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Abstract: More than ten million deaths make influenza virus one of the deadliest of history. About 
half a million sever illnesses are annually reported consequent of influenza. Influenza is a parasite 
which needs the host cellular machinery to replicate its genome. To reach the host, viral proteins 
need to interact with the host proteins. Therefore, identification of host-virus protein interaction 
network (HVIN) is one of the crucial steps in treating viral diseases. Being expensive, 
time-consuming and laborious of HVIN experimental identification, force the researches to use 
computational methods instead of experimental ones to obtain a better understanding of HVIN. In 
this study, several features are extracted from physicochemical properties of amino acids, combined 
with different centralities of human protein-protein interaction network (HPPIN) to predict 
protein-protein interactions between human proteins and Alphainfluenzavirus proteins (HI-PPIs). 
Ensemble learning methods were used to predict such PPIs. Our model reached 0.93 accuracy, 0.91 
sensitivity and 0.95 specificity. Moreover, a database including 694522 new PPIs was constructed by 
prediction results of the model. Further analysis showed that HPPIN centralities, gene ontology 
semantic similarity and conjoint triad of virus proteins are the most important features to predict 
HI-PPIs. 

Keywords: protein-protein interaction; interaction prediction; host pathogen protein interaction; 
influenza 

 

1. Introduction 
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Influenza is the major cause of medically-attended acute respiratory diseases [1,2], and as an 
infectious disease it is caused by the influenza virus [3] which has three types: A, B, and C. The most 
significant human influenza pathogens are Alphainfluenza viruses (IAV), which can be further 
classified into subtypes by combining one of the 16 hemagglutinin (HA: H1– H16) with one of the 9 
neuraminidase (NA: N1–N9) surface antigens [4]. Generally, most influenza viruses (e.g., subtypes 
H5N1, H9N2, H7N7, and H7N3) are avian and have low pathogenicity due to being inefficient at 
binding to sialic acid receptors of human upper airways [4]. However, some like H7N9, broke out in 
China and caused 44 deaths [5], cross species from poultry [6] due to the mutations in their HA 
proteins which enabled them to bind to human-like receptors. 

Influenza A can cause major outbreaks and pandemics[7,8]. An estimated three to five million 
cases of severe illnesses and about 250,000 to 500,000 deaths are reported annually. Once the human 
population has low immunity against newly emerged influenza sequences, a pandemic happens 
[9,10]. 

Three influenza pandemics arose in the 20th century: Spanish influenza in 1918, Asian 
influenza in 1958, and Hong Kong influenza in 1968, each of which caused more than a million 
deaths [11]. All the seasonal influenza A epidemics from 1968 to 2009 were dominated by A/H3N2 
virus variants produced by antigenic drift [12,13] except A/H1N1 viruses which reappeared in 1977. 
In fact, the pandemic of 1918 was caused by an H1N1 IAV as well. In March and early April 2009, a 
new type of Influenza A (H1N1) virus which was of swine origin (S-OIV) came out in Mexico and 
California [14]. It caused considerable fear and several deaths worldwide. This virus was 
antigenically distinct from human seasonal influenza viruses. However, it was genetically related to 
viruses recognized to circulate in pigs. With respect to its similar swine origin, it is often known as 
‘swine-origin influenza virus’ (S-OIV) A/H1N1, or pandemic influenza A (H1N1) 2009 virus [15]. 

Viruses are parasites which need host cellular machinery for their genome replication. For 
reaching the host, viral proteins need to interact with host proteins. Therefore, identification of 
host-virus protein-protein interaction network (HVIN) can help to predict the behavior of that virus 
and lead to design antiviral drugs. 

There are many experimental methods for detecting host-virus protein-protein interaction  
(HV-PPI) such as co-immunoprecipitation [16], bimolecular fluorescence complementation [17], 
label transfer and yeast two-hybrid. All of these methods are expensive, time-consuming and 
laborious. So, a series of computational methods have been proposed in recent years to predict 
HV-PPIs. 

