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Abstract: In the field of remote sensing image processing, the classification of hyperspectral image
(HSI) is a hot topic. There are two main problems lead to the classification accuracy unsatisfactory.
One problem is that the recent research on HSI classification is based on spectral features, the relation-
ship between different pixels has been ignored; the other is that the HSI data does not contain or only
contain a small amount of labeled data, so it is impossible to build a well classification model. To solve
these problems, a dual-channel CNN model has been proposed to boost its discriminative capability
for HSI classification. The proposed dual-channel CNN model has several distinct advantages. Firstly,
the model consists of spectral feature extraction channel and spatial feature extraction channel; the 1-D
CNN and 3-D CNN are used to extract the spectral and spatial features, respectively. Secondly, the
dual-channel CNN have been used for fusing the spatial-spectral features, the fusion feature is input
into the classifier, which effectively improves the classification accuracy. Finally, due to considering
the spatial and spectral features, the model can effectively solve the problem of lack of training sam-
ples. The experiments on benchmark data sets have demonstrated that the proposed dual-channel CNN
model considerably outperforms other state-of-the-art method.

Keywords: hyperspecral image; spatial-spectral information; dual-channel; convolutional neural
network; classification

1. Introduction

Recent years, a lot of scholars have proposed many methods to extract features from hyperspectral
image. These methods can be divided into three categories: spectral domain analysis, spatial domain
analysis and spatial-spectral analysis.
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Spectral domain analysis refers to use of spectral information in the classification of hyperspectral
image [1-3]. There are two kinds of spectral domain analysis. One kind of spectral domain analysis
does not reduce the dimensionality of hyperspectral image, hyperspectral image are classified by using
the original spectral information directly [4—7]. The other kind of spectral domain analysis method is
to first reduce the dimension of hyperspectral image, and then classify the hyperspectral image. The
commonly methods used for dimensionality reduction of hyperspectral image include: PCA [2,8], ICA
[3] and LDA [1]. However, the disadvantage of these methods is that they only use the spectral features
of hyperspectral image, ignoring the relationship between different pixels in hyperspectral image, their
classification results may contain noise, like salt-and-pepper [9]. Therefore, the classification accuracy
of spectral domain analysis method is not ideal.

Spatial domain analysis refers to use of spatial information in the classification of hyperspectral
image. These spatial informations include color, contour and texture. Numerous research results have
shown that the spatial features are helpful to improve the representation and classification accuracy
of HSI data. In order to extract the spatial features of HSI, it is necessary to define a spatial filter,
the common spatial filters include: gray level co-occurrence matrix, wavelet sign, geometric features,
texture features and so on. But these spatial features are usually designed for specific data sets, with
weak generalization ability, and cannot be widely used. Meanwhile, the variability of spatial features
is also very large, which makes it impossible to set classification parameters of HSI by using empir-
ical values. In recent years, deep learning technology has been widely used in hyperspectral image
processing. Compared with the traditional artificial design method of spatial feature parameters, deep
learning method can automatically extract spatial features, which have strong robustness in classifi-
cation tasks. Y. Chen et al [9] input spatial features into the automatic coding machine directly, the
classification of hyperspectral image had been implemented. However, this method converts the orig-
inal two-dimensional image data into one-dimensional data when data are input, which causes a great
loss of spatial information X. Chen et al [10] proposed a convolutional neural network model, which
can be used to extract two-dimensional spatial features and implement the vehicle recognition. How-
ever, there are two problems with the above spatial domain analysis methods. First, in hyperspectral
image, different objects often have different sizes, so the fixed size detection window can’t meet the
detection requirements of different size objects. Second, the spatial domain analysis method ignores
the spectral features of the original hyperspectral image.

Spatial-spectral analysis methods refers to consider both spectral and spatial information together.
Spatial-spectral methods have attracted great interests and improved the HSI classification accuracy
significantly [11-17]. Camps-Valls et al. [18] proposed a Composite Kernel (CK) that easily com-
bines spatial and spectral information to enhance the classification accuracy of HSI. Li et al. [19]
extended CK to a generalized framework, which exhibits the great flexibility of combining the spec-
tral and spatial information of HSIs. Li et al. [20] proposed the Maximized of the Posterior Marginal
by Loopy Belief Propagation (MPM-LBP). It exploits the marginal probability distribution from both
the spectral and spatial information. Zhong et al. [21] developed a discriminate tensor spectral-spatial
feature extraction method for HSI classification. Kang et al. [22] proposed a spectral-spatial classifi-
cation framework based on Edge-Preserving Filtering (EPF), where the filtering operation achieves a
local optimization of the probabilities. Feng et al. [11] defined discriminate spectral-spatial margins
(DSSMs) to reveal the local information of hyperspectral pixels and explore the global structures of
both labeled and unlabeled data via low-rank representation. Zhou et al. [23] proposed a spatial and
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spectral regularized local discriminant embedding (SSRLDE) method for DR of HSIs. However, most
of these extract spectral-spatial features using a shallow architecture and yield limited complexity and
non-linearity.

Although the above methods have made some achievements in different areas, but the problem is
most of these methods are based on the features for manual design. These methods must be used under
the condition of establishing the classification strategy first and these methods design classification
strategies directly on data without using classification label information. They are not an end-to-end
approach method. Therefore, these methods highly dependent on prior knowledge of specific fields
and are usually not the optimal solution [24]. Generally, HSI classification aims at classifying each
pixel to its correct class. However, pixels in smooth homogeneous regions usually have high within-
class spectral variations. Consequently, it is crucial to exploit the nonlinear characteristics of HSI
and to reduce interclass variations. In recent years, the advantages of deep learning in these aspects
have gradually emerged, and there have been successful cases of hyperspectral image classification
using deep learning. Such as stacked auto encoder [9] and deep belief network [25] in unsupervised
feature learning method. Although theses unsupervised learning methods can extract deep features,
they need to expand the three-dimensional data into a one-dimensional form to meet the requirements
for input data. Therefore, these methods lose the spatial information [26]. The other methods are based
on supervised auto-encoder methods [27], which makes use of classification label information in the
learning process. These works demonstrate that deep learning opens a new window for future research,
showcasing the deep learning-based methods’ huge potential. However, how to design a proper deep
net is still an open area in the machine learning community [28,29].

