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Abstract: Anomaly detection has been widely researched in financial, biomedical and other areas.
However, most existing algorithms have high time complexity. Another important problem is how
to efficiently detect anomalies while protecting data privacy. In this paper, we propose a fast anomaly
detection algorithm based on local density estimation (LDEM). The key insight of LDEM is a fast local
density estimator, which estimates the local density of instances by the average density of all features.
The local density of each feature can be estimated by the defined mapping function. Furthermore,
we propose an efficient scheme named PPLDEM based on the proposed scheme and homomorphic
encryption to detect anomaly instances in the case of multi-party participation. Compared with existing
schemes with privacy preserving, our scheme needs less communication cost and less calculation
cost. From security analysis, our scheme will not leak privacy information of participants. And
experiments results show that our proposed scheme PPLDEM can detect anomaly instances effectively
and efficiently, for example, the recognition of activities in clinical environments for healthy older
people aged 66 to 86 years old using the wearable sensors.

Keywords: anomaly detection; local density; privacy protection

1. Introduction

As an important branch of data mining, anomaly detection has a very wide range of application
scenarios, such as, intrusion detection in network traffic, fraud detection for credit cards, disease
detection in human health, video surveillance and so on. Anomaly detection is to find the instances
that have different data characteristics from the most instances [1]. There are many anomaly detection
algorithms that measure the different data characteristics of anomaly instances from different
perspectives. For example, in distance-based algorithms [2–4], anomaly instances are the instances
that are distant with most of the instances. In cluster-based anomaly detection algorithms [5–8],
anomaly instances are the instances that do not lie in any large clusters. In angle-based anomaly
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detection algorithms [9, 10], the variance of angles to pairs of instances remains rather small for
anomaly instances. In density-based anomaly detection algorithms [11–15], anomaly instances are the
instances with lower local density.

All of above anomaly detection algorithms are only suitable to the case of data sets stored in
single-party participant, since these algorithms does not take into consideration data privacy
protection. Therefore, as for the case of multi-party participants, it is important to design privacy
preserving anomaly detection algorithms with the growing awareness of data privacy. There are some
existing privacy preserving anomaly detection algorithms [8, 16–27], but most of them need to
calculate the pair-wise distances on the ciphertext data, which not only needs many addition and
multiplication operations on ciphertexts, but also need multiple communications between data
owners, even in the case of two parties [18].

In order to avoid aforementioned disadvantages, we first propose a novel anomaly detection
algorithms with linear time complexity, and then propose a privacy preserving anomaly detection
scheme. And the main contributions of this paper are shown as below.

• We focus on the research of density-based anomaly detection algorithms. Most of existing
density-based algorithms need calculate the pair-wise distances to determine the near neighbors
of instances before obtaining the local density of instances, but this process is time-consuming.
To void the O(N2) time complexity, we propose a fast anomaly detection algorithm based on
local density estimation(LDEM). Different with the existing algorithms to calculate directly the
local density of instances, LDEM estimate the density of instances by the average density of all
features. Compared with the existing algorithms to obtain neighbors by calculating euclidean
distance of instances, LDEM obtains the neighbors of each feature by the defined mapping
function. And the time complexity of our algorithm only needs O(N).
• What’s more, we adopt our algorithm to the case of the data distributed in multiple parties. We

propose an efficient anomaly detection scheme with privacy protection based on our proposed
anomaly detection algorithm LDEM and homomorphic encryption scheme BCP [28–32]. Our
scheme only needs outsource the sketch tables and each data owner only need constant
communication times, which can reduce most communication cost. Furthermore, our scheme
only needs linear addition operations on ciphertexts. From security analysis, it can easily prove
that our scheme does not leak out any privacy information. And experiments results show that
our algorithm can detect anomaly instances correctly with multi-party participation without
leaking out any privacy information, for example, the recognition of activities in clinical
environments for healthy older people aged 66 to 86 years old using the wearable sensors.

This paper is organized as follows. In section 2, we analysis the background used in our work. In
section 3, we introduce the proposed local density estimation in detail. In section 4, we present the
system model and introduce the proposed anomaly detection with privacy preserving in detail, and
analyze the security of our scheme. In section 5, we perform some empirical experiments to illustrate
the effectiveness of our algorithm. Lastly, our work is concluded in section 6.

