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Abstract: A stochastic two-species competition system with saturation effect and distributed delays
is formulated, in which two coupling noise sources are incorporated and every noise source has effect
on two species’ intrinsic growth rates in nonlinear form. By transforming the two-dimensional system
with weak kernel into an equivalent four-dimensional system, sufficient conditions for extinction of
two species and the existence of a stationary distribution of the positive solutions to the system are
obtained. Our main results show that the two coupling noises play a significant role on the long time
behavior of system.
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1. Introduction

In the last few decades, the mathematical models, which describe the effect of competition caused
by limited resources on the growth of species, have been established and explored extensively [1–5].
On the other hand, time delay accompanies the whole process of species population survival and
reproduction. Because of the variety of delay between different individuals of the same species or the
cumulative effect of the past history of a system, it is more appropriate to establish model with
distributed delay [6–8]. Cushing [9] and MacDonald [10] introduced the weak kernel and the strong
kernel functions to describe the distributed delay, later on, these two kinds of kernels have been
investigated by many scholars (see [11–14]).

With the idea of the weak kernel functions, we formulate the following competitive system with
distributed delays 

dx(t) = x(t)
[
r1 − b1

∫ t

−∞

α1e−α1(t−s)x(s)ds −
c1y(t)

1 + y(t)

]
dt,

dy(t) = y(t)
[
r2 − b2

∫ t

−∞

α2e−α2(t−s)y(s)ds −
c2x(t)

1 + x(t)

]
dt,

(1.1)
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where x and y measure the population densities of two competing species. αie−αit(αi > 0) are the
weak kernel functions. The delays are the time passing between the intra-specific competition at a
given instant and its effect, at a later time, on the dynamics of the two species. The coefficients ri, bi,
ci (i = 1, 2) are positive constants, and represent the intrinsic growth rates, the intra-specific competitive
rates and the inter-specific competitive rates, respectively. The term c1y/(1 + y) (or c2x/(1 + x)) is an
increasing function with respect to y (or x) and has a saturation value for large enough y (or x).

There are many related ecology and investigations of system (1.1). Especially, for system (1.1)
without delays, Wang and Liu [15] analyzed the existence and global stability of almost periodic
solutions of system, Li et al. [16] investigated the stability and Turing pattern of system with self- and
cross-diffusion effect, Hu and Liu [17] took two coupling noise sources into account and obtained the
sufficient conditions for survival results of system. On the other hand, for system (1.1) with discrete
delays, Chen and Ho [18] discussed the persistence and global stability of system, Liu et al. [19]
studied the existence of positive periodic solutions of system with impulsive perturbations. Obviously,
it can be seen from the above literatures that they did not consider system with distributed delays. To
reveal the effect of distributed delays we propose system (1.1).

Denote

u(t) =

∫ t

−∞

α1e−α1(t−s)x(s)ds, v(t) =

∫ t

−∞

α2e−α2(t−s)y(s)ds. (1.2)

By applying the linear chain technique, system (1.1) transforms into the following equivalent four-
dimensional system 

dx(t) = x(t)
[
r1 − b1u(t) −

c1y(t)
1 + y(t)

]
dt,

dy(t) = y(t)
[
r2 − b2v(t) −

c2x(t)
1 + x(t)

]
dt,

du(t) = α1(x(t) − u(t))dt,
dv(t) = α2(y(t) − v(t))dt.