While Sprinzak [18] applied sequence-signature pairs, Kim [19] and Ng [20] used protein 
domain profiles and Yu [21] used sequence homology in order to predict HV-PPIs. Zhang [22] took 
advantage of decision trees in predicting co-complexed protein pairs using genomic and proteomic 
data integration. For predicting HV-PPIs via genomic data, Jansen [23] utilized Bayesian networks. 
Qi [24] used support vector machines and random forest to predict HV-PPIs. Dyer [25] achieved 516 
new HV-PPIs by applying Bayesian statistics on every pair of functional domains of human–
plasmodium falciparum. Zahiri [26] employed four well-established diverse learners as base 
classifiers of an ensemble learning model and a variety of features including pseudo amino acid 
composition and post translation modification to predict HV-PPI between homo sapiens and HCV 
(hepatitis C) proteins. Tastan [27] applied random forest as a classifier accompanied by a variety of 
features including co-occurrence of functional motifs and their interaction domains, tissue 
distributions and gene expression profiles to predict PPIs between HIV (human immunodeficiency) 
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and human proteins. Qi [28] identified novel PPIs among HIV and human proteins by taking 
advantage of semi-supervised multi task learning while Barnes [29] constructed a protein-protein 
interaction prediction engine (PIPE) to identify new PPIs between HIV and homo sapiens proteins. 
Alguwaizani [30] used repeated patterns of amino acids and amino acid composition to predict PPIs 
among HIV, H1N1, SARS (sever acute respiratory syndrome), HCV, HPV (human papillomavirus) 
and human. 

Zhang [31] constructed a graph by human proteins which share gene ontology terms [32] with 
H7N9 proteins, then calculated the shortest path of the constructed graph and sorted its proteins 
based on betweenness score. The top 20 proteins with the highest betweenness score interacting with 
H7N9 were reported as potential proteins. Eng [33] extracted the physicochemical properties of 
amino acids of IAV and human proteins and used them as input features of a random forest to predict 
PPIs between IAV and human proteins. 

Nanni [34] used position specific scoring matrix of the proteins (PSSM), substitution matrix 
representation, wavelet image, physicochemical property response matrix, amino acid composition, 
pseudo amino acid composition, dipeptide, tripeptide and tetrapeptide composition to improve 
prediction performance up to two percent in 25 different datasets. Zacharaki [35] with extracting 
torsion angles density and density of amino acid distances learned a deep convolutional neural 
network to achieve 90% accuracy in predicting structure-based protein function. 

In prediction problems, some of papers combined different classifiers to make an ensemble 
learning model which improve the accuracy of their model. Saha [36] used support vector machine 
(SVM), random forest (RF), Naïve Bayes (NB) and decision tree to build an ensemble learning 
method based on majority voting to improve its prediction accuracy to 90%. Emamjomeh [26] used 
SVM, RF, NB and multilayer perceptron (MLP) to build and ensemble learning method based on a 
meta learner combiner to improve its prediction accuracy to 84%. Nanni [37] used SVM, random 
subspace of adaboost, gaussian process classifier, deep learning and random subspace of rotation 
boosting to build and ensemble learning model based on normalized summation score of its 
classifiers to outperform the other methods. 

In the present study, 1800 different features were extracted from physicochemical properties of 
amino acids, different centralities of HPPIN, human and virus proteins’ sequence and gene ontology to 
predict HI-PPIs between human and AlphaInfluenzavirus. We used KNN, cart tree, NB and SVM as 
the base learners and RF as a meta-classifier to build an ensemble learning method for predicting 
HI-PPIs using the extracted features. All these processes are depicted in Figure 1. Our ensemble 
learning method reached the accuracy of 93% in detecting HI-PPIs according to the experimental data. 

Moreover, with running the trained model on 694522 possible HI-PPIs, a database was created 
which is publicly accessible at http://bioinf.modares.ac.ir/software/complexnet/Influenza. 

Finally, feature importance analysis revealed that human PPI network centralities, gene 
ontology semantic similarity and codon usage are the most informative descriptors for HI-PPIs 
prediction. 
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Figure 1. Schematic view of predicting HI-PPIs. Interactome datasets of human and 
influenza were collected form five different databases as positive data and the 
complement as negative data. 1800 different features were extracted from nucleotide and 
amino acid sequence, amino acid’s physicochemical properties, gene ontology semantic 
similarities and human PPI network. Prediction was performed by learning a model on 
these 1800 features with different classifiers. 

2. Material and methods 

2.1. Benchmark dataset 

We have constructed two datasets for evaluating the proposed method: A positive dataset and a 
negative one. 