2. Background

In this section, we will introduce the homomorphic encryption scheme BCP and two security
protocols used in this paper.
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2.1. Homomorphic encryption

The homomorphic encryption scheme used in our work is BCP cryptosystem, which is variant of
the ElGamal cryptosystem [28] proposed by Bresson, Catalano and Pointcheval [33]. BCP has the
property of additive homomorphic (see Eq (2.1)), and it can be competent at the computations on
ciphers encrypted by different keys.

Encpk(x + y) = Encpk(x) ∗ Encpk(u) (2.1)

And BCP cryptosystem has two independent decryption mechanisms. In the first decryption
mechanism, a given ciphertext can be decrypted by the corresponding private key. In the second
decryption mechanism, any given ciphertext can be decrypted by the master key. Now we give a brief
review of BCP, and the detail of BCP can be seen in [28, 33].

Setup (κ): Given a security parameter κ, choose a safe-prime RSA-modulus N = pq(i.e., p = 2p
′

+1
and q = 2q

′

+1 for distinct primes p
′

and q
′

, respectively of bitlength κ. Pick a random element g ∈ Z∗N2

of order pp
′

qq
′

such that gp
′
q
′

mod N2 = 1 + kN for k ∈ [1,N − 1]. The plaintext space is ZN . We can
get the public parameters and master secret as:

public parameters PP = (N, k, g)

master secret MK = (p
′

, q
′

)

KeyGen (PP): Pick a random a ∈ ZN2 and compute h = ga mod N2. So we can obtain the public
key and secret key as:

public key pk = h

secret key sk = a
(2.2)

Enc(pp,sk)(m): Given a plaintext m ∈ ZN , pick a random r ∈ ZN2 . Then the calculation formula of
ciphertext (A, B) as

A = gr mod N2

B = hr(1 + mN) mod N2.
(2.3)

Dec(pp,sk)(A,B): Given a ciphertext (A, B) and secret key sk = a. Then the plaintext m can be
decrypted as

m =
B/(Aa) − 1 mod N2

N
(2.4)

mDec(pp,pk,sk)(A,B): Given a ciphertext (A,B), a user’s public key pk = h and the master secret MK.
Let sk = a denote the user’s secret key corresponding to pk = h. First compute a mod N as

a mod N =
hp
′
q
′

− 1mod N2

N
· k−1 mod N (2.5)

where k−1 denotes the inverse of k modulo N. Then compute r mod N as

r mod N =
Ap

′
q
′

− 1modN2

N
· k−1modN (2.6)
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Let δ denotes the inverse of pq modulo N and set γ := ar modulo N. The algorithm outputs the plaintext
m as

m =
(B/(gγ))p

′
q
′

− modN2

N
· k−1modN (2.7)

2.2. Security protocol

There are two security protocols used in our scheme. One is ProbKey protocol that can transform
the ciphertexts encrypted by different pki into the ciphertexts encrypted by the master public key pk.
The other is the reverse operation of the previous protocol. This security protocol is called TransDec,
which can transform the ciphertexts encrypted by pk into the ciphertexts encrypted by pki. Both of
these two security protocols are used between the server C and the server S. In these two security
protocols, the public key pki belongs to a participant, and the master public key pk is owned in server
S.

ProdKey: Given a message x encrypted by pki, [x]pki . The steps of transforming this ciphertext
into the ciphertext encrypted by pk as below.

1) Server C picks a random number r ∈ ZN , and encrypts it to get the cipher [r]pki . So we can get
[x + r]pki = [x]pki ∗ [r]pki , and send [x + r]pki to server S.

2) Server S decrypt cipher [x + r]pki by the master key, and encrypt the plain text by pk. So we can
get [x + r]pk, and send [x + r]pk and pk to server C.

3) Server C encrypt the −r by pk, so it can get [−r]pk. Then, it can get the raw plaintext encrypted
by pk, as [x]pk = [x + r − r]pk = [x + r]pk ∗ [−r]pk.

TransDec: Given a cipher [x]pk, this protocol can transform it back to the cipher [x]pki .

1) Server C picks a random number r ∈ ZN , and encrypts it to get the cipher [r]pk. So we can get
[x + r]pk = [x]pk ∗ [r]pk, and send [x + r]pk and pki to server S.