As mentioned above, compared with the traditional spectral domain HSI classification method, the
deep learning method can directly learn the data dependency from the original data and make hierar-
chical representation of the data. Although the above methods of deep learning achieved well results,
they did not make full use of spectral information and spatial information for classification. Therefore,
it is necessary to synthesize spatial-spectral feature information to further improve the classification ac-
curacy of hyperspectral image. To solve these problems, in this paper a dual-channel CNN model has
been proposed to boost its discriminative capability for HSI classification. The proposed dual-channel
CNN model has several distinct advantages. Firstly, the model consists of spectral feature extraction
channel and spatial feature extraction channel; each channel can extract the spectral and spatial fea-
tures of the original HSI separately. Secondly, the spectral and spatial features have been fused by
using full-connection layer; the fusion feature is input into the classifier, which effectively improves
the classification accuracy. Finally, due to considering the spectral and spatial features, the model
can effectively solve the problem of lack of training samples. The experiments on benchmark data
sets have demonstrated that the proposed dual-channel CNN model considerably outperforms other
state-of-the-art method.

An important contribution to the success of the dual-channel CNN to classify hyperspectral image
based on spatial-spectral information can be summarized as follows:

(1) A novel end-to-end neural network architecture has been proposed that performs for superior
modeling of hyperspectral image. The architecture has fewer independent connection weights and
thus requires lesser number of training data. The method is found to outperform the highest reported
accuracies on popular hyperspectral image dataset.

(2) Compared with hand-crafted feature extraction, the proposed deep model can adaptively learn
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spectral-spatial joint feature, which contains semantic and discriminative information from both spec-
tral and spatial domains.

(3) The design is aimed at efficient spectral-spatial joint feature learning keeping the number of
parameters low. So considerable improvement in training time is observed when compared to other
popular architectures.

2. Related works

In recent years, the convolutional neural network has made great achievements in the field of com-
puter vision [30]. Many researches have shown that the method based on CNN can significantly im-
prove the accuracy of hyperspectral image classification. For example, LI et al. proposed a feature
extractor based on convolutional neural network, which can learn the feature representation of hyper-
spectral image [31].

2.1. CNN

As shown in Figure 1, the typical convolutional neural network is mainly composed of input layer,
convolutional layer, pooling layer, fully connected layer and output layer.

Input Convolutional Pooling Convolutional Pooling Fully Fully ~ Output
Connected Connected

Figure 1. The architecture of convolutional neural network.

Normally, the input of convolutional neural network is the original image X . In this paper, H; is
used to represent the feature map of the ith layer of convolutional neural network. Eq. (2.1) is used to
calculate the H;

H; = f(H;®W; + b) (2.1)

W, represents the weight vector of the convolution kernel at the ith layer. The symbol ® represents
the convolutional operation of the ith layer and (i — 1)th layer with the image or feature map. The
output of the convolution is added to the bias b at the ith layer. Finally, the feature map W; of the ith
layer is obtained through the nonlinear activation function.

Pooling layer is under the convolutional layer, the pooling layer samples the feature map according
to certain rules. There are two main rules of pooling layer: (1) Reduce the dimension of the feature
map. (2) Keep the scale-invariant properties of the features. Suppose H; is the pooling layer, H; can be
calculated as Eq. (2.2):

H; = subsampling(H;_,) 2.2)

After completing the calculation of the convolutional layer and pooling layer alternatively. Convo-
lutional neural network classifies extracted features by the values of fully connected network. Obtained
the probability distribution Y;, of the input data (/; is the ith label). As shown in Eq. (2.3), convolutional
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neural network is a mathematical model that maps the original matrix (Hy) to a new feature expression
Y through multiple layers of data transformation or dimension reduction.

Y; = P(L =1lj|Hy : (W, b)) (2.3)

The goal of convolutional neural networks for training process is to minimize the loss function
L(W, b) of the network. After the input (H,) passes through the forward conduction, the difference
between the predicted value and real value is calculated through the loss function. The typical loss
function includes Mean Squared Error, Negative Log, as shown in Eq. (2.4) and Eq. (2.5).

1 R
MSEW,b)= — » (Y;=Y))? 2.4
(Wb = 1 Z]( ) (2.4)

Y]
NLL(W,b) = — Z logY; (2.5)

i=1
In order to alleviate the problem of over-fitting, the final loss function is usually obtained by adding
the L2 norm, and A is the parameter for controlling the strength of over-fitting, as shown in Eq. (2.6).

E(W,b) = L(W,b) + %WTW (2.6)

In the training process, gradient descent is the common optimization method of convolutional neural
network. Loss values are back propagated through gradient descent, the training parameters (W, b) of
each layer in convolutional neural network are updated layer by layer. The learning rate n is used to
control the intensity of back propagation for Loss value. The updating methods of W and b are shown
in Eq. (2.7) and Eq. (2.8)

OE(W, D)
W, =W, —np—- 2.7
n aw, (2.7)

OE(W,b)
b; = b; — n——"" 2.8
n b, (2.8)

Zhao et al. extracted the spatial features which combined with spectral information by using con-
volutional neural network, and combined with local discrimination embedded for hyperspectral image
classification [32]. However, after dimensionality reduction this method only takes the three principal
components of the original hyperspectral image as the input, so some information is still lost in the
process of spatial feature extraction.

2.2. 3D-CNN

To solve the above problems of convolutional neural network model, Chen et al. extracted spectral-
spatial features from the original hyperspectral image by using 3D convolutional neural network, and
the results performed better than the aforementioned method on the same data set [33]. Li et al. further
researched the 3D convolutional neural network for spatial-spectral joint features by changing the size
of the hyperspectral image input cube [31].

The architecture of 3D convolutional neural network (3D-CNN) is similar to that of 2D convolu-
tional neural network (2D-CNN). They are all composed of convolution layer and pooling layer. Unlike
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the 2D-CNN, 3D-CNN implements the convolution operation by using 3D convolution kernel, which
is one of the key differences between the two kinds of convolution operation. 3D-CNN is shown as
Figure 2.

Figure 2. The architecture of 3D convolutional neural network.