2.1.1. Positive dataset 

In order to construct positive HI-PPIs, all IAV interactions were extracted from Intact [38], Virus 
Mint [39], DIP [40], STRING [41] and BioGRID [42] databases. Then, interactions between IAV 
proteins and other organism proteins except with human proteins were removed. At last, 10775 
interactions that annotated as ‘physical association’ or ‘direct interaction’ were considered as the 
positive interaction set (PS). Constructed PPI network consists of 125 IAV proteins from 10 IAV genes 
and 2794 HPs from 2498 genes. As it is shown in Figure 2, ten distinct influenza genes interact with 
2498 distinct human genes of which non-structural gene (NS) have the most interactions. 
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Figure 2. Influenza-Human genes interaction network. Inner nodes, outer nodes and 
edges indicate influenza genes, human genes and the interactions between them 
respectively; the number of interactions is illustrated by node size. 

2.1.2. Negative interactions 

As there isn’t any negative data in databases, selecting appropriate negative PPIs is very 
challenging among the PPI prediction problems [43]. HPPIN has 250038 interactions among 20050 
HPs. By using CD-HIT[44], sequence similarity is calculated between 2794 HPs of HI-PPIs and 
17256 other HPs of HPPIN. HPs with sequence similarity less than 20% is used as negative HPs and 
interaction between each of negative HPs and all IAV proteins considered as negative dataset. Final 
negative dataset consists of 236875 interactions. 

As the number of positive and negative interactions, which is used for training the model, needs 
to be equal to prevent training biased classifiers, inverse random under sampling (IRUS) [45] is used 
to balance the benchmark dataset. 

2.2. Encoding proteins as feature vectors 

As it is shown in Figure 3, we used five different schemes to encode features for human and 
Influenza A proteins: Amino acid sequence-based feature, nucleotide sequence-based features, 
physicochemical properties, gene ontology semantic similarities and network-based features. 
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Figure 3. Chord diagram for five different types of features. Upper half of diagram 
indicate nucleotide sequence-based features, amino acid sequence-based feature, 
physicochemical properties, gene ontology semantic similarities and network-based 
features while the lower half illustrate the subtypes of these five features. 

2.2.1. Amino acid sequence-based features 

a. Amino acid composition (AAC): Eight categories [26] were defined by clustering twenty 
naive amino acids using k-means algorithm, according to 514 physicochemical index of amino acids, 
which exist in the AAindex database [46]. Frequency distribution of each group in the desired 
sequence is considered as AAC. 

b. Dipeptide Composition (DC): Dipeptide composition is defined as the percentage of two 
consecutive amino acids which will construct a feature vector with the length of 20  20  2 = 800. 
But for avoiding the side effect of curse of dimensionality [47], we clustered 20 amino acids into 
eight groups [26] and subsequently the size of feature vector reduced to 8*8*2=128. DC is calculated 
as below: 

𝐷𝐶 𝐴 𝐴
𝑁 𝐴 𝐴

𝐿 1
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which 𝑁 𝐴 𝐴  is the number of occurrences of jth amino acid group followed by ith amino acid 
group in the sequence and L is the length of sequence. 

c. Conjoint Triad (CT): Percentage of three consecutive amino acids which will construct a 
feature vector with length of 20  20  20  2 = 16000. Again, we clustered 20 amino acids into 
eight groups[26] and subsequently the size of feature vector reduced to 8  8  8  2 = 1024. TC is 
defined as: 

𝑇𝐶 𝐺 𝐺 𝐺
𝑁 𝐺 𝐺 𝐺

𝐿 2
 

which 𝑁 𝐺 𝐺 𝐺  is the number of occurrences of kth group of amino acids followed by jth group 
of amino acids followed by ith group of amino acids and L is the length of the sequence. 

d. Biosynthesis energy: Pyruvate, 3-phosphoglycerate and several other metabolic precursors 
were combined and formed amino acids. Total cost of this procedure is called biosynthesis energy 
and calculated by Wagner method [48]. We used it as a feature calculated by: 

𝐵𝐸 𝑓 ∗ 𝑒 /𝑛 

where n is the length of protein, 𝑓  is the frequency of ith amino acid and 𝑒  is the biosynthesis 
energy of ith amino acid. 