(1.3)

Due to environmental noise, the birth rate and other parameters involved in a system can reflect
random fluctuation to some extent [20–22]. Some researches indicate that random interference cannot
be ignored for competitive ecological models [23–25]. In addition, many researchers also introduced
higher order perturbations into the system when the random perturbations may depend on the
population’s density [26, 27]. Therefore, in this paper, similarly to [17, 28] we further incorporate two
noise sources in the system (1.3), that is, one noise source not only has influence on the intrinsic
growth rate of one species but also on that of the other species. Strongly inspired by the above
arguments, we assume that the white noises affect ri(i = 1, 2) mainly according to

r1 → r1 + σ11(1 + x(t))dB1(t) + σ12(1 + x(t))dB2(t),
r2 → r2 + σ21(1 + y(t))dB1(t) + σ22(1 + y(t))dB2(t),

(1.4)

and obtain the following stochastic system which corresponds to the deterministic system (1.3)
dx = x

[
r1 − b1u −

c1y
1 + y

]
dt + x(1 + x)[σ11dB1 + σ12dB2],

dy = y
[
r2 − b2v −

c2x
1 + x

]
dt + y(1 + y)[σ21dB1 + σ22dB2],

du = α1(x − u)dt,
dv = α2(y − v)dt.

(1.5)
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Here, for convenience’ sake, let x = x(t), y = y(t), u = u(t), v = v(t), and dBi = dBi(t)(i = 1, 2).
Bi are the independent standard Brownian motions defined on the complete probability space (Ω,F ,P)
with a filtration {F }t≥0 satisfying the usual conditions, that is Bi are normally distributed with mean 0
and variance t (see [29]), and σ2

i j(i, j = 1, 2) denote the intensities of the white noises.
The rest of this paper is arranged as follows. Section 2 focuses on exploring the unique global

positive solution to system (1.5). Sufficient conditions for extinction of the species and the existence of
a stationary distribution of the positive solutions to system (1.5) are obtained in section 3 and section 4,
respectively. In section 5, several examples are demonstrated to verify our results and a brief discussion
is given.

2. Global positive solution

Assign
Rd

+ = {x = (x1, x2, . . . , xd) ∈ Rd : xi > 0, 1 ≤ i ≤ d}.

Theorem 2.1. For any given initial value (x(0), y(0), u(0), v(0)) ∈ R4
+, system (1.5) has a unique global

positive solution for any t ≥ 0.

Proof. Obviously, for any initial value (x(0), y(0), u(0), v(0)) ∈ R4
+, there is a unique local solution

(x(t), y(t), u(t), v(t)) ∈ R4
+ on t ∈ [0, τ%), where τ% denotes the explosion time. To complete the proof,

we only need to show that τ% = +∞ a.s. Similarly to [29], we construct a nonnegative C2–function
V : R4

+ → R+ satisfying

lim inf
n→+∞,(x,y,u,v)∈R4

+\On

V(x, y, u, v) = +∞ and LV(x, y, u, v) ≤ K

where On = ( 1
n , n) × (1

n , n) × ( 1
n , n) × (1

n , n) and n > 1 is a sufficiently large integer and K is a positive
constant. Let 0 < p < 1, we assign

V(x, y, u, v) = − ln x − ln y − ln u − ln v +
xp

p
+

yp

p
+

u2

2α1
+

v2

2α2
. (2.1)

Since − ln z → +∞ as z → 0, and zp

p − ln z → +∞ as z → +∞, where p > 0, we can obtain that
lim infn→+∞,(x,y,u,v)∈R4

+\On
V(x, y, u, v) = +∞. In the following, we will verify that LV(x, y, u, v) ≤ K. An

application of Itô’s formula shows that

LV(x, y, u, v)

= −(r1 − b1u −
c1y

1 + y
) +

1
2

(σ2
11 + σ2

12)(1 + x)2 − (r2 − b2v −
c2x

1 + x
)

+
1
2

(σ2
21 + σ2

22)(1 + y)2 −
α1x
u

+ α1 −
α2y
v

+ α2 + r1xp − b1uxp −
c1y

1 + y
xp

+
1
2

(p − 1)(σ2
11 + σ2

12)xp + (p − 1)(σ2
11 + σ2

12)xp+1 +
1
2

(p − 1)(σ2
11 + σ2

12)xp+2

+ r2yp − b2vyp −
c2x

1 + x
yp +

1
2

(p − 1)(σ2
21 + σ2

22)yp + (p − 1)(σ2
21 + σ2

22)yp+1

+
1
2

(p − 1)(σ2
21 + σ2

22)xp+2 + ux − u2 + vy − v2
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≤ b1u + c1+
1
2