The value v at the position (x, y, z) of the jth feature map in the layer / is calculated as Eq. (2.9):

P—-1 Q;—-1R;—-1

Xyz _ pqr (X+p)0+q)(z+r)
vip = Fybii+ Z Z Z Z Wijm"a-1ym (2.9)

m p=0 ¢g=0 r=0

P; and Q, represents the length and width of the three dimensional convolution kernel, R; is the
size of the 3D convolution kernel in spectral dimension, m represents the number of feature maps

connected to the current feature graph in the [ — 1 layer, w " represents the weight of the mth feature

map connected to the /-1 layer, vfffﬁiﬁ”q)(“r) represents the Value of the mth feature map at the position

(x+ p,y+q,z+r)inthe [ - 1 layer. b;; is the bias of the jth feature map in the / layer.

Compared with the previous methods, Li et al. And Chen et al. Provided a more concise idea. The
model can directly process the original hyperspectral image to obtain feature maps. However, with the
expansion of data scale, the classification performance of the model will decrease when the network is
deepened.

2.3. Multi-level Convolutional Neural Networks for Scene Understanding

Although CNN and 3D-CNN have gained significant popularity as methods for learning image
representations and helped improve the performance of many important computer vision tasks, the
transformation of the learned knowledge from the known domain to a new domain such as scene
parsing is uncovered yet.

In order to solve the problem, Tam V. Nguyen exploited generic multi-level convolutional neural
networks for scene understanding or image parsing task [34]. The input of the proposed model is an
image, first, a set of similar images from the training set are retrieved based on global-level CNN fea-
ture matching similarities. Then, the input test image and the similar images are oversegmented into
superpixels. Next, the class of each test image’s superpixel is initialized by the majority vote of the
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k-nearest-neighbor superpixels based on regional-level CNN features and hand-crafted features match-
ing. The initial superpixel parsing is later combined with per-exemplar sliding windows to roughly
form the pixel labels. Eventually, the final labels are further refined by the contextual smoothing. This
is a simple yet effective approach to scene understanding or image parsing that can take advantage of
generic convolutional neural network for feature extraction at both image and superpixel levels. Ex-
tensive experiments on different challenging datasets demonstrate the multi-level convolutional neural
networks can extract the discriminate features which can actually improve the performance signifi-
cantly.

Inspired by the ideas of this paper, we proposed the dual-channel model to extract the spectral
feature and spatial feature by using the 1D and 3D-CNN. It is hoped that this method can improve the
classification accuracy of hyperspectral image.

3. Architecture and training of dual-channel CNN

In order to extract features for hyperspectral image, the information in both spectral and spatial
domain should be learned jointly. In this section, we proposed a dual-channel deep convolutional
neural network for joint spatial-spectral feature learning. Firstly, the spectral and spatial features are
extracted, respectively. For the spectral channel, 1-D convolutional neural network is used to extract
the spectral features. For the spatial channel, 3-D convolutional neural network is used to extract
the spatial features. Then, the spectral-spatial features can be obtained by using the fully connected
layers. Finally, the spectral-spatial features are inputted into a classifier, and classification results can
be achieved.

3.1. Spatial feature extraction with 3-D CNN

In this section, the HSI spatial feature extraction model based on 3-D convolutional neural network
is proposed. The model consists of one input layer, two convolutional layers, two pooling layers,
two full connection layers and one output layer. This model can automatically extract the spatial
information features of hyperspectral image. The model is shown as Figure 3.

satial conv2l pool22 conv23  pool24
neighborhood spatial
P feature
F,(P)

Figure 3. The HSI spatial feature extraction model based on 3-D convolutional neural net-
work.

Assume the hyperspectral image is H € R”*? h and w represent the height and width of hy-
perspectral image, respectively, d is the number of bands, the category of each pixel in hyperspectral
image is defined as K = 1,2,3,--- , k, k is the number of categories in hyperspectral image. A sample
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set of p X p size is extracted at the center of each pixel in hyperspectral image H. The data set is
represented as X = x|, X2, X3, - -+ , X, X; € RP*P*? 'n = h x w is the total number of the data set. During
the extraction process of the data set, the sample points for the boundary are filled with data 0. Each
sample point x; is input into the convolutional neural network model as input data, the output is z;, and
the corresponding category is y; € K, y; is the category of the corresponding vector centered on x;. The
data (x;, y;) represents the sample with size p X p centered on pixel point x;. After convolutional neural
network, the category of input vector is predicted to be y;. For the kth category in the training dataset,
there is D, = D)), D), D;,..., D), 1 = X 1(k) < n.

Instead of converting the input data into one-dimensional data, the HSI spatial feature extraction
model based on 3-D convolutional neural network can directly input the original three-dimensional
data into the convolutional neural network model. The size of the input layer data is p X p X d.

Firstly, the sample centered on x; with size p X p X d is input into the first convolutional layer, the
kernel size of the first convolutional layer is 5 X 5 X d, and the number of the kernel is 100. After the
first convolutional layer operation, 100 feature maps with size n; X n; (n; = p —4) will be obtained.
After the first convolutional layer is the second max pooling layer, the size of the pooling kernel is
2x 2. After the max pooling operation, the size of the output feature map is n, Xn, X 100 (ny = [n,/21]).

Secondly, the feature map will be input to the third convolutional layer, the kernel size of the third
convolutional layer is 3 X 3 X d , and the number of the kernel is 300. After the third convolutional
layer operation, 300 feature maps with size n3 X n3 (n3 = n, — 2) will be obtained. After the third
convolutional layer is the fourth max pooling layer, the size of the pooling kernel is 2 X 2. After the
max pooling operation, the size of the output feature map is ny X ny X 300 (n4 = [n3/21).

Finally, the output feature map of the fourth max pooling layer well be converted to a one-
dimensional vector x,,,n(1 X (n4 X n4 x 300)). The fifth layer, the sixth layer and the seventh layer is
the fully connecter layer. The output of the seventh layer is a one-dimensional vector with the size of
1 X K. The fully connected operation formula of the fifth, sixth and seventh layers are shown in Eq.
(3.1), Eq. (3.2) and Eq. (3.3):

f(S)(XPOOIZ) = O-(W(S)xpOOZZ + b(S)) (31)
f(6)()C17()012) = O-(W(6)f(5)(xp0012) + b(é)) (32)
f(7)(xp0012) = O-(W(7)f(6)(xp0012) + b(7)) (33)

W®, W® and W is the weight vector, b® , b©®, b7 is bias. o(-) is the nonlinear activa-
tion function. In this paper, the activation function used in two convolutional layers and three
fully connected layers is Tanh. In order to simplify the parameters of the model, suppose W =
WO WS WS WO whp = pD p& pS pO© pM WO is the weight of the layer. b is the bias
of the ith layer. The parameters of the model can be represented with (W, b).