2.2.2. Nucleotide sequence-based features 

a. GC content: GC Content stands for Guanine-Cytosine content and represents the percentage 
of nitrogenous bases on a DNA molecule, which may be either guanine or cytosine. As the bond 
between guanine and cytosine is a triple bond compared to a double bond between adenine and 
thymine, the sequences with higher GC content are more stable. 

b. Codon usage: Codon usage represents the frequency of occurrence of synonymous codons in 
coding DNA. By considering fi as frequency of ith codon of jth amino acid and nj as the sum of the 
occurrence of that amino acid in the desired sequence, codon usage of ith codon is calculated by: 

𝐶𝑈  𝑓 /𝑛  
c. Relative synonymous codon usage (RSCU): Frequency of each codon divided by frequency 

of that codon with assumption of equal distribution of codons of the related amino acid [49] and is 
calculated by: 

𝑅𝑆𝐶𝑈
𝑓

1/𝑛 ∑ 𝑓
 

where 𝑓  is the frequency of jth codon of ith amino acid in the protein sequence, 𝑛  is the number 
of codons of ith amino acid.  

d. Codon adaption index (CAI): An effective, simple measure of RSCU bias[50] which is 
calculated by: 

𝐶𝐴𝐼 𝑅𝑆𝐶𝑈 / / 𝑅𝑆𝐶𝑈 /  

where n is the length of protein, 𝑅𝑆𝐶𝑈  is the RSCU value of the ith codon and the 𝑅𝑆𝐶𝑈  is 
the maximum RSCU value among codons of amino acid related to ith codon. 
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e. Stacking energy: The nearest-neighbor (NN) model of nucleic acids assumes that the identity 
and orientation of neighboring base pairs of a particular base pair affect the stability of the base pair 
[51]. 

Stacking Energy is calculated by: 

∇𝐺   𝑛 ∗  ∇𝐺  ∇𝐺  ∇𝐺  ∇𝐺    

where ∇𝐺 for init, i and end is acquired by unified nearest-neighbor (NN) free energy parameter. If 
the duplex is self-complementary, its symmetry is conserved by setting ∇𝐺  to +0.43 (kcal/mol) 
and zero if it is non-self-complementary. 

f. Interaction energy: Dispersion and repulsion energies between a codon and its complement is 
called interaction energy [52] and calculated by: 

 𝐼𝐸 𝑒 ∗ 𝑛 /𝑛 

where n is the length of protein, 𝑛  is the frequency of ith amino acid and 𝑒  is the interaction 
energy of ith amino acid. 

2.2.3. Physicochemical properties 

a. Hydrophobicity: Repletion tendency of an amino acid from a mass of water. 
b. Hydrophilicity: Attraction tendency of an amino acid to a mass of water. 
c. Polarity: The degree to which a molecule has a dipole moment.  
e. Polarizability: The influencing amount of an external electric field on the electron clouds of a 

molecule. 
f. Side chain volume: Sum of volume of side chain atoms of an amino acid. 
g. Solvent-accessible surface area: The surface area of a biomolecule that is accessible to a 

solvent [53]. 
h. Net charge index of residue side chains [54] 
To add the effect of certain distance neighbors of each amino acid, Auto covariance is used [55] 

and the mentioned physicochemical properties were assumed as interaction mode. AC is calculated 
by the following equation: 

𝐴𝐶 𝑑. 𝑘
1

𝐿 𝑑
𝑃 ,

1
𝐿

𝑃 . ∗ 𝑃 ,
1
𝐿

𝑃 ,  

Where i,j are ith and jth residue and k is the index of the physicochemical properties. 𝑃 .  is kth 
physicochemical property of ith amino acid. L is length of the sequence and d is the distance between 
the current residue and its neighbor. As an example, d = 1 is the first neighbor which is regarded to 
the next residue while d = 2 is the second neighbor and so on. 

2.2.4. Gene Ontology semantic similarity 

Gene ontology (GO) [32] is a comprehensive set of ontologies for molecular biology domains 
developed for gene annotations of all organisms as a hierarchy. It uses a shared language to achieve a 
mutual understanding of the definition and meaning of any word used. There are three classes in GO: 
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a. Cellular compartment (CC): Where a gene product is located such as inner and outer 
membrane. 

b. Molecular function (MF): An element activity, task or job such as protein kinase activity or 
insulin receptor activity. 

c. Biological process (BP): A commonly recognized series of events such as cell division or 
transcription. 

