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Abstract: In this paper, Van Der Pol (VDP) oscillators are used as the output signal of central pattern
generator (CPG), and a VDP-CPG network system of quadruped with four primary gaits (walk, trot,
pace and bound) is established. The existence conditions of Hopf bifurcations for VDP-CPG systems
corresponding to four primary gaits are given, and the coupling strength ranges between oscillators for
four gaits are obtained. Numerical simulations are used to support theoretical analysis.
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1. Introduction

With the development of neuroscience, the controlling mechanism and mode of biological motion
have been paid much attention by biologists [1–4], and rhythmic movement is a common mode of
motion in biology. Rhythmic movement refers to periodic movement with symmetry of time and space,
such as walking, running, jumping, flying, swimming and so on. Biologists have shown that rhythmic
movement is not related to the consciousness of the brain, but to the self-excitation of the lower nerve
centers. It is a spatiotemporal motion mode controlled by a central pattern generator located in the
spinal cord of vertebrates or in the thoracic and abdominal ganglia of invertebrates [5]. They have the
ability to automatically generate complex high dimensional control signals for the coordination of the
muscles during rhythmic movements [6–9].

In engineering, CPG can be regarded as a distributed system consisting of a group of coupled
nonlinear oscillators. The generation of rhythmic signals can be realized by phase coupling. Changing
the coupling relationship of oscillators can produce spatiotemporal sequence signals with different
phase relations, and realize different movement modes. CPG of animals lays a foundation for the
research of bionic robots. For example, in [10,11] the gait control of quadruped robots based on
CPG is studied. Mathematically, there are several common types of CPG oscillators systems, such as
Hopf oscillators systems [12,13], Kimura oscillators systems, Rayleigh oscillators systems, Matsuoa
oscillators systems and VDP oscillator systems [14,15], etc.
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Quadrupedal gait is a kind of gait that people are very concerned. The gait of quadruped is an
important type described by a symmetrical system [16–18]. For example, in [17,18], base on the
symmetry property, the primary and secondary gait modes of quadruped are described, respectively.
In animal gait movement, the legs are coupled with each other, and the coupling strength affects the
complexity of animal gait. In this paper, the delay of leg signal is considered according to CPG model,
the basic gait CPG model of a class of quadruped is constructed by using VDP oscillators, and the
ranges of coupling strength between legs under four basic gaits are given. This paper is organized as
follows. Firstly, a kind of delay CPG network system is constructed by using VDP oscillator. Secondly,
the conditions of Hopf bifurcation in VDP-CPG network corresponding to the four basic gaits are
given, and the coupling ranges between legs in four basic gaits are given. Finally, the theoretical
results are supported by numerical simulations.

2. Delay VDP-CPG network architecture

CPG, as the control center of rhythmic motion, is a kind of neural network that can generate the
output of rhythmic mode without sensor feedback. It sends out motion instructions from the high-
level center to control the initial state of rhythmic motion, and integrates the feedback information and
perception information of CPG to regulate the motion organically. The CPG network in this paper
adopts the following network structure [14].
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Figure 1. The CPG network structures of four primary gaits.

In Figure 1, LF, RF, LH and RH represent the animal’s left foreleg, right foreleg, left hind leg and
right hind leg, respectively. The black arrows represent the leg raising sequence, and the numbers in
the circles are the phase difference between other legs and LF leg. In order to generate the rhythmic
signal of each leg, the VDP oscillator used in this paper can refer to [14], the equation is as follows.{

ẋ = y,
ẏ = α(p2 − x2)ẋ − w2x,

where x is the output signal from oscillator, α, p and w are variable parameters which can influence
the character of oscillators. Commonly, the shape of the wave is affected by parameter α, and the
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amplitude of an output counts on the parameter p mostly. The output frequency is mainly relying on
the parameter w when the amplitude parameter p is fixed. But the alteration of parameter p can lightly
change the frequency of the signal, and α also can effect the output frequency.