2) Server S decrypt cipher [x + r]pki by the master key, and encrypt the plain text by pki. So we can
get [x + r]pki , and send [x + r]pki and to server C.

3) Server C encrypt the −r by pki, so it can get [−r]pki . Then, it can get the raw plaintext encrypted
by pki, as [x]pkI = [x + r − r]pki = [x + r]pki ∗ [−r]pki .

3. The proposed anomaly detection algorithm: LDEM

In this section, we propose an anomaly detection algorithm (LDEM) based on local density
estimation with linear time and liner space complexity. Before introducing our method in detail, we
will present the symbolics used in LDEM (see Table 1).

We can notice that if an instance is abnormal, some features of this instance may be different with
these features of other normal instances. So based on the independence assumption of Naive Bayes,
we can estimate the local density of each feature, and then determine the density of this instance. Then,
we can judge whether this instance is abnormal based on the estimated local density.

Local Density Estimation: The key insight of estimating the density of instances is to estimate the
density of each feature of instances. In our method, we define some mapping functions that can map
similar values into the same key. So we only need count the instance number with the same key on
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Table 1. The description of symbolic.

Symbolic Description
X A data set.
X, j A vector of jth feature in X.
Xi A vector of ith instance in X.
Xi j The value of jth feature in Xi.
N The length of data set X.
d The number of features in X.
M The number of components.

each feature, and this number denotes the local density of the corresponding feature. Now, we will
show the process steps in detail.

1) First, initialize d mapping functions. Randomly select global parameter w from the range
(1/ln(N), 1 − 1/ln(N)). Generate a vector, r = {r1, r2, ..., rd}, with length d, in which each r j is
selected uniformly at the range (0,w). So, we can get the d mapping functions as

f (Xi j) = b
Xi j + r j

w
c (3.1)

Function 3.1 can be used to map similar values in feature X, j to the same key.
2) Normalize each X j in data set X as Eq (3.2), in which u j is the mean value of jth feature in X and

std j is the standard deviation of the data of jth feature in X.

Xi j =
Xi j − u j

std j
(3.2)

3) Then, we can take the Eq (3.1) to map the value of each feature X, j in data set X, and count the
times of each output value of Eq (3.1). So we will get d sketch table as Eq (3.3) for data set X,
and the the form of each sketch table can be seen as below.

sketchtable j = {(k1 j, t1 j), (k2 j, t2 j), ..., (kq j, tq j)} j ∈ [1, ..., d] (3.3)

In this equation, each ki denotes an output value of mapping function, and ti is the corresponding
times. The |sketchtable| = q is the number of function output values in X, j. (Note: the length of
sketch table in different features may be not same.)

4) After we have built up these sketch tables, we can do estimate the local density of each instance
Xi, as Eq (3.4). In which, sketchtable j[ f (Xi j)] denotes the value of tq j with kq j = f (Xi j). If no kq j

is equal to f (Xi j), the value of sketchtable j[ f (Xi j)] will be set to zero. Then, we will get the local
density of instance Xi by calculating the average value of sketchtable j[ f (Xi j)], j = {1, . . . , d}.
Obviously, this process only need scan data set X once, so our algorithm only needs O(N) time
complexity.

density(Xi) =
1
d

d∑
j=1

sketchtable j[ f j(Xi j)] (3.4)
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Same as other density-based algorithms, the smaller value density(Xi) is, the more likely abnormal
Xi is.

Ensemble: Since the mapping function for each feature is generated randomly, the keys mapped by
one mapping function in each feature may be biased. In order to ensure to obtain unbiased local density
estimation for each feature, we will randomly generate M different mapping functions for getting M
different sketch tables of each feature. Therefore, we will get M components, in which each component
is composed of d sketch tables. Each sketch table summaries the information of each feature. Then, at
the feature density estimation stage, each feature will be estimated M times. Hence, the final estimated
local density of any instance Xi is the average of M estimation results, as Eq (3.5). After considering
the ensemble, the time complexity of our algorithm will become O(MN). But O(M) is a constant, so
the final time complexity is also linear.