The similarity between these GO terms are achieved from the frequencies of two GO terms 
involved and their closest common ancestor term in a specific corpus of GO annotations[56].  

GO terms have a hierarchical structure. Each of them is a node in a tree and may have parents and 
children. Frequency of each GO term is calculated by dividing the total number of its children over all 
number of GO terms which is called 𝐹  for cth term. The information content (IC) of a GO term is 
computed by the negative log frequency of that term. A rarely used term contains a greater amount of 
information [57]. IC of a concept is given by the following formula: 

𝐼𝐶 𝑐 log 𝐹  
The most informative common ancestor (MICA) is the largest IC of all common ancestors of two 

concepts and calculated by the following formula: 
𝑀𝐼𝐶𝐴 𝑐 . 𝑐 max 𝐼𝐶 𝑎 |𝑎 ∊ 𝐶𝑜𝑚𝑚𝑜𝑛𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 𝑐 , 𝑐  

Resnik [58] defined largest information content of all common ancestors as the semantic 
similarity between the concepts. 

 𝑆𝑖𝑚 𝑐 . 𝑐 𝑀𝐼𝐶𝐴 𝑐 , 𝑐  
Jiang [59] defined the semantic similarity as the inverse of difference between their information 

content and the largest information content of all common ancestors. 

𝑆𝑖𝑚 𝑐 . 𝑐
1

𝐼𝐶 𝑐 𝐼𝐶 𝑐 2 ∗ 𝑀𝐼𝐶𝐴 𝑐 , 𝑐 1
 

Lin [60] considered MICA over their information content as the semantic similarity. 

𝑆𝑖𝑚 𝑐 . 𝑐
2 ∗ 𝑀𝐼𝐶𝐴 𝑐 , 𝑐
𝐼𝐶 𝑐 𝐼𝐶 𝑐

 

We used all of the mentioned methods for calculating semantic similarities for each pair of HVIN 
separately for each class. So we gained nine GO features: 𝑀𝐹𝑆𝑖𝑚 ,  𝑀𝐹𝑆𝑖𝑚 , 𝑀𝐹𝑆𝑖𝑚 , 
𝐵𝑃𝑆𝑖𝑚 , 𝐵𝑃𝑆𝑖𝑚 , 𝐵𝑃𝑆𝑖𝑚 , 𝐶𝐶𝑆𝑖𝑚 , 𝐶𝐶𝑆𝑖𝑚 , 𝐶𝐶𝑆𝑖𝑚 . By evaluating the models 
which are trained by these features, three features gained by Jiang similarity are chosen as the final GO 
semantic similarity features. 

2.2.5. Network topology-based features 

a. Degree (connectivity): Is defined as the number of partners that are interacting with a protein p. 
b. Neighborhood connectivity: Neighborhood connectivity is based on degree (connectivity) 

measure. In fact, the average connectivity of all neighbors of p represents the neighborhood 
connectivity of p.  

c. Shortest paths: The length of a path is the number of edges forming it. The pass with minimum 
length between each two proteins i and j is considered as the shortest path.  For each protein as shown 
in the following formula, the shortest path centrality is the summation of shortest path between that 
protein and all the other proteins divided by the number of proteins. ∑ 𝑆 . /𝑛 
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d. Shared neighbors: This topological measure represents the number of interacting partners 
shared between proteins i and j, i.e., proteins which are neighbors of both i and j.  

e. Stress centrality: The number of the shortest paths between all protein pairs in the HPPIN 
passing through a given protein p stands for the stress centrality of p. This centrality is representative 
of the workload the protein carries in a network. If a protein is traversed by a high number of shortest 
paths, then it has a high stress.  

f. Topological coefficients: A relative measure for the extent to which a protein shares neighbors 
with others. Proteins that have no or one neighbor are assigned a topological coefficient of 0 (zero). 
The chart of the topological coefficients can be used to estimate the tendency of the proteins in the 
HPPIN to have shared neighbors. Topological coefficient is defined as follows: 𝑇 𝑎𝑣𝑔 𝐽 . /𝑘 , 
where 𝐽 .  is defined for all proteins m that share at least one neighbor with protein p and the 
value 𝐽 .  is the number of neighbors shared between the proteins p and m, plus one if there is a direct 
link between proteins p and m. However, 𝐾  is the number of neighbors of protein p. 

g. Closeness centrality: The closeness centrality Cc(p) of a protein p defines the reciprocal of the 
average shortest path length. Actually, it is a number between 0 and 1 which is computed as: 

𝐶 𝑝 1/𝑎𝑣𝑔 𝐿 ,  
where 𝐿 .  is the length of the shortest path between two proteins p and m. 