Four-legged muscle groups are regarded as VDP oscillators for feedback motion signals,
respectively. The animal’s left foreleg, right foreleg, right hind leg and left hind leg are recorded as
oscillator x1, x2, x3 and x4, respectively.

Then the oscillator of the ith leg is as follows{
ẋi = yi,

ẏi = αi(p2
i − x2

ki)yi − w2
i xki,

i = 1, 2, 3, 4,

where xki = xi +
4∑

j=1, j,i
Ki jx j denotes the coupling variable. Here Ki j is the coupling coefficient, which

represents strength of coupling from j oscillator to i oscillator.
Because the motion state of each leg depends on the motion state of the other three legs in the past

short time, the time delay is introduced as follows

xki = xi(t) +

4∑
j=1, j,i

Ki j x j(t − τ).

Assuming that the biological mechanism of each leg is similar and the degree of excitation or
inhibition is the same between legs, and the excitation is positive coupling, then the inhibition is
negative coupling. Therefore,

α1 = α2 = α3 = α4 = α,

p1 = p2 = p3 = p4 = p,

w1 = w2 = w3 = w4 = w,

Ki j =

{
K, when the j leg excites the i leg,
−K, when the j leg restrains the i leg.

K > 0.

Thus, we study the following VDP-CPG system
ẋi = yi,

ẏi = α(p2 − (xi(t) +
4∑

j=1, j,i
Ki j x j(t − τ))2)yi − w2(xi(t) +

4∑
j=1, j,i

Ki j x j(t − τ)), (1)

where i = 1, 2, 3, 4. It is clear that the origin (0,0,0,0,0,0,0,0) is an equilibrium of Eq (1).

3. VDP-CPG structures and Hopf bifurcations in rhythmic gaits

In this section, we construct a VDP-CPG network which is used for generation four basic gaits
patterns (walk, trot, pace and bound). Then we analyze the conditions for four gait systems to produce
Hopf bifurcation.

In order to analyses the four basic gaits, we make the following assumptions.
(H1) h < 0,
(H2) 2s − h2 > 0, 1

9m < K2 < 1
9 ,

(H3) K2 < m,
where h = αp2, s = w2,m = 4h2 s−h4

4s2 .
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3.1. Walk

In walking gait, one leg is inhibited by the other three legs, then there are

Ki j = −K, i, j = 1, 2, 3, 4, i , j.

So the VDP-CPG network in walking gait is as follows
ẋi = yi,

ẏi = α(p2 − (xi(t) +
4∑

j=1, j,i
(−K)x j(t − τ))2)yi − w2(xi(t) +

4∑
j=1, j,i

(−K)x j(t − τ)). (2)

This is a symmetric system. We first explore the symmetry of system (2), then study the existence
of Hopf bifurcation of system (2).

Let Yi =

(
xi

yi

)
∈ R2, i = 1, 2, 3, 4, system (2) can be written in block form as follows

Ẏi = MYi(t) + NYi+1(t − τ) + NYi+2(t − τ) + NYi+3(t − τ) + g(Yi(t)), (3)

i = 1, 2, 3, 4(mod4),
where

M =

(
0 1
−w2 αp2

)
,N =

(
0 0

Kw2 0

)
,

g
(

xi

yi

)
=

(
0

−α(xi − Kxi+1(t − τ) − Kxi+2(t − τ) − Kxi+3(t − τ))2yi

)
.

Let Γ be a compact Lie group. It follows from [19], system u̇(t) = G(ut) is said to be Γ− equivariant
if G(γut) = γG(ut) for all γ ∈ Γ. Let Γ = D4 be the dihedral group of order 8, which is generated by
the cyclic group Z4 of order 4 together with the flip of order 2. Denote by ρ the generator of the cyclic
subgroup Z4 and k the flip. Define the action of D4 on R8 by

(ρU)i = Ui+1, (kU)i = U6−i, Ui ∈ R2, i = 1, 2, 3, 4(mod4).