Density(Xi) =
1
M

M∑
m=1

densitym(Xi)

=
1

dM

M∑
m=1

d∑
j=1

sketchtablem j[ fm j(Xi j)]

(3.5)

Rationality Analysis: First, we analyze the rationality of mapping function. Like the literature [34],
assume there is a value v, and the output value of f (v) is equal to p. Then, we can obtain v must be in
the range of [p∗w− r, (p+1)∗w− r). Assume there is another value y. If f (y) is also equal to p, y must
be in this range [p∗w− r, (p+1)∗w− r). So we can get the inequality |v−y| ≤ w. Hence, we can easily
get the number of near neighbors of any value by this mapping value, without any distance calculation.
But it is worth noting that the variable w of mapping function decides the range of values that can be
mapped to the same key. If w has a larger value, some distant values may be mapped to the same key. If
w is a very smaller value, the condition for mapping to the same keyword is too harsh. In our method,
we get this variable randomly from the range of (1/ln(N), 1 − 1/ln(N)). It means that the range of
mapping to the same keyword is less than one. What’s more, we adapt the ensemble criteria by many
mapping functions. Therefore, for each feature, we will get the unbiased local density estimation.

Then, we will show the interpretability of Eqs (3.4) and (3.5). It is clear that the estimated local
density of each instance is the average value of local densities of all features from Eq (3.4). Feature
space can be seen as a hyper-cube, and any one feature can be seen as an axis in this hyper-cube.
sketchtable j[ f j(Xi j)] can obtain the density of Xi on the jth axis direction. Only by taking all features
or all axes into account can we get the more accurate local density estimation, which is approximate to
determining the location of a point in space by knowing all axes of this point. But we can not determine
which feature plays a more important role on the local density of instance. So we can assume that
each feature has the same influence on the local density estimation of any instance, according to the
maximal entropy model [35]. Hence, the local density of an instance is the simple average value of
local densities of all features, as Eq (3.4). Furthermore, according to the ensemble analysis in [36],
it can be proved that combining M different components can ensure that the bias-variance trade-off is
optimized, and our proposed algorithm LDEM can be called a variance reduction algorithm.
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4. The proposed privacy preserving anomaly detection scheme: PPLDEM

4.1. System model

In our scheme, system model is composed of data owners and a cloud. This system model can be
seen Figure 1.

Figure 1. System model of our scheme (Data owner A has pka, ska. Data owner B has pkb,
skb and server S has pk and sk)

• The cloud consists of two servers. One is called as server S, which is responsible for initializing
system parameters, including public parameters of BCP and parameters of our anomaly
detection algorithm LDEM. Since this server has the master key, it is also in charge of
conversion ciphers encrypted one public key into ciphers encrypted by other public key. This
server only communicates with server C. The other server is called as server C, which is
responsible for integrate the sketch tables received from all data owners. In the cloud, the server
S is a trusted server and the server C is an untrusted server.
• Data owners can be also called the participant parties. Our scheme can apply to the case with

multiple participants(two or more). Different with existing schemes, our scheme does not need
data owners to outsource the original data set. Data owners only need sent their sketch tables to
server C, and then server C will return integrated sketch tables encrypted by pk to data owners.
These sketch tables contain all information of data owners contained in server C. Except
requesting parameters, data owners can do any anomaly detection tasks by only communicating
with server C.

4.2. Anomaly detection with privacy preserving

It is noticed easily that the key of detecting anomaly data is sketch table in LDEM. So it is very
important to design a privacy preserving scheme to protect the information of sketch tables of each
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participant, when there are many participants to do anomaly detection mining together. Protecting
the information of sketch tables from being leaked means hiding the real keys and times in sketch
tables. In our method, the crucial technologies of hiding the information are random disturbance and
homomorphic encryption.

- Random Disturbance Random Disturbance means adding fictitious items in sketch tables, so
attackers cannot guess the real items. Each fictitious item is a tuple (key, 0), in which key can
be any integer in the digital space that does not appear in the original sketch table, and 0 is used
to mark fictitious key. For example, Table 2 is the original sketch table, and Table 3 shows the
sketch table after adding some fictitious items in Table 2 and these fictitious items are marked in
color red.