(σ2
11+σ2

12)+(σ2
11+σ2

12)x+
1
2

(σ2
11+σ2

12)x2+ b2v + c2+
1
2

(σ2
21+σ2

22)

+ (σ2
21+σ2

22)y +
1
2

(σ2
21+σ2

22)y2 + α1 + α2 + r1xp +
1
2

(p − 1)(σ2
11+σ2

12)xp+2

+ r2yp +
1
2

(p − 1)(σ2
21 + σ2

22)yp+2 +
x2

2
−

u2

2
+

y2

2
−

v2

2
≤ c1 + c2 + α1 + α2 +

1
2

(σ2
11 + σ2

12) +
1
2

(σ2
21 + σ2

22) + K̃ := K,

(2.2)

where

K̃ = sup
(x,y,u,v)∈R4

+

{
−

1
2

(1 − p)(σ2
11 + σ2

12)xp+2+
1
2

(1 + σ2
11 + σ2

12)x2+ (σ2
11 + σ2

12)x + r1xp + r2yp

−
1
2

(1 − p)(σ2
21 + σ2

22)yp+2 +
1
2

(1 + σ2
21 + σ2

22)y2 + (σ2
21 + σ2

22)y + b1u −
u2

2
+ b2v −

v2

2

}
.

The rest proof is similar to Theorem 2.1 in [30] and hence we omit it here.

3. Extinction

Theorem 3.1. If r1 <
1
2 (σ2

11+σ
2
12), r2 <

1
2 (σ2

21+σ
2
22), then both x(t) and y(t) will be extinct exponentially.

Proof. Using Itô’s formula in the first equation of system (1.5), one can show that

d ln x(t)=
[
r1−b1u(t)−

c1y(t)
1 + y(t)

−
1
2
σ2

11−σ
2
11x(t)−

1
2
σ2

11x(t)2−
1
2
σ2

12−σ
2
12x(t)−

1
2
σ2

12x(t)2
]
dt

+ σ11(1 + x(t))dB1(t) + σ12(1 + x(t))dB2(t).
(3.1)

Integrating from 0 to t and dividing by t on both sides of the above equality lead to

ln x(t) − ln x(0)
t

= r1 −
1
2

(σ2
11 + σ2

12) −
b1

t

∫ t

0
u(s)ds −

c1

t

∫ t

0

y(s)
1 + y(s)

ds −
σ2

11

t

∫ t

0
x(s)ds

−
σ2

12

t

∫ t

0
x(s)ds −

σ2
11

2t

∫ t

0
x2(s)ds −

σ2
12

2t

∫ t

0
x2(s)ds +

σ11B1(t)
t

+
σ12B2(t)

t
+
σ11

∫ t

0
x(s)dB1(s)

t
+
σ12

∫ t

0
x(s)dB2(s)

t
.

(3.2)

Denote Zi(t) = σ1i

∫ t

0
x(s)dBi(s), so that its quadratic variation is

〈Zi(t),Zi(t)〉 = σ2
1i

∫ t

0
x2(s)ds.

Using the exponential martingale inequality and the Borel-Cantell lemma, similar to [27, 31], we
have that for almost all ω ∈ Ω, there is a random integer l0 = l0(ω) such that for l ≥ l0,

Zi(t) ≤ 2 ln l +
1
2
〈Zi(t),Zi(t)〉 = 2 ln l +

σ2
1i

2

∫ t

0
x2(s)ds. (3.3)
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For all 0 ≤ l − 1 ≤ t ≤ l, l ≥ l0, substituting (3.3) to (3.2), we have

ln x(t) − ln x(0)
t

≤ r1 −
1
2

(σ2
11 + σ2

12) −
b1

t

∫ t

0
u(s)ds −

c1

t

∫ t

0

y(s)
1 + y(s)

ds

−
σ2

11 + σ2
12

t

∫ t

0
x(s)ds +

4 ln l
t

+
σ11B1(t)

t
+
σ12B2(t)

t

≤ r1 −
1
2

(σ2
11 + σ2

12) +
4 ln l
l − 1

+
σ11B1(t)

t
+
σ12B2(t)

t
.