Then it is easy to get the following lemma.
Lemma 3.1. System (3) is D4− equivariant.
The linearization of Eq (3) at the origin is

Ẏi = MYi(t) + NYi+1(t − τ) + NYi+2(t − τ) + NYi+3(t − τ), i = 1, 2, 3, 4(mod4). (4)

The characteristic matrix of Eq (4) is given by

A(τ, λ) =


λI2 − M −Ne−λτ −Ne−λτ −Ne−λτ

−Ne−λτ λI2 − M −Ne−λτ −Ne−λτ

−Ne−λτ −Ne−λτ λI2 − M −Ne−λτ

−Ne−λτ −Ne−λτ −Ne−λτ λI2 − M

 ,
Mathematical Biosciences and Engineering Volume 17, Issue 4, 3190–3202.
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where I2 is a 2 × 2 identity matrix. This is a block circulant matrix, from [20], we have

det(A(τ, λ)) =

3∏
j=0

det(λI2 − M − χ jNe−λτ − (χ j)2Ne−λτ − (χ j)3Ne−λτ),

where χ j = e
π j
2 i, i is the imaginary unit. The characteristic equation of Eq (4) at the zero solution is

∆(τ, λ) = det(A(τ, λ)) = ∆1(∆2)3, (5)

with
∆1 = λ(λ − h) + s(1 − 3Ke−λτ)), ∆2 = λ(λ − h) + s(1 + Ke−λτ), h = αp2, s = w2.

Lemma 3.2. If (H1) and (H2) hold, for the equation ∆1 = 0, we have the following results.
(1) when τ = 0, all roots of equation ∆1 = 0 have negative real parts,
(2) when τ > 0, there exist τ j, such that when τ = τ j( j = 0, 1, 2, . . . ), ∆1(±iβ) = 0 holds,
(3) the transversality condition:

Re(
dλ
dτ

)|λ=iβ+,τ=τ
j
walk+

> 0,Re(
dλ
dτ

)|λ=iβ−,τ=τ
j
walk−

< 0,

where

β = β± =

√
2s − h2 ±

√
(h2 − 2s)2 − 4s2(1 − 9K2)

2
,

τ j = τ
j
walk± =

1
β±

(− arccos
s − β2

±

3Ks
+ 2 jπ + 2π), j = 0, 1, 2, . . . .

Proof. (1) When τ = 0, equation ∆1 = 0 becomes λ(λ−h) + s(1−3K) = 0, and the solution is obtained
as follows

λ =
h ±

√
h2 − 4s(1 − 3K)

2
.

By (H1) and (H2), the roots of equation ∆1 = 0 have negative real parts.
(2) When τ > 0, let λ = iβ(β > 0) be a root of ∆1 = 0. Substituting iβ into ∆1 = 0, then we have

−β2 − iβh + s(1 − 3Ke−iβτ) = 0.

Separating the real and imaginary parts, we get the following form{
s − β2 = 3Ks cos(βτ),
βh = 3Ks sin(βτ).

(6)

If (H2) holds, by solving the above equation, we have

β± = β =

√
2s − h2 ±

√
(h2 − 2s)2 − 4s2(1 − 9K2)

2
, (7)

τ
j
walk± = τ j =

1
β

(− arccos
s − β2

3Ks
+ 2 jπ + 2π), j = 0, 1, 2, . . . .
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(3) Let λ(τ) = α(τ) + iβ(τ) be the root of equation ∆1 = 0, satisfying α(τ j) = 0 and β(τ j) = β. Taking
the derivative of the equation ∆1 = 0 with respect to τ, we can get

dλ
dτ

=
−3Ksλeλτ

2λ − h + 3Ksτeλτ
.

Then

Re(
dλ
dτ

)|λ=iβ,τ=τ j =
3Ksβh sin(βτ j) − 6Ksβ2 cos(βτ j)

(−h + 3Ksτ cos(βτ j))2 + (2β − 3Ksτ j sin(βτ j))2 ,

by (6) and (7), we have

Re(
dλ
dτ

)|λ=iβ+,τ=τ
j
walk+

> 0,Re(
dλ
dτ

)|λ=iβ−,τ=τ
j
walk−

< 0,

which means that the transversality condition holds at τ j
walk±, j = 0, 1, 2, . . . .