The output of model £ € RX can be input to the Softmax classifier for the classification of hyper-
spectral image based on spatial features. y; = oo /3K, oo yEZV’b) = max(y;). The predicted value
of the category of the sample with size p X p X d centered on x; can be obtained. Then, the label y;
and predicted value yl(.,fv’b) of sample points are taken as input values, the cross entropy is calculated by

using Eq. (3.4)

1 K
BOW.b) = 7 ) > yulog 3" (34)
i k=1

1
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The parameters W and b are optimized by stochastic gradient descent. After the /¢4 iterations, the
calculation methods of W and b are shown in Eq. (3.5) and Eq. (3.6)

OEW,b

W, =W - a/—;W ) . (3.5)
OE(W,b

bt+1 = bt - a% i (36)

The back propagation algorithm is used to calculate the gradient of parameters W and b. 7 is the
learning rate.

The HSI spatial feature extraction model based on 3-D convolutional neural network proposed in
this paper is different from the traditional convolutional neural network classification model. The
traditional convolutional neural networks are mostly based on fine-turning technique. In other words,
the convolutional neural network is firstly trained with some prepared samples, and then its parameters
are fine-tuned. However, the HSI spatial feature extraction model based on 3-D convolutional neural
network proposed in this paper does not require training of prepared samples. The parameter W can
be initialized by the standard global distribution; b can be initialized to 0. To prevent overfitting, the
dropout is applied after the fifth and sixth full connection layers.

Table 1 shows the parameters of all layers in Figure 3.

Table 1. The parameters of all layers in spatial feature extraction model.

Layers Parameters
input H € R4 h=145 w=145 d=220
spatial neighborhood P, = Px Pxd, d=220
conv21 kernel size:3 X 3 x 5,100 output:n; X ny X 100,n; = P-4 =7
pool22 kernel size:2 X 2 X 5,stride=2 output:n, X ny X 100, n, = [n,/2 = 4]
conv23 kernel size:3 X 3 X 5,300 output:nz X n3 X 300, n3 = [ny/2 = 2]
pool24 kernel size:2 X 2 X 5,stride=2 output:ng X ng X 300, ny = [n3/2 = 1]
fc25 200
fc26 84
fc27 42

3.2. Spectral feature extraction with 1-D CNN

In this section, the HSI spatial feature extraction model based on 1-D convolutional neural network
is proposed. The 1-D convolutional neural network is used to extract spectral features of hyperspectral
images. Replacing the traditional 2-D convolutional kernel with a 1-D convolution kernel can effec-
tively extract the spectral features of hyperspectral image. The model consists of one input layer, three
convolutional layers, three pooling layers, two full connection layers and one output layer. This model
can automatically extract the spectral information features of hyperspectral image. The model is shown
as Figure 4.
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Figure 4. The HSI spectral feature extraction model based on 1-D convolutional neural
network.

Table 2 shows the parameters of all layers in Figure 4.

Table 2. The parameters of all layers in spectral feature extraction model.

Layers Parameters
input H € R4 h=145 w=145 d=220
3 x 3 x L cube 3x3x220
pixel vectors 9 x 220
convll kernel size:1 X 1,100 output:9x220,100
poolll pool_kernel:2x55 stride=2 output:[(9-2+1)/2=4,(220-55+1)/2=831,100
convl2 kernel size:1 X 1,200 output:4x83,200
pool12 pool_kernel:2x40 stride=2 output:[(4-2+1)/2=2,(83-40+1)/2=221,200
convl3 kernel size:1 x 1,300 output:2x22,300
pooll3 pool kernel:2x22 stride=2 output:1 x 1,300
fcll 110
fc12 42

First, the data of its 3 X 3 neighborhood window is collected at a pixel in the original hyperspectral
image. L is the band number of the hyperspectral image. Convert the data of 3 X 3 X L to nine L X 1
1-D vectors. The value of the jth eigenvector of data x in the [th layer is shown in Eq. (3.7)

Vi = Q) Z KL Vit + 01) 3.7)

m  h=0

[ is the number of layer, j is the number of eigenvector, b; ; is the bias of the ith eigenvector in the
Ith layer, f() is the activation function, m is the index of the (/ — 1) layer that connected to current layer,
ki jm 1s the hth value of the convolution kernel connected to the mth eigenvector in the (I — 1)th layer.
H, is the length of the convolutional kernel. In practical applications, we can choose different types of
activation functions, such as Sigmoid, ReLU and Tanh. The effect of each activation function will be
analyzed through experiments to determine which is the most appropriate activation function.

Mathematical Biosciences and Engineering Volume 17, Issue 4, 3450-3477.



3460

The pooling layer is usually located after the convolution layer, and the pooling operation can
effectively reduce the dimension of the eigenvector. The most commonly used max-pooling operation
methods will be adopted in this paper. It is important to note that the input data is a one-dimensional
vector, so the convolutional kernel and the pooling kernel are all one-dimensional.

3.3. Spatial-spectral feature extraction with dual-channel CNN

In order to extract the spectral and spatial features of the original hyperspectral image simultane-
ously. In this section, a HSI spatial-spectral feature extraction model based on dual-channel convolu-
tional neural network is proposed. The model consists of two channels: the first channel is spectral
feature extraction channel, and the second channel is spatial feature extraction channel. The architec-
ture of the model is shown as Figure 5.

Spectral Channel
convl 1 convl2 convl3 fcll
Joint
Input = spectral-spatial
_ /‘ ,ﬁ feature F_
| »‘ﬂi l|. || AN A o
spectral 3x3xL % R Output
Sn cube spectral z eclass 1
Pixel ooll1 ooll2  pooll3  feature |
vectors P P P F,(S) | > o class 2
ﬂ -j_ﬂ ——;Illj Z
B 3 o class C
spatial conv21 p00122 conv23 pool24
neighborhood . spatial
A Spatial Channel f}ga(tlglr;
2V n

Figure 5. The HSI spatial-spectral feature extraction model based on dual-channel convolu-
tional neural network.