(3.4)

The strong law of local martingales implies that

lim
t→+∞

Bi(t)
t

= 0 a.s. i = 1, 2. (3.5)

Taking the superior limit on both sides we get

lim sup
t→+∞

ln x(t)
t
≤ r1 −

1
2

(σ2
11 + σ2

12) < 0 a.s. (3.6)

Similarly, one can obtain that

lim sup
t→+∞

ln y(t)
t
≤ r2 −

1
2

(σ2
21 + σ2

22) < 0 a.s.

The proof is completed.

4. Existence of stationary distribution

Consider the integral equation

X(t) = X(t0) +

∫ t

t0
f (s, X(s))ds +

l∑
r=1

∫ t

t0
σr(s, X(s))dBξ(s), (4.1)

where σr(s, X(s)) and Bξ(s) are vectors.

Lemma 4.1. [32] Suppose that the coefficients of (4.1) are independent of t and satisfy the following
conditions for some constant N

| f (s, x) − f (s, y)| +
l∑

r=1

|σr(s, x) − σr(s, y)| ≤ N|x − y|, | f (s, x)| +
l∑

r=1

|σr(s, x)| ≤ N(1 + |x|) (4.2)

in OR ⊂ R
d
+ for every R > 0 and there exists a nonnegative C2−function W(x) in Rd

+ such that LW(x) ≤
−1 outside some compact set. Then the system (4.1) exists a solution which is a stationary distribution.

Remark 4.1. The condition (4.2) in Lemma 4.1 can be replaced by the global existence of the solution
of (4.1) in view of Remark 5 in Xu [33].

Assign

βi = ri − ci −
1
2

(σ2
i1 + σ2

i2), i = 1, 2.
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Theorem 4.1. If βi > 0 (i = 1, 2), then there exists a positive solution (x(t), y(t), u(t), v(t)) of the system
(1.5) which is a stationary Markov process.

Proof. Since we have obtained the existence of the global positive solution of system (1.5) in Theorem
2.1, from Remark 4.1, we only need to consider a nonnegative C2−function W(x, y, u, v) and a closed
set O ⊂ R4

+ satisfying
LW(x, y, u, v) ≤ −1 for any (x, y, u, v) ∈ R4

+/O. (4.3)

One derives from system (1.5), by Itô’s formula, that

L(− ln x +
b1

α1
u − ln y +

b2

α2
v)

= −
[
r1−b1u−

1
2

(σ2
11 + σ2

12) − (σ2
11 + σ2

12)x −
1
2

(σ2
11 + σ2

12)x2 −
c1y

1 + y

]
+b1(x − u)

−
[
r2 − b2v −

1
2

(σ2
21 + σ2

22)−(σ2
21 + σ2

22)y−
1
2

(σ2
21 + σ2

22)y2−
c1x

1 + x

]
+ b2(y − v)

≤ −β1 + (b1 + σ2
11 + σ2

12)x +
1
2

(σ2
11 + σ2

12)x2 − β2 + (b2 + σ2
21 + σ2

22)y +
1
2

(σ2
21 + σ2

22)y2,

(4.4)

and for the constant 0 < p < 1, we have

L(
xp

p
+

yp

p
+

u2

2α1
+

v2

2α2
−

1
α1

ln u −
1
α2

ln v)

