to the TCN. Different
features are extracted by TCN with different convolution kernels, and the final features (h1, h2, · · · , hN)
are used as input to the CRF layer.

3.1. Embedding layer

The embedding layer maps the input word sequence into a continuous and dense feature vector,
which captures the semantic information, syntactic information, and morphological information of
each word. A fixed-size dictionary Dword and a fixed-size character set Dchar are defined. Given a
sentence {W1,W2, ...,Wn} with length N, each word in the sentence is mapped to a word representation
xn = [rword; rchar], rword ∈ Rword, rchar ∈ Rchar. In the representation xn, word vectors rword capture the
semantic and syntactic information of words and character-level vectors and character vectors rchar

capture the morphological information of words. The experimental results obtained by Guanghe et
al. [21] revealed that the use of pre-trained word vectors can effectively improve the performance of
the model because they contain context semantic information, and can thus achieve better NER
results. However, traditional word vector pre-trained models, such as Word2Vec. [22], only focus on
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Figure 1. The architecture of the TCN-CRF model . The structure of the dilated causal
convolution of TCN with dilation factors d = 0, 1, 2, 4 and kernel size of 3 or 5.

context information in the window, and cannot obtain global information. Hence, in this study, we
used the GloVe. [23] pre-trained word vector model, which can obtain the global text information by
combining the co-occurrence information of words on the basis of Word2Vec. In summary, this study
constructed the feature representation layer using the GloVe word vector and character-level vector.

3.2. TCN layer

TCN is a member of the convolutional neural network family, and is primarily used to handle
sequence problems. By using causal convolution [23], the TCN guarantees that the prediction of the
previous time step will not use future information, because the output yt of time step t only needs to be
derived from the convolution operation on t − 1 and the previous time step.

yt =

T∏
t=1

P(xt|x1x2...xt−1) (3.1)

In the sequence labeling task, the fusion of different features can better identify entities. In the
convolution operation, different sizes of convolution kernels can be used to extract different features
under different receptive fields. In the TCN-CRF model, we use 1 × 3 and 1 × 5 convolution kernels
to extract the features of the text, and finally fuse the features extracted by two kernels.

To remember long-term sequences, the causal convolution can broaden the receptive field by a
very deep network or a very big convolution kernel. Both methods make the network difficult to train
due to the huge amount of computation. To solve this problem, the TCN uses dilated convolution [25]
to expand the receptive field. The dilated convolution operates on the principle of adding various
weights to the convolution kernel with zero value, while keeping the input unchanged. Thus, the
length of the sequence increases, such that the network can observe, while the amount of calculation
remains essentially unchanged. Formally, for one-dimensional input sequences x ∈ Rn and a kernel
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f : {0, 1, ..., k} → R, dilated convolution F is calculated as follows:

F(s) = (x ∗d f )(s) =
k−1∑
i=0

f (i)xs−d·i (3.2)

where d is the dilated coefficient, k is the kernel size, and s − d · i calculates which unit should be
used in the upper layer. The dilated coefficient controls the number of zeros inserted between each
of the two convolution kernels. The larger expansion coefficient allows the neurons at the output to
characterize a wider range of input sequences, which can more effectively expand the receptive field.
Therefore, when using dilated convolution, the expansion coefficient typically increases exponentially
as the network depth increases. The structure of causal convolution combined with dilated convolution
is shown in Figure 2.

Figure 2. The structure of the dilated causal convolution of TCN.

The gradient vanishing problem is very common in deep neural networks. To address this problem,
TCN adds shortcut connections in the residual network [26] to improve accuracy, as shown in Figure
3. A dilated convolution layer and the ReLU excitation function exist within the residual module of
the TCN. To achieve regularization, the weight of each convolution kernel is normalized and dropout
is added after each dilated convolution.

Figure 3. The structure of TCN residual block.
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3.3. CRF layer

When solving the problem of sequence labeling, the softmax classifier does not consider the
dependencies between labels. Thus, this paper used the CRF layer proposed by Collobert et al. [11] to
consider the global information of the label sequence. The structure of CRF layer is shown as Figure
4.