In the spectral feature extraction channel, S, is used to represent the input data corresponding to the
nth pixel. After a series of convolution and pooling operations, the output data F',(S,) of the spectral
feature extraction channel can be obtained. The output data of the channel is the spectral features
extracted from the original input data. In the calculation processing of spectral channels, the input data
is a 1 — D vector, so convolution operation and pooling operation are both 1 — D operation forms.

In the spatial feature extraction channel, P, is used to represent the p X p neighborhood window
data of the nth pixel. This is the input data of spatial feature extraction channel. After a series of
convolution and pooling operations, the output data F,(P,) of the spatial feature extraction channel
can be obtained. The output data of the channel is the spatial features extracted from the original input
data. In the calculation processing of spatial channels, the input data is a 3 — D vector, so convolution
operation and pooling operation are both 3 — D operation forms.

After calculating spectral feature F';(S ,) and spatial feature F,(P,), in order to make comprehensive
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use of spectral features and spatial features, feature fusion joint calculation is made for F(S,) and
F>(P,), as shown in Eq. (3.8):

Fi(S,) e F2(P,) (3.8)

e represents the connected operation, this operation corresponds to the method
keras.layers.concatenate which was used in the experiment. The input data for this method is a
list of concatenated tensors, and the return value is an output tensor concatenated by all the input
tensors..

The data after the connected operation is fed to the full connection layer for the operation shown in
the Eq. (3.9).

F" = f{W e [F((S,) e F(P,)] + b} (3.9)

W represents the weight vector of the fully connected layer, b represents the bias of the fully con-
nected layer. The output F™ is calculated by taking spectral and spatial feature as input data, so F®™
can be regarded as the spatial-spectral feature of the nth pixel.

Finally, F™ is input into the Softmax classifier and the probability distribution of the nth pixel is
calculated, as shown in the Eq. (3.10)

er F(n)+b1
1 ewzF(n)+h2
Y® =z —— 3.10
N eMiF : G109
eWCF(n)+b(-

C is the number of categories of data to be classified. The maximum value of Y™ is the correspond-
ing category of the pixel.

It is worth noting that hyperspectral image is inevitably affected by local spatial deformation,
shadow, illumination and blur, which greatly affect the classification accuracy. The HSI spatial-spectral
feature extraction model based on dual-channel convolutional neural network is proposed in this sec-
tion which can effectively reduce the influence of local spatial deformation, shadow, light and fuzziness
on the classification accuracy rate because of its deep hierarchy architecture.

3.4. The training and optimizing process

The training and optimizing process can be divided into two parts as shown in Figure 6.
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Figure 6. The training and optimizing process of the dual-channel CNN.

The spectral data and spatial data are input into the dual-channel network. After a series of convolu-
tion and pooling operations, the data will be input to the fully connected layer. The purpose of the fully
connected layer is to map distributed feature representation to the sample label space, and the mapped
features can be classified by the Softmax classifier. The predicted value and label are used to calcu-
late the loss value, the gradient descent algorithm and back propagation is used to adjust the network
parameters. In the process of training, minimize the loss until the network convergence. The verifica-
tion process of the network is to cross-verify the trained network model. Parts of the sample data is
randomly selected as training data and provided to the network model for identification, calculate the
overall accuracy performance of the network by analyzing the performance of the model.

Through training and optimizing process, all parameters in the HSI spatial-spectral feature extrac-
tion model based on dual-channel convolutional neural network proposed in this paper are learned.
The loss function is shown as Eq. (3.11).

N
J(6) = —% Z Z 1{k = ¢™}logP'" (3.11)

C
k=1

n=1

N is the number of training samples, ¢ is the real category of the nth training sample, pg’) is the
distribution value of the nth category corresponding to p™, p,({") is the probability of distribution the
nth sample to the kth category. 6 represents the convolutional kernel and the bias. 1e is the indicator
function, the value is 1 when the parenthesis condition is satisfied, otherwise it is 0.

The random gradient descent algorithm was used to optimize the parameter 6. The parameter 6
is initialized with standard deviation of 0.05 and mean value of O for random Gaussian distribution.
The parameter bias is initialized with 0. The learning rate is initialized with 0.0001. The number of

iterations is initialized with 5 x 10%.
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In order to obtain the model with the best classification accuracy, we divided the experimental
dataset into two groups: training set and testing set. The K-fold cross-validation method is adopted
in the process of training and testing. As shown in Figure 7, the initial sample is divided into K
subsamples, one of the subsamples is retained as testing set for the model, the other k-1 samples were
used as the training data set. The cross validation was repeated K times, and each subsample was
verified once. The average value of the results of K times was shown in Eq. 3.12. The advantage of
this method is that randomly generated subsamples are repeatedly used for training and testing, and
the results are verified once each time, it is very useful for the experiment based on one dataset. In my
experiment K=10.

Transing Set

Training folds Testing folds

1%t iteration —> ki

27 jteration . — B
3t jteration . — Es
10t iteration . — E;

Figure 7. The K-fold cross-validation method.

1 K
E= ?ZE,- (3.12)

4. Experimental results and discussions

In this section, the experimental analysis of the HSI spatial-spectral feature extraction model based
on dual-channel convolutional neural network is conducted. The hardware and software environment
used in the experiment is shown in Table 3.
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Table 3. The hardware and software environment.

Category Items Parameters
CPU Intel E5-1620 v4
Hardware Environment GPU GTX 1080 Ti
Memory 32GB
Hard Disk 1TB
oS Ubuntu16.04
Software Environment IDE Environment TensorFlow-GPU 1.8.0
Development Language Python 3.5

4.1. Description of experimental data sets

The Indiana Pines dataset were collected on 12 June 1992. The collection was taken at Purdue
University Farm in Northwest Indiana, USA. The collection equipment is AVIRIS (Airborne Visible
Infrared Imaging Spectrometer). Table 4 is a description of the relevant parameters for the dataset.

Table 4. A description of the relevant parameters for Indian Pines.

Num. Category Value
1 Band coverage 400-2500nm
2 Spectral channel number 220
3 Spatial resolution 20m
4 Image resolution 145 x 145

Figure 8 is the gray-scale image corresponding to hyperspectral image, which is composed of band
10.

Figure 8. The gray-scale image corresponding to Indiana Pines.
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The ground truth available contains 16 classes and the number of samples in each class distribute
unevenly. Table 5 summarizes the categories and image counts for each.