= r1xp − b1uxp −
c1y

1 + y
xp +

1
2

(p − 1)(σ2
11 + σ2

12)xp + (p − 1)(σ2
11 + σ2

12)xp+1

+
1
2

(p − 1)(σ2
11 + σ2

12)xp+2 + r2yp − b2vyp −
c2x

1 + x
yp +

1
2

(p − 1)(σ2
21 + σ2

22)yp

+ (p−1)(σ2
21+σ2

22)yp+1 +
1
2

(p−1)(σ2
21+σ2

22)yp+2+ux−u2+vy−v2−
x
u

+1−
y
v

+1

≤ r1xp −
1
2

(1 − p)(σ2
11 + σ2

12)xp+2 + r2yp −
1
2

(1 − p)(σ2
21 + σ2

22)yp+2 +
x2

2
+

u2

2
− u2 +

y2

2
+

v2

2
− v2 + 2 −

x
u
−

y
v

= −
1
2

(1 − p)(σ2
11 + σ2

12)xp+2 + r1xp +
x2

2
−

1
2

(1 − p)(σ2
21 + σ2

22)yp+2 + r2yp +
y2

2
−

u2

2
−

v2

2
+ 2 −

x
u
−

y
v
.

(4.5)

Define

W̃(x, y, u, v) = M1(− ln x +
b1

α1
u) + M2(− ln y +

b2

α2
v) +

xp

p
+

yp

p
+

u2

2α1
+

v2

2α2

−
1
α1

ln u −
1
α2

ln v,
(4.6)

where Mi = 2
βi

max{2, Ji}, Ji (i = 1, 2) are positive constants which will be determined later. Since
W̃(x, y, u, v) is a continuous function, there exists a minimum point (x̂, ŷ, û, v̂) in the interior of R4

+.
Then we can choose the following C2–function W : R4

+ → R+ ∪ {0}

W(x, y, u, v) = W̃(x, y, u, v) − W̃(x̂, ŷ, û, v̂)

= M1(− ln x +
b1

α1
u) + M2(− ln y +

b2

α2
v) +

xp

p
+

yp

p
+

u2

2α1
+

v2

2α2

−
1
α1

ln u −
1
α2

ln v − W̃(x̂, ŷ, û, v̂),

(4.7)
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which, together with (4.4)–(4.5), leads to

LW(x, y, u, v)

≤−M1β1+ M1(b1+σ2
11+σ2

12)x+
M1

2
(σ2

11+σ2
12)x2 − M2β2+M2(b2+σ2

21+σ2
22)y

+
M2

2
(σ2

21+σ2
22)y2 −

1
2

(1 − p)(σ2
11 + σ2

12)xp+2 + r1xp +
x2

2
−

1
2

(1 − p)(σ2
21 + σ2

22)yp+2

+ r2yp +
y2

2
−

u2

2
−

v2

2
+ 2 −

x
u
−

y
v
.

(4.8)

Let ε > 0 be sufficiently small such that

0 < ε < min
{

βi

4(bi+σ
2
i1+σ2

i2)
,
( (1−p)(σ2

i1+σ2
i2)

4(J + 3)

) 1
p+2
,

1
J+3

,
( 1
4(J+3)

) 1
4
}
, i = 1, 2. (4.9)

Define the bounded closed set

Oε = {(x, y, u, v) ∈ R4
+|ε ≤ x ≤

1
ε
, ε ≤ y ≤

1
ε
, ε2 ≤ u ≤

1
ε2 , ε

2 ≤ v ≤
1
ε2 }. (4.10)

Assign

Oε
1 = {(x, y, u, v) ∈ R4

+|0 < x < ε}, Oε
2 = {(x, y, u, v) ∈ R4

+|x >
1
ε
},

Oε
3 = {(x, y, u, v) ∈ R4

+|0 < y < ε}, Oε
4 = {(x, y, u, v) ∈ R4

+|y>
1
ε
},

Oε
5 = {(x, y, u, v) ∈ R4

+|0 < u < ε2, x > ε, y > ε}, Oε
6 = {(x, y, u, v) ∈ R4

+|u >
1
ε2 },

Oε
7 = {(x, y, u, v) ∈ R4

+|0 < v < ε2, y > ε, x > ε}, Oε
8 = {(x, y, u, v) ∈ R4

+|v>
1
ε2 }.