The closeness centrality of isolated proteins is equal to 0. This measure shows how fast 
information spreads from a given protein to other reachable ones in the HPPIN. 

h. Clustering coefficients: The clustering coefficient for a protein p is the number of triangles 
(3-loops) that pass through p, relative to the maximum number of triangles that could pass through p. 

𝐶 2𝑒 / 𝑘 𝑘 1  

where kp is the number of neighbors of p and ep is the number of connected pairs between all neighbors 
of p. 

i. Betweenness centrality: The betweenness centrality of a protein p represents the amount of 
control that p exerts over the interactions of others in the HPPIN and it is defined as follows: 

𝐶 𝑝 ∑
 

, where s and t are proteins in the HPPIN different from p, σst shows the number of 

the shortest paths from s to t, and σst (p) is the number of the shortest paths from s to t that p lies on. 
j. Radiality: The radiality of a protein is calculated by subtracting the average shortest path 

between that protein and all other proteins in the HPPIN from the value of the diameter. Hence, 
proteins with higher radiality are usually closer to the other nodes, whereas, proteins with lower 
radiality are peripheral. 

2.3. Prediction algorithm 

Five different categories of features were used each in a separate model. Combination of these 
features were performed by choosing random features among all existing features for training 10 other 
models. All these 15 models were constructed by different classifiers to obtain divers base classifiers. 

The results of predictions of 10 most popular classifiers were combined by stacked generalization 
[61]. In stacked generalization the outputs of the base classifiers were given to a meta-learner which 
combines the outputs to get the final output.  
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We used two different models as meta learners including random forest and majority voting. In 
majority voting, we used three different thresholds for accepting the votes: 30%, 40% and 50%. By this 
definition we get more sensitivity through sacrificing the specificity in 30% model while in 50% model, 
we get more specificity through sacrificing sensitivity. 

2.4. Evaluation measures 

The prediction performance of the proposed method was evaluated by four major measures of 
evaluation measure package [62], calculated based on the number of interactions predicted correctly 
(TP), the number of non-interactions which are predicted correctly (TN), the number of 
non-interactions which are predicted as interaction (FP) and the number of interactions which are 
predicted as non-interactions (FN). Some of the formulas of these measures are listed below: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  , 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  , 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  

3. Result and discussion 

To predict new HV-PPI, five different categories of features were extracted from physicochemical 
properties of amino acids, network topology of HPPIN, protein sequences, subcellular localization of 
human proteins and GO semantic similarities (all human and virus proteins’ extracted features are 
available at http://bioinf.modares.ac.ir/software/complexnet/Influenza/HumanFeatures.rar and 
http://bioinf.modares.ac.ir/software/complexnet/Influenza/VirusFeatures.rar, respectively). 

Several models were constructed by choosing different features from these categories. Five models 
are made by choosing all the features of one category. Moreover, 10 more models are made by choosing 
random features from all the exiting features. Among these models, the best results belonged to the 
models which had more diverse features. 

3.1. 10-fold cross validation 

To estimate the proposed model’s performance, a 10-fold cross validation procedure is used. 
The dataset is partitioned into 10 equal parts (all 10 partitioned train and test datasets are available at 
http://bioinf.modares.ac.ir/software/complexnet/Influenza/10FoldCrossValidation.rar). Each time 
nine partitions are used for training and one remaining partition is used for testing the model. 
Average of the obtained performance in each evaluation measure of the ten testing sets is reported as 
the final performance in that evaluation measure which is shown in Figure 4 for each of the 
classifiers. 

Finally, we sent the results to a meta learner. If either the sensitivity or specificity measures are 
more important for the researcher, majority voting with 30% or 50% positive voter is used. 
Otherwise, random forest is used as a meta learner. The results are shown in Figure 5. 
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Figure 4. Prediction performance of the best classifiers. Length and color of the bars 
indicate the percentage of evaluation measures and types of classifiers respectively. 

 

Figure 5. Prediction performance of ensemble bagging model. Length and color of the 
bars indicate the percentage of evaluation measures and types of meta learners 
respectively. 