Table 2. Original Sketch Table.

key -2 -1 1 3 4
times 23 43 2 2 2

Table 3. Sketch Table After Random Disturbance.

key -4 -3 -2 -1 0 1 2 3 4
times 0 0 23 43 0 2 0 2 2

The purpose of adding fictitious items is to ensure that nobody can guess whether this key is a real
key. Because the keys after adding fictitious items are still plain texts. To better hiding the real
keys, we propose an adding fictitious items method. Since each feature data has been normalized
by the Eq (3.2), the normalized data is distributed in two sides of zero and the size in two sides
are equal approximately. So we can add some fictitious keys to ensure that the keys sent to server
C also have this characteristic. For example, in Table 3 we add the fictitious items (-4,0), (-3,0),
(0,0) and (2,0) to ensure the keys of sketch tables on both sides of 0 are symmetrical. In order
to better privacy protection, we advise that each data owner can set the keys in each sketch table
be the all digits in the range of -1000 to 1000, since the value of Eq (3.1) is almost impossible to
beyond this range.

- Homomorphic Encryption After adding some fictitious items in sketch table, we need to do
other operations to achieve the aim that the real keys and the fictitious keys are indistinguishable.
So we need select a encryption system to encrypt the times that can distinguish the real keys and
the fictitious keys. In order to ensure the addition operations on ciphertexts encrypted by different
public key, we select a semi-homomorphic encryption system, BCP [28, 31–33], which supports
homomorphism addition. Assume there is a participant party A who has a sketch table (Table 2),
the public key of party A is pka. Then, after random disturbance and homomorphic encryption
operations, this sketch table can be transformed into the sketch table as Table 4.

Table 4. Sketch Table After Random Disturbance and Homomorphic Encryption.

key -4 -3 -2 -1 0 1 2 3 4
times Enca(0)∗ Enca(0) Enca(23) Enca(43) Enca(0) Enca(2) Enca(0) Enca(2) Enca(2)
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Then, we will introduce our scheme in detail, based on these two crucial technologies and the
proposed anomaly detection algorithm LDEM. In our scheme, an anomaly detection task will be
divided into two steps. One is the preprocessing step, and the other is the step of calculating anomaly
scores of data.

Preprocessing: First, server S will initialize the public parameters of homomorphic encryption
scheme BCP and generate the master key of BCP. Then, Data owners will initialize the public
parameters of encryption system and the mapping functions of LDEM. For encryption system, data
owners will request public parameters from server S, which are used to generate public key and secret
key. For LDEM, data owners will request the number of component M and dM mapping functions
from server S. Then, each data owner will do the follow operations.

1) Transform the data in their own database into sketch tables by the mapping functions requested
from server C, as the description in Section 3.

2) Add fictitious items in each sketch table. Then, encrypt the times of each key in their sketch table
by their public key pki, and they can send their sketch tables to server C.

After server C received sketch tables sent by data owners, it will transform these sketch table encrypted
by different pki using the ProdKey security protocol, and then merge these sketch tables.

Algorithm 1: PPLEDM:Anomaly Detection With Privacy Preserving.
Input: Data set X
Output: The local density Density.

1 // Request encrypted S ketchTables from server C;
2 X̂ ← mapping(X); // Preprocessing data set X;
3 Density← ∅;
4 for x̂ in X̂ do
5 densityx = 0;
6 for j = 1 to d do
7 densityx = densityx + Table[ j][x̂];
8 end
9 Density← [Density, densityx];

10 end
11 Density← TransDec(Density);
12 return Density;

Detection Stage: Assume there is a data owner (participant) A, and his public key is pka and his
secret key is ska. If he wants to do anomaly detection tasks, he will firstly request the merged sketch
tables encrypted by the public key pk of server C. Then, he will transform the data in each feature by
the corresponding mapping functions. The data in each feature will be represented by the output values
(keys) of mapping functions, and he can query the local density of each feature in the corresponding
sketch tables. After getting the local densities of all features of each instance, the final local density of
each feature will be obtained. But now, the final local densities are encrypted by pk. To get the plain
density values, data owner A needs to send these encrypted densities and the public key pka to server

∗Enc(.) is the encryption function of BCP. Enca(.) means that data is encrypted by the public key of participant party A.
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C, and server C will transform these encrypted densities into the ciphertexts encrypted by pka using
the TransDes security protocol. And then, data owner A can get the plain densities through decrypting
these ciphertexts by their own secret key ska. Lastly, data owner A can determine which instances are
more likely to be anomaly instances, according to the local density ranking.The all process of this stage
in data owner A can be seen in Algorithm 1.