Table 5. The number of samples for each category in Indian Pines.

Num. Category Number of samples Num. Category Number of samples

1 Alfalfa 46 9 Oats 20

2 Corn-notill 1428 10 Soybean-notill 972

3 Corn-min 830 11 Soybean-mintill 2455

4 Corn 237 12 Soybean-clean 593

5 Pasture 483 13 Wheat 205

6 Trees 730 14 Woods 1265

7 Pasture-mowed 28 15 Gldg-tree 386

8 Hay-windrowed 478 16 Towers 93

Total 10249

Figure 9 is the sample distribution of each category.

B Aifalfa B oats

| Corn-notill - Soybeans-notill
I Corn-nin I Soybeans-min
Corn - Soybean-clean
I pasture B vheat
Trees - Woods

I Pasture-mowed [l Bldg-Tree
I Hay-windrowed | Towers

Figure 9. The sample distribution of each category.

The samples contained in this data set can be divided into four categories: crops, forests,
perennials and others. Among them, crops include: Corn-notill[1428], Corn-min[685], Corn[221],
Oats[20], Soybean-notill[924], Soybean-mintill[2350], Soybean-clean[561], Wheat[205]; forests in-
clude: Trees[730], Woods[1265], Gldg-tree[265]; Forests include: Trees[730], Woods[1265], Gldg-
tree[265]; Perennials include: Alfafa[46], Pasture[423], Pasture-mowed[28], Hay-windrowed[478];
Others: Towers[93]. According to the categories of all samples in the data set, crops accounted for
65.77%, woodland accounted for 23.25%, perennial plants accounted for 10.03%, and others accounted
for 0.96%.
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4.2. Experimental setup for classification of labeled pixels

The framework for all data sets was established as follows. All data sets were randomly divided
into the two following groups: a training set, and a testing set. The training sets were used to optimize
model parameters. The testing sets were used to test the performance of the model after the training
was completed. The batch size was set to 16 and the Adam [29] optimizer was used for stochastic
optimization. We used the Xavier normal distribution initialization method [27], also known as the
Glorot normal distribution initialization method, for the fully-connected layer. We used a variable
learning rate, which was gradually reduced during the optimization process. This was done because
the learning rate must be smaller when closer to the valley. The number of training epochs was set to
50000 and the initial learning rate was set to 0.0001. The learning rate was halved when the loss did
not decrease after 10 epochs.

The overall accuracy (OA), average accuracy (AA), and the kappa coeflicient (K) are adopted to
qualitatively evaluate the classification results.

Overall accuracy: refers to the probability that the classified result is consistent with the test data
category for each random sample. The overall accuracy is equal to the sum of the pixels that correctly
classified divided by the total pixels. The calculation method is shown in Eq. (4.1):

)

OA;
N;

(4.1)

Average accuracy: refers to the average of classification accuracy of each category. The calculation

method is shown in Eq. (4.2):

Tiz1 OA;
K
Kappa coeflicient is another method to calculate classification accuracy. The Kappa coeflicient is

between -1 and 1. But usually Kappa coefficient falls between 0 and 1, Kappa = 1 indicates complete

agreement between the two judgments, Kappa > 0.75 indicates a satisfactory agreement, Kappa < 0.4

indicates less than ideal. It is an ideal index to describe the consistency of diagnosis, so it has been

widely used in practical engineering. The calculation method is shown in formula Eq. (4.3):

AA = 4.2)

MTE CG i) - TE(CU,+)C(+, 1)
M2 = $K,(CG, +)C(+,1))

Kappa = (4.3)

In addition to these basic settings, four key factors were used to configure the HSI spatial-spectral
feature extraction model based on dual-channel convolutional neural network. Namely, (1) The effect
of convolutional kernel size; (2) The effect of spatial neighborhood window size; (3) The effect of
activation function; (4) The effect of output feature vector dimension on classification results. These
four factors are discussed by the OA of IP below.

First, the size of convolution kernel size can affect the OA on classification results. During the
experiment, the convolutional kernel size of the first convolutional layer is first fixed, and then the
convolutional kernel size of the second convolutional layer is changed to evaluate the effect of the
convolutional kernel size on the classification results. Table 6 shows the experimental results. It
can be seen from the experimental results that increasing the size of convolution kernel can improve
the classification accuracy under certain conditions. However, the accuracy of classification does not
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increase linearly with the increment of the convolutional kernel size. In this dataset, with the increment
of convolutional kernel size, the accuracy of classification appears to rise first and then fall. The
experiments results show that the classification accuracy is the highest when the convolutional kernel
size 1s 3 X 3. Therefore, the convolution kernel size of the second convolutional layer is set as 3 X 3. It
can also be seen from Table 6 that as the size of convolutional kernel size increases, the computational
complexity of the model increases and the classification time increases gradually. Figure 10 shows the
curve of classification accuracy during the training process. It can be seen from Figure 10, when the
number of iterations is less than 15,000, the classification accuracy increases rapidly with the number
of iterations; when the number of iterations is more than 15,000, the classification accuracy increases
very slowly with the number of iterations and gradually converges.

Table 6. The effect of convolutional kernel size on classification results.

Kernel Size 1x1 2X2 3x3 4 x4 5x5
OA 81.56% 89.25% 89.94% 89.75% 85.25%
Time(s) 5896.1 7419.5 8408.5 9984.8 10178.2
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Figure 10. The curve of classification accuracy during the training process.

Second, the window size of spatial neighborhood can effect on classification. This experiment
analyzes the effect of convolution kernel size on classification results. During the experiment, the
convolutional kernel size of the first convolutional layer is first fixed, and then the convolutional kernel
size of the second convolutional layer is changed to evaluate the effect of the convolutional kernel size
on the classification results. 5 different neighborhood window sizes of 7 x 7 pixels, 9 x 9 pixels, 11 x 11
pixels, 13 x 13 pixels and 15 X 15 pixels were selected to analyze the classification results. Figure 11
is the comparison of classification results.

It can be seen from Figure 11 that the overall classification accuracy does not increase with the in-
crease of spatial neighborhood window size, the overall classification accuracy appears to be increased
first and then decreased, reached the best implement at 11 X 11 pixels. This is because: when the size
of the spatial neighborhood window is small, it contains few spatial features that reflect the relation-
ship between adjacent pixel points and cannot describe the spatial features between pixel points very
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well, so the overall accuracy is low. When spatial neighborhood window size increases gradually, it
contains more and more spatial features that reflect the relationship between adjacent pixels, but it also
brings a lot of redundant information or noise data, the redundant information or noise data will affect
the classification accuracy, so when the spatial neighborhood window increases to a certain value, the
overall classification accuracy declines continue to increase the window size.