3.2. Predicted influenza A-human interactome map 

A database containing the predicted interactome of HVPPI has been constructed, which is 
publicly accessible at http://bioinf.modares.ac.ir/software/complexnet/Influenza as it is shown in 
Figure 6. To do this end, all possible interactions (812,625 interactions) between each of 6501 HPs of 
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HVIN with each of 125 IAV proteins were examined by the trained model. Mean of the prediction 
probability of all the models is reported as the final interaction probability (InPr) of the interaction 
between each pair. The results are shown in Figure 7 as a heat map in which colors show the 
probability of interaction between the pairs. Columns and rows represent human and virus proteins 
respectively. Pairs with a score of one could be good candidates for researchers to do experimental test. 

 

Figure 6. Pathogen host interaction prediction database. By entering human protein and 
virus protein uniprotid and pressing predict button, we predict the possibility of 
interaction existence between the desired human and virus protein with 6 different 
models and report the result. The Number of green circles is equal to the number of 
positive votes and the number in the text box next to the circles reflects the consensus 
prediction score. 

 

Figure 7. Probability of interaction existence between all possible HP pairs. Columns 
and rows show human and virus proteins respectively. Blue and red color spectrum 
indicates the lowest and highest existence probability of interaction between the pairs 
respectively. 

Among all the 812,625 pairs, 6919 pairs have the score 1 (which is available at 
http://bioinf.modares.ac.ir/software/complexnet/Influenza/Novel6919Interactions.rar). By investigating 
the human partners of these 6919 pairs, 76 human proteins with a degree larger than 5 are selected 
(human proteins targeted by more than five virus proteins) and their interaction network are gained by 
STRING [41] as it is depicted in Figure 7. The constructed network has 256 edges with an average 
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node degree of 6.75 in the HPPIN and an average local clustering coefficient of 0.47. Color of edges 
determine the type of interaction between the nodes. Cyan edges are interaction extracted from curated 
databases, while pink ones are experimentally determined. Blue, Green and red edges are predicted 
interactions gained by gene neighborhood, gene fusion and gene co-occurrence respectively. Light 
green edges are extracted by text mining, while violet edges are gained by protein homology, and 
finally, the nodes connected by black edges are co-expressed. 

 

Figure 8. Protein-protein interaction network of human proteins targeted by more than 
five IAV proteins. Nodes are human proteins and existence of an edge between each two 
nodes indicates the interaction between those two human proteins in HPPIN. Empty 
nodes indicate proteins of unknown 3D structure while filled nodes illustrate the 3D 
structure of that protein. Color of the edges reveals the interaction type. Cyan and pink 
edge color indicate known interactions extracted from curated databases and 
experimentally determined respectively, while green, red and blue show predicted 
interactions from gene neighborhood, gene fusions and gene co-occurrence respectively. 
Finally, light green, black and purple indicate interactions reached by text mining, 
co-expression and protein homology respectively. 

By using DAVID [63] tools, gene ontology enrichment analysis was done on these 76 proteins  
(results are available at enrichment tab of http://bioinf.modares.ac.ir/software/complexnet/Influenza). 
Furthermore, by using REVIGO [64], the whole enriched biological process (BP), cellular 
component (CC) and molecular function (MF) terms are depicted and available at enrichment tab of 
http://bioinf.modares.ac.ir/software/complexnet/Influenza. 
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3.3. Feature importance analysis 

In this study, heterogeneous descriptors were used to predict HV-PPI. Contribution of the 
different descriptors were measured by removing each feature type in turn and recalculating the 
evaluation measures of the proposed prediction model; the higher the loss of measures, the more 
important the feature type. As shown in Table 1, HPPIN topology is the most important feature type 
in predicting HI-PPIs. GO semantic similarity is another important feature with considering the 
number of features in each feature type (three features of GO semantic similarity make 0.029 loss of 
sensitivity in contrast with 1414 features of sequence-based feature type which make only 0.005 
more loss of sensitivity). 

Table 1. Loss amount of different measures by eliminating one type of features. 