The lemma 3.2 holds.
Lemma 3.3. For ∆2 = 0, we have the following results.

(1) if (H1) holds, when τ = 0 all roots of equation ∆2 = 0 have negative real parts,
(2) if (H3) holds, when τ > 0 equation ∆2 = 0 has no pure imaginary root.
Proof. (1) When τ = 0, equation ∆2 = 0 becomes λ(λ − h) + s(1 + K) = 0, and the solution is obtained
as follows

λ =
h ±

√
h2 − 4s(1 + K)

2
.

By (H1), the roots of equation ∆2 = 0 have negative real parts.
(2) When τ > 0, let λ = iβ(β > 0) be a root of ∆2 = 0. Substituting iβ into ∆2 = 0 then we have

−β2 − iβh + s(1 + Ke−iβτ) = 0.

The real and imaginary parts of the above equation are separated, then we obtain{
s − β2 = −Ks cos(βτ),
βh = −Ks sin(βτ).

By solving the above equation, we have

β =

√
2s − h2 ±

√
(h2 − 2s)2 − 4s2(1 − K2)

2
.

By (H3), we obtain (h2 − 2s)2 − 4s2(1 − K2) < 0, then the formula above is not valid. So the lemma
3.3 holds.

From lemma 3.2 and 3.3, we have following theorem.
Theorem 3.1. If (H1), (H2) and (H3) hold, then we have the following results.

(1) all roots of Eq (5) have negative real parts for 0 ≤ τ < τ0
walk, and at least a pair of roots with

positive real parts for τ ∈ (τ0
walk, τ

0
walk + ε), for some ε > 0,

(2) zero equilibrium of system (2) is asymptotically stable for 0 ≤ τ < τ0
walk, and unstable for

τ ∈ (τ0
walk, τ

0
walk + ε), for some ε > 0,

(3) when τ = τ0
walk, system (2) undergoes a Hopf bifurcation at zero equilibrium, where

τ0
walk = min{τ0

walk+
, τ0

walk−}.

Remark 3.1. Near the critical value τ = τ0
walk, the periodic solution of system (2) at the origin

accords with walking gait.
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3.2. Trot

In a trot, a leg on the same diagonal as the current leg stimulates the current leg, and two legs on the
other diagonal suppress the current leg, thus

K12 = −K, K13 = K, K14 = −K,K21 = −K, K23 = −K, K24 = K,
K31 = K, K32 = −K, K34 = −K, K41 = −K, K42 = K, K43 = −K.

The VDP-CPG network for trotting is as follows.
ẋi = yi,

ẏi = αp2yi − w2(xi(t) + (−K)xi+1(t − τ) + Kxi+2(t − τ) + (−K)xi+3(t − τ))
− α(xi(t) + (−K)xi+1(t − τ) + Kxi+2(t − τ) + (−K)xi+3(t − τ))2yi.

(8)

This is also a symmetric system. Similarly, by lemma 3.1, we have
Lemma 3.4. System (8) is D4− equivariant.
The characteristic matrix of linearization of Eq (8) is given by

A1(τ, λ) =


λI2 − M −Ne−λτ Ne−λτ −Ne−λτ

−Ne−λτ λI2 − M −Ne−λτ Ne−λτ

Ne−λτ −Ne−λτ λI2 − M −Ne−λτ

−Ne−λτ Ne−λτ −Ne−λτ λI2 − M

 .
This is a block circulant matrix, and we have

det(A1(τ, λ)) =

3∏
j=0

det(λI2 − M − χ jNe−λτ + (χ j)2Ne−λτ − (χ j)3Ne−λτ),

with χ j = e
π j
2 i.

The characteristic equation of linearization of Eq (8) at zero solution is

∆(τ, λ) = det(A1(τ, λ)) = ∆3(∆4)3, (9)

where
∆3 = λ(λ − h) + s(1 + 3Ke−λτ),

∆4 = λ(λ − h) + s(1 − Ke−λτ).