Figure 4. The structure of CRF layer.

We introduce the transfer score matrix Ai, j for jumping from tag i to j ; y0, yn+1 is the start label and
the end label in the sentence, and the label type is k. Then, A ∈ R(k+2)(k+2). Let the sentence length be n,
then the score matrix of the output layer is P ∈ R(n∗k), and the matrix element Pi, j indicates the output
score of the ith word under label j. Given the input sentence X = (x1, x2, ..., xn) and the tag sequence
y = (y1, y2, ..., yn), the total score S (X, y) of the sentence X along a path of tag y is calculated as follows:

S (X, y) =
n∑

i=0

Ayi,yi+1 +

n∑
i=1

Pi,yi (3.3)

All possible sequence paths are normalized to produce a probability distribution for the output
sequence y, as follows:

P(y|X) =
eS (X,y)∑

ȳ∈YX
e(S (X,ȳ)) (3.4)

The logarithmic probability of the correct tag sequence during training can be maximized as follows:

log(P(y∗|X)) = S (X|y∗) − log(
∑
ȳ∈YX

e(S (X,ȳ))) (3.5)

As expressed in the above equation, this formula can cause the model to generate the correct tag
sequence. In the decoding phase, the sequence with the highest total score is predicted to be the most
optimal sequence, as follows:

y∗ = argmaxS (X, ȳ) (3.6)

The Viterbi algorithm is used to solve the optimal sequence in the prediction stage.
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4. Experiments

4.1. Data

In this study, we performed TCN-CRF model for Bio-NER on the GENIA* corpus. To further
investigate the effectiveness of the improvement on convolution kernels and test computational
efficiency of the TCN-CRF model, we also run test on the CoNLL-2003† dataset, which is a NER
dataset of general field.

The GENIA corpus is the collection of biomedical texts compiled and annotated for the GENIA
project. The GENIA corpus includes five types of entities: Protein, DNA, RNA, cell Type, and cell
line. The number of entries of each type is shown in Table 1. To avoid test corpus inconsistencies, the
training set and test set were predefined. The training set consists 51,301 entities, while the test set has
8662 entities.

Table 1. Number of entities per type in GENIA.

Protein DNA RNA Cell Type Cell Line Total

Training Set 30269 9533 951 6718 3830 51301

Test Set 5067 1056 118 1921 500 8662

The CoNLL-2003 corpus, which was obtained from the Reuters news, was designed for language-
independent NER task. The corpus contains four types of entries: Personal names (PER), location
names (LOC), organization names (ORG), and other entities (MISC). The dataset was divided into the
training set, verification set, and test set. The number of entities for four types in different datasets is
shown in Table 2.

Table 2. Number of entities per type in CoNLL-2003.

PER LOC ORG MISC Total

Training Set 6600 7140 6321 3438 23499

Validation Set 1842 1837 1341 922 5942

Test Set 1617 1668 1661 702 5648

We used precision (P), recall (R) and F1 to evaluate the NER results. Precision is the percentage
of correctly recognized entities among the entities your model recognized. Recall is the percentage
of correctly recognized entities among total entities. F1 is the harmonic mean of precision and recall,
which is calculated as follows:

F1 =
2 ∗ P ∗ R

P + R
(4.1)

where P is the precision and R is the recall.
*https://www.geniaproject.org/home
†https://www.clips.uantwerpen.be/conll2003/ner
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4.2. The effectiveness of the CRF layer

To validate the effectiveness of the CRF layer, we compare TCN-CRF model with the TCN model
using softmax layer instead of CRF layer. The results of two models on the GENIA and CoNLL-2003
dataset are reported in Table 3. The experimental results show that TCN-CRF outperforms TCN with
a large margin especially on the GENIA dataset. The CRF layer considers the relationship between the
entity labels, using the CRF layer can make sure the model does not output the invalid entity labels
and significantly boost the performance of NER tasks. Biomedical named entities usually have more
words and modifiers. This allows the CRF layer to make better use of the dependency information of
adjacent labels and obtain better results on Bio-NER.