Case 1. When (x, y, u, v) ∈ Oε
1, it follows from (4.8) that

LW(x, y, u, v)

≤−
M1β1

4
+
[
−

M1β1

4
+M1(b1+σ2

11+σ2
12)ε

]
−

1
4

(1− p)(σ2
11+σ2

12)xp+2+
[
−

M1β1

2
+ J1

]
,

where

J1 = sup
(x,y)∈R2

+

{
−

1
4

(1 − p)(σ2
11 + σ2

12)xp+2 +
M1

2
(σ2

11 + σ2
12)x2 +

x2

2
+ r1xp + 2

−
1
4

(1 − p)(σ2
21+σ2

22)yp+2+
M2

2
(σ2

21+σ2
22)y2+

y2

2
+M2(b2+σ2

21+σ2
22)y+r2yp

}
.

Since M1 = 2
β1

max{2, J1}, one can see that M1β1
4 ≥ 1. Then we have from (4.9) that

LW(x, y, u, v) ≤
−M1β1

4
−

1
4

(1 − p)(σ2
11+σ2

12)xp+2 ≤
−M1β1

4
≤ −1.

Similarly, for any (x, y, u, v) ∈ Oε
3,

LW(x, y, u, v)

≤ −
M2β2

4
+

[
−

M2β2

4
+M2(b2+σ2

21+σ2
22)ε

]
−

1
4

(1− p)(σ2
21+σ2

22)yp+2+
[
−

M2β2

2
+J2

]
,
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where

J2 = sup
(x,y)∈R2

+

{
−

1
4

(1 − p)(σ2
11 + σ2

12)xp+2 +
M1

2
(σ2

11+σ2
12)x2+

x2

2
+ M1(b1+σ2

11+σ2
12)x

+ r1xp −
1
4

(1 − p)(σ2
21 + σ2

22)yp+2 +
M2

2
(σ2

21 + σ2
22)y2 +

y2

2
+ r2yp + 2

}
.

Since M2 = 2
β2

max{2, J2}, we have M2β2
4 ≥ 1. It follows from (4.9) that

LW(x, y, u, v) ≤
−M2β2

4
−

1
4

(1 − p)(σ2
21+σ2

22)yp+2 ≤
−M2β2

4
≤ −1.

Recalling (4.8), we can calculate that

LW(x, y, u, v)

≤ −
1
4

(1 − p)(σ2
11 + σ2

12)xp+2 −
1
4

(1 − p)(σ2
21 + σ2

22)yp+2 −
u2

2
−

v2

2
−

x
u
−

y
v

+ 2

−
1
4

(1 − p)(σ2
11 + σ2

12)xp+2 +
M1

2
(σ2

11+σ2
12)x2 +

x2

2
+ M1(b1+σ2

11+σ2
12)x+ r1xp

−
1
4

(1 − p)(σ2
21 + σ2

22)yp+2 +
M2

2
(σ2

21+σ2
22)y2 +

y2

2
+M2(b2+σ2

21+σ2
22)y + r2yp

≤−
1
4

(1− p)(σ2
11 + σ2

12)xp+2−
1
4

(1− p)(σ2
21 + σ2

22)yp+2−
u2

2
−

v2

2
−

x
u
−

y
v

+ 2 +J,

where

J = sup
(x,y)∈R2

+

{
−

1
4

(1 − p)(σ2
11 + σ2

12)xp+2 +
M1

2
(σ2

11+σ2
12)x2+

x2

2
+ M1(b1+σ2

11+σ2
12)x

+r1xp−
1
4

(1 − p)(σ2
21+σ2

22)yp+2+
M2

2
(σ2

21+σ2
22)y2+

y2

2
+M2(b2+σ2

21+σ2
22)y+r2yp

}
.