Similarly, by lemma 3.2 and 3.3, we have following lemmas.
Lemma 3.5. For the equation ∆3 = 0, we have the following results.

(1) if (H1) holds, when τ = 0, all roots of equation ∆3 = 0 have negative real parts,
(2) if (H2) holds, when τ > 0, there exist τ j, such that when τ = τ j( j = 0, 1, 2, . . . ), ∆3(±iβ) = 0 holds,
(3) the transversality condition:

Re(
dλ
dτ

)|λ=iβ+,τ=τ
j
trot+

> 0,Re(
dλ
dτ

)|λ=iβ−,τ=τ
j
trot−

< 0,

where

β = β± =

√
2s − h2 ±

√
(h2 − 2s)2 − 4s2(1 − 9K2)

2
,
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τ j = τ
j
trot± =

1
β±

(arccos
s − β2

±

−3Ks
+ 2 jπ), j = 0, 1, 2, . . .

Lemma 3.6. For ∆4 = 0, we have the following results.
(1) if (H1)and K < 1 hold, when τ = 0, all roots of equation ∆4 = 0 have negative real parts,
(2) if (H3) holds, when τ > 0, equation ∆4 = 0 has no pure imaginary root.

From lemma 3.5 and 3.6, we have following theorem.
Theorem 3.2. If (H1), (H2) and (H3) hold, we have the following results.

(1) all roots of Eq (9) have negative real parts for 0 ≤ τ < τ0
trot, and at least a pair of roots with positive

real parts for τ ∈ (τ0
trot, τ

0
trot + ε), for some ε > 0,

(2) zero equilibrium of Eq (8) is asymptotically stable for 0 ≤ τ < τ0
trot, and unstable for

τ ∈ (τ0
trot, τ

0
trot + ε), for some ε > 0,

(3) when τ = τ0
trot, system (8) undergoes a Hopf bifurcation at zero equilibrium, where

τ0
trot = min{τ0

trot+, τ
0
trot−}

Remark 3.2. Near the critical value τ = τ0
trot, the periodic solution of system (8) at the origin

accords with trotting gait.

3.3. Pace

In a pace, the leg on the same side (left or right) of the current leg stimulates the current leg, and
the other two legs inhibit the current leg, thus

K12 = −K, K13 = −K, K14 = K,K21 = −K, K23 = K, K24 = −K,
K31 = −K, K32 = K, K34 = −K, K41 = K, K42 = −K, K43 = −K.

Thus Eq (1) becomes the following VDP-CPG pacing system.
ẋi = yi,

ẏi = α(p2 − (xi(t) + (−K)xi+1(t − τ) + (−K)xi+2(t − τ) + Kxi+3(t − τ))2)yi

− w2(xi(t) + (−K)xi+1(t − τ) + (−K)xi+2(t − τ) + Kxi+3(t − τ)),
i = 1, 3(mod4) (10)


ẋi = yi,

ẏi = α(p2 − (xi(t) + (−K)xi−1(t − τ) + Kxi+1(t − τ) + (−K)xi+2(t − τ))2)yi

− w2(xi(t) + (−K)xi−1(t − τ) + Kxi+1(t − τ) + (−K)xi+2(t − τ)),
i = 2, 4(mod4)

and the linearization of Eq (10) at the origin is{
ẋi = yi,

ẏi = αp2yi − w2(xi(t) + (−K)xi+1(t − τ) + (−K)xi+2(t − τ) + Kxi+3(t − τ))
i = 1, 3(mod4) (11)

{
ẋi = yi,

ẏi = αp2yi − w2(xi(t) + (−K)xi−1(t − τ) + Kxi+1(t − τ) + (−K)xi+2(t − τ)),
i = 2, 4(mod4)

the characteristic equation of system (11) is∣∣∣∣∣∣∣∣∣∣∣
R m− m− m+

m− R m+ m−

m− m+ R m−

m+ m− m− R

∣∣∣∣∣∣∣∣∣∣∣ = ∆5(∆6)3 = 0, (12)
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where
∆5 = λ(λ − h) + s(1 + 3Ke−λτ), ∆6 = λ(λ − h) + s(1 − Ke−λτ).