Table 3. Comparison of TCN model and TCN-CRF model on two datasets.

GENIA CoNLL-2003

P(%) R(%) F1(%) P(%) R(%) F1(%)

TCN [34] 57.81 59.10 58.45 86.32 84.56 85.43

TCN-CRF 73.46 79.61 76.41 91.48 91.37 91.42

4.3. Comparison with other deep learning models

Tables 4 and 5 compare the TCN-CRFmodel with five popular sequence labelingmodels, i.e., CNN-
CRF, BiLSTM-CRF, ID-CNN-CRF, BERT and BioBERT, on the GENIA and CoNLL-2003 datasets.
Because BioBERT is a domain-specific model pretrained on biomedical data, we did not implement it
on the CoNLL-2003 dataset.

Table 4. Comparison with other deep learning models on the GENIA.

Model Feature F1(%)

CNN-CRF [30] Word2Vec, POS 71.01

Multi-layer BiLSTM [29] Word Embedding 73.80

BiLSTM-CRF [31] Word, Character 74.70

BERT [27] – 72.49

BioBERT [28] – 77.15

TCN-CRF GLoVe, Character 76.45
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Table 5. Comparison with other deep learning models on the CoNLL-2003.

Model Feature F1(%)

CNN-CRF [11] Word indices, POS 89.86

LSTM-CRF [14] SENNA, Spelling, N-gram, Gazetteer 90.10

ID-CNN-CRF [32] SENNA, Word Shape 90.65

BiLSTM-CNN [16] SENNA, Character, Capitalization, Lexicons 91.62

BiLSTM-CRF [33] GLoVe, Character 91.26

BERT [27] – 92.80

TCN-CRF GLoVe, Character 91.42

In Tables 4 and 5, we can observe that BioBERT achieves the best performance on GENIA and
BERT performs best on CoNLL-2003. The performance of the TCN-CRF model is in line with results
of the models that perform the best on the evaluation datasets. The receptive field of the CNN model is
small and fixed, and cannot effectively capture context information, which is used to predict the label
in NER task. The ID-CNN model expands the receptive field with help of the dilated convolution.
However, the traditional convolution operation cannot effectively obtain the timing information. LSTM
can effectively solve the problem of limited scope of context information accessed by RNN through gate
structure. However, due to the existence of forget gate, LSTM will selectively discard the information
in the past when updating cell state. Therefore, when the current time step is used to predict the model
based on LSTM, all the original information of the past time step cannot be retrieved quickly, which
will lead to the performance degradation of the model to some extent. Although the BiLSTM model
can obtain the context information of the sequence by the information transmission mechanism of the
gate, the back propagation along the time axis often leads to the gradient disappearance or gradient
explosion. The TCN-CRF model expands the receptive field by combining causal convolution and
dilated convolution, and extracts the time series information well. In addition, the back propagation
path of TCN and the time direction of the sequence are different, which avoids the gradient explosion
and gradient disappearance problems that often occur with RNN series models. Therefore, TCN-CRF
is superior to most other deep learning models. Additionally, considering it is easy to change the size
of the receptive field of TCN-CRF, we use different sizes of convolution kernels to extract the text
features and fuse the features to further improve the performance of NER.

4.4. Comparison of training time

We compared the computational efficiency of TCN-CRF, LSTM-CRF, BiLSTM-CRF, BERT and
BioBERT on the GENIA and CoNLL-2003 datasets. The training time of 5 models on two datasets
is shown in Figures 5 and 6, respectively. BioBERT was not implemented on GENIA since it is a
specific-domain model. The experiment was run on a NVIDIA 1080Ti GPU.
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Figure 5. Comparison of training time of five deep learning models on the GENIA dataset.

Figure 6. Comparison of training time of four deep learning models on the CoNLL-2003
dataset.