60 80 100 120 140

Real Distribution

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

11X11 Neighborhood (90.12%) 13X13 Neighborhood (85.50%) 15X15 Neighborhood (82.75%)

Figure 11. The effect of spatial neighborhood window size on classification results.

Third, the activation function can effect on classification results. During the experiment, all param-
eters of the HSI spatial-spectral feature extraction model based on dual-channel convolutional neural
network were fixed, and then the activation functions are set to ReLU, Sigmoid and Tanh respectively.
Figure 12 shows the curve of classification accuracy corresponding to the three activation functions.
Figure 13 shows the curve of loss function values corresponding to the three activation functions.
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Figure 12. The curve of classification accuracy corresponding to the three activation func-
tions.
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Figure 13. The curve of loss function values corresponding to the three activation functions.

It can be seen from Figure 12 and Figure 13 that with the increase of iterations, the classification
accuracy rate corresponding to the three activation functions is gradually increased. However, the
classification accuracy corresponding to Sigmoid function is significantly lower than that of ReLU and
Tanh. The classification accuracy of Tanh and ReL.U is basically the same, but Tanh converges faster.
Therefore, Tanh was selected as the activation function of the HSI spatial-spectral feature extraction
model based on dual-channel convolutional neural network.

Moreover, in convolutional neural networks, the dimensions of the output feature vector in the last
layer have a great impact on the accuracy of classification. Therefore, this experiment tests the rela-
tionship between the dimensions of output feature vectors and classification results in the HSI spatial-
spectral feature extraction model based on dual-channel convolutional neural network. The dimensions
of the output feature vectors of the HSI spatial-spectral feature extraction model based on dual-channel
convolutional neural network are set as 50-150 respectively. Then, 50, 100 and 200 samples were ran-
domly selected from the data set as training samples, and the number of test samples was 300. Training
the HSI spatial-spectral feature extraction model based on dual-channel convolutional neural network
and recording the final classification accuracy. The classification results are shown in Figure 14.
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Figure 14. The effect of output feature vector dimension on classification results.

It can be seen from Figure 14 that different dimensions of output vectors have different influences
on classification accuracy. With the increase of training samples, the classification accuracy is also
improving. For the models trained with training samples of 50, 100 and 200 numbers, the maximum
classification accuracy is achieved when the dimensions of the output eigenvector are 80-90. Therefore,
the dimension of the output vector dimension is finally selected as 84 in this paper.

During the experiment, the learning rate x was set to 0.0001, and the batch size was set to 16. During
the experiment, we found that the influence of other parameters in the HSI spatial-spectral feature
extraction model based on dual-channel convolutional neural network on the experimental results could
be ignored, so we did not conduct further experimental analysis on these parameters.

4.3. Classification results and discussion

The joint representation learning of information from the dual-channels are one of the main con-
tributions of this paper. In this section, we conduct an experiment to show the performance of the
proposed dual-channel method compared with single-channel sub-models. In order to verify the clas-
sification performance of the proposed model based on dual-channel method. The classification ac-
curacy of the convolutional neural network classification model based on spectral feature extraction,
the convolutional neural network classification model based on spatial feature extraction, and the dual-
channel convolutional neural network classification model based on spatial-spectral feature extraction
were compared and analyzed through experiments.

Table 7 shows the statistical table of classification accuracy OA corresponding to each category of
the three models. Figure 15 is the histogram comparing the classification accuracy of the three models

for each category.
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Table 7. The statistical of classification accuracy OA corresponding to each category of the
three models.

Category Spectral-CNN Spatial-CNN Dual-Channel CNN
1 97.83% 97.83% 100.00%
2 67.16% 77.27% 85.71%
3 84.82% 90.37% 83.33%
4 98.64% 100.00% 100%

5 94.09% 97.70% 100%

6 92.19% 95.48% 90.00%
7 100.00% 100.00% 100.00%
8 97.28% 98.60% 50.00%
9 100.00% 100.00% 100.00%
10 80.19% 84.32% 100.00%
11 79.87% 83.75% 100.00%
12 94.65% 95.16% 38.79%
13 100.00% 100.00% 100.00%
14 73.99% 76.08% 100.00%
15 98.49% 100.00% 100.00%
16 100.00% 100.00% 100.00%
OA 82.61% 86.50% 90.12%
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Figure 15. The histogram comparing the classification accuracy of the three models for each
category.

As we can see from Table 7 and Figure 15, the classification accuracy of the dual-channel convo-
lutional neural network classification model based on spatial-spectral feature extraction proposed in
this paper is significantly higher than that of the other two classification models, with OA reaching
90.12%, the OA of the other two models did not exceed 90.00%. Category 2 has the worst classifica-
tion result, while category 7, 9 and 16 has the best classification result. The classification accuracy of
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category 7, 9 and 16 of the three classification models has reached 100%. Among all the 16 categories
to be classified, the three classification models were ranked from low to high in terms of OA is: the
convolutional neural network classification model based on spectral feature extraction, the convolu-
tional neural network classification model based on spatial feature extraction, and the Dual-channel
convolutional neural network classification model based on spatial-spectral feature extraction. The ex-
periment results show that the proposed method can effectively improve the classification accuracy of
hyperspectral images.

The classification results are then compared to some available feature extraction methods, they
are SVM [35], MLRsub [35], SVM-GC [35], MLRsubMLL [35]. There also compared with two
deep learning based method, stacked AEs basedmethod (J-SAE) [36], 3-D CNN based method (3-D-
CNN) [26] for spectral-spatial feature extraction. We demonstrate the results of those feature extraction
methods on the experimental datasets. The parameters presented in these contrast methods are respec-
tively set as provided in the corresponding references.

Firstly, Table 8 is the classification results of different methods. From the numerical results, it
can be seen from the Table 8, the overall accuracy of different methods is SVM: 77.02%, MLRsub:
63.12%, SVM-GC: 85.92%, MLRsubMLL: 70.45%, J-SAE: 85.09%, 3D-CNN: 86.43% and dual-
channel CNN: 90.12%. The classification model proposed in this paper is superior to other classifica-
tion algorithms in overall classification accuracy, average classification accuracy and Kappa coefficient.