R =

(
λ −1

w2 λ − αp2

)
,m+ =

(
0 0

Kw2e−λτ 0

)
,m− =

(
0 0

−Kw2e−λτ 0

)
,

Similarly, by theorem 3.1, we have following theorem.
Theorem 3.3. If (H1), (H2) and (H3) hold, we have the following results.

(1) all roots of Eq (12) have negative real parts for 0 ≤ τ < τ0
pace, and at least a pair of roots with

positive real parts for τ ∈ (τ0
pace, τ

0
pace + ε), for some ε > 0,

(2) zero equilibrium of system (10) is asymptotically stable for 0 ≤ τ < τ0
pace, and unstable for τ ∈

(τ0
pace, τ

0
pace + ε), for some ε > 0,

(3) when τ = τ0
pace, system (10) undergoes a Hopf bifurcation at zero equilibrium,

where
τ0

pace = min{τ0
pace+, τ

0
pace−},

τ
j
pace± =

1
β±

(arccos
s − β2

±

−3Ks
+ 2 jπ), j = 0, 1, 2, . . . ,

β± =

√
2s − h2 ±

√
(h2 − 2s)2 − 4s2(1 − 9K2)

2
.

Remark 3.3. Near the critical value τ = τ0
pace, the periodic solution of system (10) at the origin

accords with pacing gait.

3.4. Bound

In a bound, legs on the same side (front or hind) as the current leg stimulate the current leg, and the
other two legs inhibit the current leg, thus

K12 = K, K13 = −K, K14 = −K, K21 = K, K23 = −K, K24 = −K,

K31 = −K, K32 = −K, K34 = K, K41 = −K, K42 = −K, K43 = K.

Eq (1) becomes the following bounding VDP-CPG system.
ẋi = yi,

ẏi = α(p2 − (xi(t) + Kxi+1(t − τ) + (−K)xi+2(t − τ) + (−K)xi+3(t − τ))2)yi

− w2(xi(t) + Kxi+1(t − τ) + (−K)xi+2(t − τ) + (−K)xi+3(t − τ)),
i = 1, 3(mod4) (13)


ẋi = yi,

ẏi = α(p2 − (xi(t) + Kxi−1(t − τ) + (−K)xi+1(t − τ) + (−K)xi+2(t − τ))2)yi

− w2(xi(t) + Kxi−1(t − τ) + (−K)xi+1(t − τ) + (−K)xi+2(t − τ)),
i = 2, 4(mod4)

and the linearization of Eq (13) at the origin is{
ẋi = yi,

ẏi = αp2yi − w2(xi(t) + Kxi+1(t − τ) + (−K)xi+2(t − τ) + (−K)xi+3(t − τ)),
i = 1, 3(mod4) (14)
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ẋi = yi,

ẏi = αp2yi − w2(xi(t) + Kxi−1(t − τ) + (−K)xi+1(t − τ) + (−K)xi+2(t − τ)),
i = 2, 4(mod4)

the characteristic equation of system (14) is∣∣∣∣∣∣∣∣∣∣∣
R m+ m− m−

m+ R m− m−

m− m− R m+

m− m− m+ R

∣∣∣∣∣∣∣∣∣∣∣ = ∆7(∆8)3 = 0, (15)

where
∆7 = λ(λ − h) + s(1 + 3Ke−λτ), ∆8 = λ(λ − h) + s(1 − Ke−λτ).

Similarly, by theorem 3.1, we have following theorem.
Theorem 3.4. If (H1), (H2) and (H3) hold, we have the following results.