Feature type Loss of Sensitivity Loss of Specificity Loss of Accuracy 

Nucleotide sequence-based 0.027 0.012 0.019 

GO semantic similarity 0.022 0.011 0.018 

Amino acid sequence-based 0.008 0.003 0.005 

Physicochemical properties 0.025 0.013 0.018 

HPPIN topology 0.035 0.023 0.029 

We also extracted the most important features by four ways:  
a. Tree models: In tree models, after the split, the percentage of training samples fallen into all 

terminal nodes determine the feature importance. In this method, since all samples are affected by the 
first predictor of the first split, it has an importance measurement of 1. Other predictors will be 
scored in range of zero to one.  

b. Rule-based models: The number of rules involving the predictor determines the importance 
of features.  

c. PCA: Sum of the Loading coefficients of the 10 first Principal Components[65] (PCs) are 
considered as a score for determining the feature importance.  

d. GA-PLS: The selection of the best subset of variables is one of the most popular usage of 
Genetic Algorithms(GA), Especially in variable selection of Partial Least Squares(PLS) models[66]. 
For this purpose, we made an initial population by selecting part of variables randomly and fit a PLS 
model on them. In this method, each variable is considered as a gene and each variable set is 
considered as a chromosome. Every chromosome consists of 1800 genes, in which each gene is on 
with probability of 0.2 and so the approximate length of the chromosome is 360 variables. By 
generating 100 chromosomes, initial population was created. ROC value divided by the number of 
variables is considered as fitness value. This strategy was performed hundreds of times and the top 
30 percent of variable sets with higher fitness values were sent to the next generation. In the new 
generation we made mutations by changing the variable’s value with probability of 0.05 and also 
performed a crossover between the variable sets and repeated the previous steps. Finally, the 
variables with the lowest prediction error were reported as the most important features. As the result 
of genetic algorithm changed with each run, we repeated the previous step 100 times and the 
variables with the most frequency in these 100 runs were reported as the most important variables. 
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Figure 9. Important features. (a) Stack bar plot of score distribution showing subtype 
distribution of features in different scores. (b) Sunburst chart of top ten percent features 
distribution. First layer shows the distribution of five different features while the other 
layers indicate subtype distribution of each type. (c) Circle packing of top one percent 
features distribution. Each pink circle indicates one of five different types containing top 
one percent features with the highest score. (d) Radar plot of mean value of top one 
percent features with the highest score. Green and pink color illustrate positive and 
negative samples respectively. 

Feature importance was calculated by all mentioned models. Sum of the scores of the top 10 
percent features is depicted in Figure 9. Panel (a) shows the score distribution of each type while 
Panel (b) shows the features distribution of each type. For the top one percent of features with 
highest score Panel (c) shows the score of features with size and type of the circles by putting the 
features with the same category in one circle, whereas Panel (d) compares the features mean for 
positive and negative samples. 

Figure 9(d) reveals that GO semantic similarity-based features of positive samples have 
apparently higher values in comparison with negative samples while features extracted from 
physicochemical properties of amino acids of negative samples have higher values in comparison 
with positive samples. 

It seems that network topology of HPPI network plays the most important role in exposing the 
important features. The gene ontology semantic similarity-based features play the second most 



3125 

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 3109-3129. 

important role in determining the important variables. Furthermore, conjoint triad of virus proteins 
has a higher chance of being a candidate as important features. 

4. Conclusion 

In this study, we proposed a computational method for predicting HIPPI. Five different 
categories of descriptors including physicochemical properties of amino acids, nucleotide 
sequence-based descriptors, gene ontology similarities, protein sequence-based features and network 
centrality measures were used to encode protein pairs. Several different classifiers such as C5, RF, 
SVM, NB, KNN are used as base classifiers. Ensemble learning was used to combine the classifiers. 
The final model achieved an accuracy of 0.93, a specificity of 0.95, and a sensitivity of 0.91 in a 
10-fold cross validation analysis on our benchmark dataset. 

In addition, all of possible pairs between all of the human proteins and IAV proteins are given 
as input to our constructed model to design a new database which is available via the following link 
http://bioinf.modares.ac.ir/software/complexnet/Influenza. Among all of the predicted pairs, 6919 
pairs have score 1 which could be good candidates for experimental research or drug targets purpose.  

Moreover, Enrichment analysis is reported on 76 human proteins targeted by more than five 
virus proteins of these 6919 pairs. 

According to our analysis, network topology of HPPI network, gene ontology semantic 
similarity and conjoint triad of virus proteins contribute most in predicting HI-PPIs.  

The proposed method can be extended to predict other HV-PPIs. 
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