Table 8. The classification results of different methods.
Category SVM  MLRsub SVM-GC MLRsubMLL J-SAE 3D-CNN Dual-channel

1 73.17% 46.34%  95.12% 95.12% 97.56%  60.98% 100.00%
2 62.65% 40.93%  68.48% 50.04% 85.68%  78.60% 85.71%
3 52.88% 2634%  56.49% 13.12% 90.50% 87.42% 83.33%
4 3239% 17.37%  77.00% 15.02% 68.22%  88.32% 100%
5 91.24% 7097%  94.47% 73.04% 78.98%  80.60% 100%
6 92.09% 9437%  97.72% 98.93% 96.11% 92.98% 90.00%
7 36.00% 18.18%  34.42% 37.25% 60.00%  68.00% 100.00%
8 95.58% 96.51% 100% 100% 100%  95.57% 50.00%
9 0% 22.22% 0% 0% 44.44%  T7.78% 100.00%
10 61.44% 25.06%  75.06% 19.68% 83.43% 76.91% 100.00%
11 86.92% 78.23%  95.47% 88.82% 95.24% 85.42% 100.00%
12 76.36% 16.51%  99.44% 16.51% 91.17%  82.52% 33.33%
13 91.85% 93.48%  98.37% 99.46% 91.30% 96.20% 100.00%
14 97.01% 99.38%  97.45% 99.91% 97.01%  99.30% 100.00%
15 48.13%  4.32% 76.66% 60.52% 95.98%  89.94% 100.00%
16 91.57% 77.11%  97.80% 83.13% 86.75%  85.54% 100.00%
OA 77.02% 63.12%  85.92% 70.45% 85.09 86.43 90.12%
AA 68.08% 50.57%  76.91% 56.82% 90.89 84.13 85.89%
Kappa  0.7349 0.5313%  0.8378 0.6543 0.8960  0.8450 0.8841

Secondly, Figure 16 is the visualization of the hyperspectral image with different categorys and
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Table 9 is the confusion matrix for different cateforys. It can be seen from the Figure 16 and Table 9,
the accuracy on different category of the HSI spatial-spectral feature extraction model based on dual-
channel convolutional neural network is more average. In category 1, 4,5, 7,9, 10, 11, 13, 14, 15, 16
the classification accuracy is 100%. The lowest classification accuracy of the 12 category was 38.79%,
because the 11, 12 and 13 categories were all different kinds of soybeans, which had similar spectral
characteristics.
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Figure 16. The visualization of the hyperspectral images with different categories.

Table 9. The confusion matrix for different categories.

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Num.of OA
tralmng
1 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 100.00%
2 1 1223 10 0 0 0 0 0 0 4 8 53 0 0 B30 1428 85.71%
3 0 13 692 0 0 43 0 0 0 0 45 37 0 0 0 0 830 83.33%
4 0 0 0 237 0 0o 0 0 0 0 0 0 0 0 0 0 237 100.00%
5 0 0 0 0 43 0 0 0 0 0 0 0 0 0 0 0 483 100.00%
6 0 0 0 0 0 657 0 0 0 45 15 120 1 0 0 730 90.00%
7 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 28 100.00%
8 0 0 0 0 45 0 0 239 0 4 39 57 0 0 570 478 50.00%
9 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 20 100.00%
10 0 1 0 0 0 0 0 0 0 91 0 0 0 0 0 0 972 100.00%
11 0 0 0 0 0 0 0 0 0 0 2455 0 0 0 0 0 2455 100.00%
12 0 63 8 0 0 3 0 145 0 0 16 23 0 0 2 4 593 38.79%
13 0 0 0 0 0 0 0 0 0 0 0 0 205 0 0 0 205 100.00%
14 0 0 0 0 0 0o 0 0 0 0 0 0 0 1265 0 0 1265  100.00%
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 0 386 100.00%
16 0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 93 93 100.00%

Thirdly, Regarding the computational time, the times required by the different methods are listed
in Figure 17. Clearly, J-SAE required the longest time for training. SVM and SVM-GC required a
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large number of parameters to achieve its best performance, whereas the accuracy was also not the
best.Although MLRsub and MLRsubMLL required the shortest time, its overall accuracy were worst.
The 3D-CNN requites about the same time with Dual-channel, but its overall accuracy is lower than
the proposed Dual-channel method, the Dual-channel achieved the best overall accuracy.
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Figure 17. The visualization of the hyperspectral images with different categories.

Finally, the classification accuracy of SVM, SVM-GC and MLRsubMLL in the 9 category is 0%.
The main reason is that the number of training samples of this category is few (20), so it is not possible
to construct a perfect classification model, resulting in a lower classification accuracy rate. However,
the HSI spatial-spectral feature extraction model based on dual-channel convolutional neural network
proposed in this paper achieves 100%. In terms of classification accuracy, it is obviously higher than
other algorithms, which indicates that dual-channel CNN can effectively extract spectral and spatial
features of the original samples and can effectively solve the problem of lack of training samples.
So we can conclude that our proposed method gains better classification accuracy than other feature
extraction methods.

5. Conclusion

In this paper, we have proposed a novel dual-channel CNN model. It contains two channels of
CNN, each of which learns features from spectral and spatial domain, and then a spatial-spectral joint
feature is obtained for classification. The model has several distinct advantages. Firstly, the model
consists of spectral feature extraction channel and spatial feature extraction channel; the 1-D CNN
and 3-D CNN are used to extract the spectral and spatial features, respectively. Secondly, the dual-
channel CNN have been used for fusing the spatial-spectral features, the fusion feature is input into
the classifier, which effectively improves the classification accuracy. Finally, due to considering the
spectral and spatial features, the model can effectively solve the problem of lack of training samples.
The proposed method is compared to other well-known classification methods. The experiment results
on well-known data sets have shown that the proposed method has better performance in terms of
overall classification accuracy, average classification accuracy and Kappa coefficient.

There is still plenty of room to grow in our proposed method, such as more successful strategies in
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multi-scale feature fusion and robust classification accuracy to the boundary region. Besides, parallel
and distributed fusion strategy, such as [37], will be great in accelerating computation efficiency in
practice.
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