5. Results

In this section, we first demonstrate the utility of our proposed detection algorithm LDEM with
all original databases under single-party participation. Then, we will analyze the performance of our
algorithm by encrypted data with multiple parties participation.

For comparability, we implemented all experiments on our workstation with 2.5 GHz, 64 bits
operation system, 4 cores CPU and 16 GB RAM, and the algorithms codes are built in Python 2.7.

5.1. Evaluation metrics and experimental setup

Metics: In our experiment, we adopt Receiver Operating Characteristic (ROC) curve as the
evaluation criterion for the proposed algorithm and other compared algorithms. The ROC curve is
created by plotting the true positive rate against the false positive rate at various threshold settings, so
it can evaluate anomaly detection algorithms in terms of false positive rate (FPR) and the true positive
rate (TPR). The anomaly detection algorithms with larger area under ROC curve may have better
detection accuracy, otherwise, the anomaly detection algorithms are less effective.

Experimental Setup: There are two experiments which are design to illustrate the effectiveness of
our anomaly detection algorithm LDEM and and the significance of our anomaly detection algorithm
with privacy preserving.

Table 5. Data sets information

Data set Instances Attribute Anomaly Ratio
Breast 569 30 37.3%

Ann thyroid 7200 6 7.4%
Waveform 1727 21 4.6%

Ecoli 336 7 2.7%
Arrhythmia 452 272 14.6%

Pima 768 8 34.9%
Satellite 6435 36 31.6%
Shuttle 14500 9 6.0%

Epileptic 11500 178 20.0%

• In the first experiment, all data sets are selected from UCI Repository [37], and these data sets
are summarized in Table 5. Since many of these data sets contain more than two class labels,
it needs some preprocessing operations to obtain the data sets which are suitable for anomaly
detection. We preprocess these data sets according to some of the commonly used principles in the
literatures [34]. We compare our proposed anomaly detection algorithm LDEM with other state-
of-art algorithms. These compared algorithms contain LOF [11], FastABOD [9], iForest [38, 39]
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and RDOS [14]. iForest detects anomaly instances based on the average path of instances in
isolation forest. FastABOD determines anomaly instances based on the angle among instances.
RDOS determines anomaly instances according to the relative kernel density distribution. For the
parameter of all algorithms, the number of near neighbors of RDOS, FastABOD and LOF will be
set to 10, and the tree number of iForest will be set to 25, and the height limit of iForest will be
set to 6, and the sample size of iForest will be set to 256. The components of LDEM will be set
to 10.
• In the second experiment, we adopt a sensor data to verify the effectiveness of PPLDEM. This

sensor data is sequential motion data from 14 healthy older people aged 66 to 86 years old using
a batteryless, wearable sensor on top of their clothing for the recognition of activities in clinical
environments [40]. This data contain four classes. In this experiment, we chose class 1 as the
abnormal class, and the class 3 as the normal class. Therefore, the selected data sets are
summarized in Tables 6 and 7. All these data sets are selected from the data sets allocated in
Room1, of which the setting uses 4 RFID reader antennas around the room. Table 6 describes
the data sets collected from female, and Table 7 describes the data sets from male.

Table 6. Data sets of female in Room1

Data set Instances Attribute Anomaly Ratio
d1p13F 168 8 13.09%
d1p14F 124 8 7.25%
d1p18F 219 8 0.456%
d1p49F 2555 8 35.6%
d1p50F 4299 8 28.2%
d1p53F 4363 8 27.98%

Table 7. Data sets of male in Room1

Data set Instances Attribute Anomaly Ratio
d1p01M 334 8 34.13%
d1p05M 448 8 29.01%
d1p06M 614 8 11.88%
d1p40M 807 8 40.64%
d1p41M 806 8 33.49%
d1p43M 2332 8 17.32%

5.2. Performance efficiency of LDEM

Accuracy Analysis: For fairness, we build up our algorithm and reproduce all compared algorithms
in Python Language. All algorithms are executed many times to obtain stable results on all data sets
in Table 5, and the experiment results are shown in Figure 2. Figure 2(a) plots the ROC curve of all
compared algorithms on Breast data set. Figure 2(b) plots the ROC curve of all compared algorithms
on Ann thyroid data set. Figure 2(c) plots the ROC curve of all compared algorithms on Waveform data
set. Figure 2(d) plots the ROC curve of all compared algorithms on Ecoli data set. Figure 2(e) plots
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the ROC curve of all compared algorithms on Arrhythmia data set. Figure 2(f) plots the ROC curve of
all compared algorithms on Pima data set. Figure 2(g) plots the ROC curve of all compared algorithms
on Satellite data set. Figure 2(h) plots the ROC curve of all compared algorithms on Shuttle data set.
Figure 2(i) plots the ROC curve of all compared algorithms on Epileptic data set.