(1) all roots of Eq (15) have negative real parts for 0 ≤ τ < τ0
bound, and at least a pair of roots with

positive real parts for τ ∈ (τ0
bound, τ

0
bound + ε), for some ε > 0,

(2) zero equilibrium of system (13) is asymptotically stable for 0 ≤ τ < τ0
bound, and unstable for

τ ∈ (τ0
bound, τ

0
bound + ε), for some ε > 0,

(3) when τ = τ0
bound, system (13) undergoes a Hopf bifurcation at zero equilibrium,

where
τ0

bound = min{τ0
bound+, τ

0
bound−},

τ
j
bound± =

1
β±

(arccos
s − β2

±

−3Ks
+ 2 jπ), j = 0, 1, 2, . . . ,

β± =

√
2s − h2 ±

√
(h2 − 2s)2 − 4s2(1 − 9K2)

2
.

Remark 3.4. Near the critical value τ = τ0
bound, the periodic solution of system (13) at the origin

accords with bounding gait.

4. Numerical simulations

In this section, the numerical simulation of model is carried out to verify the results obtained in the
previous sections. Let α = −1.5, p = 1, w = 4, K = 0.3, according to the calculation, we obtain
the h = −1.5, s = 16, m = 0.1357, K2 = 0.09, 1

9m = 0.0151. Thus 2s − h2 = 29.7500 > 0, 1
9m <

K2 < min{m, 1
9 } and the critical value τ0

walk = 0.7039, τ0
trot = τ0

pace = τ0
bound = 0.1103 are obtained.

Basing on Theorem 3.2, we know the zero equilibrium is asymptotically stable when τ < τ0
trot (shown

in Figure 2a), when τ > τ0
trot, the zero equilibrium of system (8) is unstable, and the periodic solution

corresponding to the trot gait occurs (see Figure 2b). From theorem 3.3, we know the zero equilibrium
is asymptotically stable when τ < τ0

pace (shown in Figure 3a), when τ > τ0
pace, the zero equilibrium of

system (10) is unstable, and the periodic solution corresponding to the pace gait occurs (see Figure 3b).
From theorem 3.4, we know the zero equilibrium is asymptotically stable when τ < τ0

bound (shown in
Figure 4a), when τ > τ0

bound, the zero equilibrium of system (13) is unstable, and the periodic solution
corresponding to the bound gait occurs (see Figure 4b).
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Figure 2. Trajectories x1(t), x2(t), x3(t) and x4(t) of system (8) at τ = 0.1 (a) and τ = 0.111
(b). (a) represents that the zero equilibrium is asymptotically stable at τ = 0.1 < τ0

trot =

0.1103. (b) represents that periodic solution corresponds to the trot gait at τ = 0.111 >

τ0
trot = 0.1103.
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Figure 3. Trajectories x1(t), x2(t), x3(t) and x4(t) of system (10) at τ = 0.1 (a) and τ = 0.111
(b). (a) represents that the zero equilibrium is asymptotically stable at τ = 0.1 < τ0

pace =

0.1103. (b) represents that periodic solution corresponds to the pace gait at τ = 0.111 >

τ0
pace = 0.1103.
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Figure 4. Trajectories x1(t), x2(t), x3(t) and x4(t) of system (13) at τ = 0.1 (a) and τ = 0.111
(b). (a) represents that the zero equilibrium is asymptotically stable at τ = 0.1 < τ0

bound =

0.1103. (b) represents that periodic solution corresponds to the bound gait at τ = 0.111 >

τ0
bound = 0.1103.
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5. Conclusions

In this paper, a kind of CPG network system is constructed by using VDP oscillators, and a VDP-
CPG network system with four basic gaits (walk, trot, pace and bound) is presented. By studying
the corresponding characteristic equations of four gaits systems, it is found that the conditions for the
periodic solutions of four gaits systems are h < 0, 2s−h2 > 0 and 1

9m < K2 < min{m, 1
9 } and the critical

values τ j
walk, τ

j
trot, τ

j
pace and τ j

bound, j = 0, 1, 2 · · · . Thus, the range of coupling strength between legs in
four gaits is 1

9m < K2 < min{m, 1
9 }. Finally, the numerical simulations show that the gait systems (trot,

pace and bound) produce corresponding gaits near the corresponding critical value.
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