For both the GENIA and CoNLL-2003 datasets, the convergence time of each iteration of the TCN
model is obviously less than those of LSTM-CRF, BiLSTM-CRF and BERT. The training time of TCN-
CRF is approximately 1/2 of LSTM-CRF, 1/3 of BiLSTM-CRF, and 1/7 of BERT. As the variations
of RNN, LSTM and BiLSTM use the output of the unit as the input of the next unit, so the training
process of the model can only be performed serially. The training speed of BERT is very slow due
to the large number of parameters. As a member of CNN, TCN is calculated layer by layer, that is,
multiple convolution kernels can be calculated simultaneously, not serially in time sequence. Because
of the large-scale parallel processing, the computing efficiency of TCN is much higher than that of
other networks such as LSTM.
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4.5. Effect of using convolution kernels with different sizes on TCN

In TCN-CRF, we extracted the features in different receptive fields convolution kernels with
different sizes, which are integrated and input into the CRF layer. To verify the effectiveness of
kernels fusion, we conduct an ablation study. We run TCN-CRF using three convolution kernels,
namely, 1 × 3 kernel, 1 × 5 kernel and a kernel integrating 1 × 3 kernel and 1 × 5 kernel. The F1 of
TCN-CRF using different convolution kernels is shown in Table 6.

Table 6. The F1 of TCN-CRF using different convolution kernels on two datasets.

Convolution kernel GENIA(%) CoNLL-2003(%)

size = 3 75.66 90.66

size = 5 75.14 90.07

size = 3 and 5 76.45 91.42

Table 6 shows that using convolution kernels of different sizes is superior to using only one size of
convolution kernel. This because the convolution networks fusing different sizes of kernels can extract
features of different receptive fields. When using smaller convolution kernels, the extracted features
will have finer granularity, and we can obtain more global information using larger receptive field
convolution kernels. The fusion of the convolution kernels of two sizes makes the features extracted
by the model more diverse. When a single size convolution kernel is used, the elements in the hidden
layer of the sequence that are located at the dilated convolution positions are not calculated, which will
lose the continuity of the information. The fusion of multiple convolution kernels of different sizes can
reduce the impact of hidden layer element discontinuities on model performance.

4.6. The effect of Dropout layer

To investigate how to use dropout in TCN-CRF, we implemented three types of dropout: (1) not
using the dropout layer; (2) using the dropout only after the input layer; (3) dropout is used in both
input layer and the residual structure. The F1 of TCN-CRF using different dropout is shown in Table
7.

Table 7. The F1 of TCN-CRF using different dropout.

Inputs Residual block CoNLL-2003(%) GENIA(%)

– – 87.20 71.23

+ – 88.11 73.79

– + 90.80 74.80

+ + 91.40 76.45

Our experiments show that using dropout can effectively improve the performance of deep learning
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model. When using dropout, two neurons do not necessarily appear in a network every time. In this way,
the updating of weights no longer depends on the joint action of hidden nodes with fixed relationships,
so that some patterns can still be learned from other information in the case of losing certain information
and the robustness of the model is improved. From the perspective of model integration, we can treat
the residual network of 3-layer as a binary tree with 8 nodes, which integrates the output of the 8 nodes,
and the final output is the integration of these 8 nodes. Using dropout to randomly delete some nodes of
the residual network will generate more network structures, which can effectively prevent overfitting
and improve the performance of the model.

5. Conclusions

In this paper, we propose a temporal convolutional network-conditional random field (TCN-CRF)
model for Bio-NER. We put CRF layer on the top of TCN to capture the dependencies between labels
and improve the feature extraction ability of TCN by integrating convolution kernels with different
kernel sizes. We evaluate our method on the GENIA and CoNLL-2003 datasets. TCN-CRF greatly
reduces training time compared with other deep learning models while achieving comparative
performance. Although TCN-CRF is superior to traditional neural network models, the performance
of TCN in transfer learning requires further improvement. Because the historical information required
for model prediction is different in different data sets, the size of the receptive field cannot be
effectively controlled. In future work, we will design an adaptive receptive field adjustment
mechanism to better obtain the sequence information.
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