Case 2. When (x, y, u, v) ∈ Oε
2, by (4.9) we can derive that

LW(x, y, u, v) ≤ 2 + J −
1
4

(1 − p)(σ2
11 + σ2

12)xp+2 < 2 + J−
1
4

(1 − p)(σ2
11 + σ2

12)ε−(p+2) ≤ −1.

Similar, if (x, y, u, v) ∈ Oε
4, then we have

LW(x, y, u, v) < 2 + J −
1
4

(1 − p)(σ2
21 + σ2

22)ε−(p+2) ≤ −1.

Case 3. When (x, y, u, v) ∈ Oε
5 or (x, y, u, v) ∈ Oε

7, we have from (4.9) that

LW(x, y, u, v) ≤ 2 + J −
x
u
< 2 + J −

ε

ε2 ≤ −1,

LW(x, y, u, v) ≤ 2 + J −
y
v
< 2 + J −

ε

ε2 ≤ −1.

Case 4. When (x, y, u, v) ∈ Oε
6 or (x, y, u, v) ∈ Oε

8, it follows from (4.9) that

LW(x, y, u, v) ≤ 2 + J −
u2

4
< 2 + J −

1
4ε4 ≤ −1,
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LW(x, y, u, v) ≤ 2 + J −
v2

4
< 2 + J −

1
4ε4 ≤ −1.

The above analysis shows that there is a closed set Oε defined by (4.10) such that

sup
(x,y,u,v)∈R4

+/Oε

LW(x, y, u, v) ≤ −1.

The proof is completed.

5. Numerical simulations and discussions

To illustrate our theoretical results, we will perform several specific numerical simulations. We
first fix r1 = 0.4, r2 = 0.6, b1 = 0.5, b2 = 0.8, c1 = 0.1, c2 = 0.3, α1 = 0.1, α2 = 0.2. Let
σ11 = σ12 = σ21 = σ22 ≡ 0, and we find that both of two species are persistent (see Figure 1(a1)–(a2)).
However, if σ11 = 0.9, σ12 = 0.5, σ21 = 1, σ22 = 0.8, then we have from Theorem 3.1 that x(t) and
y(t) will be extinct exponentially (see Figure 1(b1)–(b2)). When we choose σ11 = 0.1, σ12 = 0.15,
σ21 = 0.3, σ22 = 0.25, it follows from Theorem 4.1 that the system (1.5) has a stationary distribution
(see Figure 2).
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Figure 1. (a1)–(a2). The solution of the deterministic system (1.3); (b1)–(b2). Trajectory
of the solution to the stochastic system (1.5), where σ11 = 0.9, σ12 = 0.5, σ21 = 1,
σ22 = 0.8.
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Figure 2. (a1)–(a2). Trajectory of the solution to the stochastic system (1.5) with σ11 =

0.1, σ12 = 0.15, σ21 = 0.5, σ22 = 0.25; (b1)–(b2). The frequency histograms of x(t) and
y(t) correspond to stochastic system in Figure 2(a1)–(a2).

Our theoretical results and the above numerical examples reveal that the coupling noises can change
the asymptotic properties of system (1.5).

(I) For ecosystems, it is important to analyze the survival of species. It can be seen from Figure
1(a1)–(a2) that the two competing species can survive if the competitive system is not affected by
environmental noise. However, two species will go to extinction if the coupling noises are suitable
large (see Figrue 1(b1)–(b2)).

(II) To analyze the statistic characteristic of the long-term behaviors of the sample trajectories,
a useful approach is to study the stationary distribution. Figure 2 implies that the relatively small
coupling noises can ensure the existence of a stationary distribution.
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