In Figure 2(a–c), the ROC curves of other compared algorithms are completely below the ROC
curves of LDEM, so the detection accuracy of our algorithm LDEM outperforms than the compared
algorithms on these three data sets. In Figure 2(d–f,h,i,), the ROC curves of LDEM are approximate
to the best ROC curves of other compared algorithms. In Figure 2(g), although the ROC curve of
LDEM cannot completely cover the ROC curves of the compared algorithms, the area under ROC
curve of LDEM is great than others. Therefore, this experiment illustrates that our proposed algorithm
is effective.

Running Time Analysis: To illustrate that our algorithm not only gets good detection results, but
also needs less running time. We do an experiment to compare the running time of all aforementioned
algorithms on the selected four data sets with different size from Table 5. The results of this experiment
are shown in Figure 3. The running time of LOF is more than 20 seconds on Ann thyroid and Satellite
data sets, and the running time of LOF is more than 20 seconds on Ann thyroid, Waveform and Satellite
data sets. Analysis the process of these four algorithms in Figure 3, we can know that LOF, RDOS
and FastABOD need to calculate the pair-wise distances, which needs O(N2) time complexity, while
LDEM only needs to build up M sketch tables, which only needs linear time complexity. Therefore,
we can get the results in Figure 3. It can be easily seen that the running time of our algorithm is less
than LOF, FastABOD and RDOS.

Sensitivity Analysis: In our algorithm, there is only one parameters, the number of components M,
which can affect the detection accuracy. In order to verify whether the proposed algorithm LDEM is
sensitive to the parameter M, we will record the AUC value of these ten data sets in this experiment,
when the range of this number is from 1 to 50. AUC is the area under ROC curve, which can intuitively
reflect the classification ability of ROC curve expression. The results of this experiment are shown in
Figure 4. From this figure, we can notice that LDEM has almost the same AUC value on most of
selected data sets, when the parameter M takes different value in the range of 1 to 50. The AUC value
of over half of data sets has almost not any fluctuation. Only a few data sets have small fluctuations in
their AUC values. As a result, this experiment can illustrate that our algorithm is not very sensitive to
the parameter M.

5.3. Performance efficiency of PPLDEM

Accuracy Analysis: We will present the improvement of our algorithm under multiple participants
based on the data sets in Tables 6 and 7. First, we can calculate the AUC value of each data set based
on the sketch tables created by their own data set. This process can be finished on each data owners.
Also, we can calculate the AUC value of each data set based on all sketch tables created from all data
sets. Since each data set in these two tables is created by corresponding person, it is necessary to use
our privacy preserving scheme to protect the privacy information of each data owners.

The results based on the sketch tables obtained from the data set of each data owners are recorded in
the column AUC BY SELF of Tables 8 and 9, and the results based on the sketch tables obtained from
the data sets of all participants are recorded in the column AUC BY ALL of Tables 8 and 9. Compare
the results of these two columns, it can be seen that the column AUC BY ALL has a better AUC value
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(a) Breast (b) Ann thyroid (c) Waveform

(d) Ecoli (e) Arrhythmia (f) Pima

(g) Satellite (h) Shuttle (i) Epileptic

Figure 2. The ROC curve of all anomaly detection algorithms on the selected data sets from
UCI.
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Figure 3. Running time of these algorithms on four of the data sets.

Figure 4. Sensitive analysis of the parameter M.
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on most of all data sets. Hence, from this experiment, it can prove that our algorithm is effective under
multiple participants.

Table 8. AUC value on different sketch tables from female data set.

Data set AUC BY SELF AUC BY ALL
d1p13F 0.968 0.979
d1p14F 0.993 1.00
d1p18F 0.972 0.972
d1p49F 0.770 0.892
d1p50F 0.766 0.818
d1p53F 0.919 0.975

Table 9. AUC value on different sketch tables from male data set.

Data set AUC BY SELF AUC BY ALL
d1p01M 0.961 0.993
d1p05M 0.954 0.959
d1p06M 0.997 0.999
d1p40M 0.831 0.997
d1p41M 0.908 0.995
d1p43M 0.991 0.991

Security Analysis: We use the BCP cryptosystem to encrypt private data and our anomaly detection
scheme with privacy preserving is based on semi-honest model. In semi-honest model, all participants
will comply with the security protocols, but they may collect the received information (inputs, outputs,
calculated results) to look for some privacy information [31]. In our scheme, we assume that all
participants, including server C, server S and data owners, will do anomaly detection tasks on the basis
of the proposed protocols.

• Security analysis under attacks on encrypted data. BCP cryptosystem is semantically secure
in the standard model, based on the decisional Diffie-Hellman assumption modulo a square
composite number [33]. Semantic secure [41] is widely admitted to be the main security notion
in secrecy of communication. For data encrypted by BCP cryptosystem, cryptotexts can not be
decrypt without the private key or the master key. Therefore, privacy information will not be
leaked by the encrypted data.
• Security analysis under attacks from server C. In our scheme, server C is responsible for two

things, merging sketch tables received from different data owners and transforming the densities
encrypted by pk into ciphertexts encrypted by pki. For the first thing, server C may do the keys
attack on the basis of the received sketch tables. But in our scheme, the keys in these sketch tables
are composed of real keys and fictitious keys, and these two type keys are marked by the times
encrypted by the pki. Since any two times ciphertexts are indistinguishable based on the security
of BCP encryption system [31], server C can not distinguish the true and false of any two keys,
such as (ki, Enc(0)) and (k j, Enc(1)). It only can know the frequencies of any received key, but it
can not infer the true times of these keys in there original sketch tables. For the other thing, all
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operations in server C are based on ciphertexts. Any information will not be leaked in this thing,
since cracking BCP is difficult NP problem. From the above analysis, it can be determined that
our scheme will not leak any information of data owners in server C.
• Security analysis under attacks from server S. Server S is a trusted server, so it can do initialize

public parameters of BCP, and generate the parameters of LDEM. What’s more, it is responsible
for transforming ciphertexts with server C together. In the process of transforming ciphertexts, it
only receives encrypted digits, but it do not know the meaning of these digits, and these digits are
the disturbed digits. Therefore, there is no more than one-half probability to guess the original
true digit, and random perturbation can achieve indistinguishable.
• Security analysis under attacks from different data owners. The original data set of any data

owner is secure, since there is no any communication about original data set among data owners
in our scheme. For each data owner, they may do the key’s times attack. For example, data
owner A has finished an anomaly detection task with the help of sketch tables received from
server C, and obtain the density Density(x) of an instance x. He may try to guess the times in
others’ sketch tables by subtracting the density(x) obtained from his own sketch tables. Assume
the received sketch tables of data owner A are combined with Q data owners, and then he can
only get the sum density of others, Density(x) − density(x) =

∑Q−1
q=1 densityq(x). Analysis the

value Density(x) − density(x), he only can know whether there are other participants, and can
not defer any other privacy information with more than one-half probability. Therefore, for any
data owners, they only can know their own data set and the density value of their data set in our
scheme.

6. Discussion and conclusions

In this paper, we first propose a fast local density estimation method LDEM, which can be used
in anomaly detection. LDEM obtains the local density of instances by calculating the average local
density of all features, and the local density of each feature can be estimated by the defined mapping
function. Compare with the existing density-based algorithms, LDEM has no any distance calculation,
and it only need O(N) time complexity.

Then, we extend this algorithm to the case of multi-party participants, and we propose an efficient
scheme PPLDEM to detect anomaly instances with considering privacy protection under multi-party
participants. PPLDEM is finished with the aid of a cloud, and this cloud is composed of two servers,
server S and server C. In our scheme, the detection stage of PPLDEM are executed in each participant
own, based on the sketch tables requested from server C. So compare with the existing anomaly
detection algorithms with privacy preserving, our scheme need less communication cost and less
calculation, under the premise of ensuring safety and detection accuracy. What’s more, PPLDEM can
be used to the cases both horizontally distributed data and vertically distributed data. And
experiments and theoretical analysis show that our proposed scheme PPLDEM can detect anomaly
instances effectively and efficiently.
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