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Abstract: In this paper we introduce a method of global exponential attractor in the reaction-diffusion
epidemic model in spatial heterogeneous environment to study the spread trend and long-term dynamic
behavior of the COVID-19 epidemic. First, we prove the existence of the global exponential attractor
of general dissipative evolution systems. Then, by using the existence theorem, the global asymptotic
stability and the persistence of epidemic are discussed. Finally, combine with the official data of the
COVID-19 and the national control strategy, some numerical simulations on the stability and global
exponential attractiveness of the COVID-19 epidemic are given. Simulations show that the spread
trend of the epidemic is in line with our theoretical results, and the preventive measures taken by the
Chinese government are effective.
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1. Introduction

Many practical problems in real life such as epidemiology [1–9] and biology [10–13] can be solved
by mathematical modeling. Among them, epidemiology is an important research area. The AIDS,
the recent SARS, MERS, Ebola virus and outbursts of diseases such as the Zika virus are events of
concern and interest to many people. During the Spring Festival of 2020, COVID-19 epidemic has
spread rapidly in China, centered on Wuhan. The diffusive speed of the epidemic was unexpected, and
the Chinese government quickly blocked the traffic of Wuhan to control the spread of the epidemic.

Researchers have established many types of epidemic model with diffusion. Some authors specif-
ically to discuss the global stability of the spread of diseases [14–17], others study the traveling wave
solutions about reaction-diffusion models [7–9, 18].
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The spread and diffusion of epidemic disease are geographically dependent. The extent of disease
transmission is different under different conditions such as altitudes, humidity and temperature. There-
fore, it is very necessary to consider spatial heterogeneity in epidemiological models. In 2008, Allen
et al. [19] proposed a diffusive susceptible–infected–susceptible (SIS) model with space-dependent,
studied the existence, uniqueness, stability of the disease-free equilibrium and discussed the asymp-
totic behavior of the unique endemic equilibrium as dS approaches zero. More precisely, their results
implied that if the spatial environment can be modified to include low-risk sites and the movement
of susceptible individuals can be restricted, then it may be possible to eliminate the infectious dis-
ease. In some subsequent work, Peng et al. [20–22] studied the asymptotic profiles, global stability,
the effects of epidemic risk and population movement for the Allen’s model. In 2018, Li et al. [23]
and Tong et al. [24] concerned different reaction–diffusion SIS epidemic models in a similar method,
they showed the global stability of the positive constant equilibria. For spatial heterogeneous systems,
the authors discussed the existence of non-constant endemic equilibrium and studied the asymptotic
profile of endemic equilibria which is determined if the diffusion rate of the susceptible or infected
population at 0 or ∞. In 2019, Song et al. [25] proposed an SEIRS (Susceptible-Exposed-Infected-
Recovery-Susceptible) reaction-diffusion model, where the disease transmission and recovery rates are
spatially heterogeneous. They investigated the asymptotic profile of the endemic equilibrium when the
diffusion rate of the susceptible individuals is small. However, we found that in the above literature, the
authors have not considered the global asymptotic stability of the endemic equilibrium in the spatial
heterogeneous environment.

Many diseases such as typhoid, malaria, rabies, hepatitis, AIDS, etc. cannot be completely cured at
one time. These diseases will recur or relapse after treatment. Relapse, as the name implies, is a disease
in the initial healing or remission phase, due to certain inducements to cause the disease to recur or
relapse. Therefore, the effect of spatial factors on relapse should be taken into account. In [26], we
discussed a class of reaction-diffusion SVIR (Susceptible-Vaccinated-Infected-Recovery) model with
relapse and a varying external source in spatial heterogeneous environment as follows:

∂S
∂t = dS ∆S + Λ (x) − β1 (x) S I

S +I −
[
µ (x) + α (x)

]
S , x ∈ Ω, t > 0,

∂V
∂t = dV∆V + α (x) S − β2 (x) VI

V+I − µ (x) V, x ∈ Ω, t > 0,
∂I
∂t = dI∆I + β1 (x) S I

S +I + β2 (x) VI
V+I + ρ (x) R −

[
µ (x) + η1 (x) + φ (x)

]
I, x ∈ Ω, t > 0,

∂R
∂t = dR∆R + φ (x) I −

[
ρ (x) + µ (x) + η2 (x)

]
R, x ∈ Ω, t > 0,

∂S
∂n = ∂V

∂n = ∂I
∂n = ∂R

∂n = 0, x ∈ ∂Ω, t > 0,
S (x, 0) = S 0 (x) ,V (x, 0) = V0 (x) , I (x, 0) = I0 (x) ,R (x, 0) = R0 (x) , x ∈ Ω.

(1.1)

We studied the long-term dynamic behavior of this model by means of global exponential attractor
theory and gradient flow method, but the diffusion coefficient dS , dV , dI and dR are constant number.

The density of the population can also lead to the differences in the diffusion rate of disease. For
example, the recent spread of the novel coronavirus pneumonia epidemic is closely related to popu-
lation density and large-scale population movement during the Spring Festival. Hence, the diffusion
coefficient should be dependent on the spatial position. In this article we focus on the effects of spa-
tial heterogeneity on diffusion. We will apply the exponential attractor method, operator semigroup
theory and combine the gradient flow method to study the long-term dynamic behavior of the dis-
sipative evolution equation. Exponential attractors can be constructed for dissipative systems which
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possesses a certain kind of smoothing property. And the authors in [27] discuss the robustness of expo-
nentially k-dissipative dynamical systems with perturbed parameters. In this manuscript, we construct
an SEIQR (Susceptible-Exposed-Infected-Quarantined-Recovery) epidemic reaction-diffusion model
with relapse and a varying external source in spatially heterogeneous environment. All coefficients of
this model are spatially heterogeneous, including the diffusion coefficient. Since this model is difficult
to construct Lyapunov function, we will introduce the global attractor method, and give the existence
condition and existence theorem of the global exponential attractor for the general dissipative evolution
equation. Apply this existence theorem of the global exponential attractor and gradient flow method,
the global stability of the disease-free equilibrium of the model and the persistence of the endemic equi-
librium are discussed. Due to the role of spatial heterogeneity, especially the effect of relapse in spatial
heterogeneity, the usual basic reproduction number R0 has not been able to fully describe the spread
of disease, but rather needs to be described by a new threshold such as eigenvalues. Finally, with the
daily data on the COVID-19 published by the Chinese Health and Welfare Commission, we find that
the actual spread and our theoretical results are moderate by conducting a large number of numerical
simulations. Through numerical simulation, we find that the most effective way to control the spread
of the epidemic is to control the contact between susceptible persons and exposed patients. Limiting
contact between susceptible and infected people can only slightly reduce the number of infected people
and delay the onset of time.

The organization of this paper is as follows. In Section 2, we present the existence theorem of
global exponential attractor for the general dissipative evolution equation, it plays an important role in
studying the global exponential attractor method of epidemic model in spatially heterogeneous envi-
ronment. In Section 3, we first construct a reaction-diffusion SEIQR model with relapse and spatial
heterogeneous under some assumption and prove the existence of the positive solutions. Secondly, we
give the uniform boundedness and the existence of global solutions to our system. Third, we discuss
the global stability and the persistence of the infection disease by using the existence theorem of global
exponential attractor in Section 2. That is, we prove that the non-constant disease-free equilibrium
is globally asymptotically stable when λ∗ < 0 and the epidemic disease is persisting uniformly when
λ∗ > 0, where λ∗ is a threshold. In Section 4, we simulate the spread trend and the impact on the spatial
heterogeneous environment of the COVID-19 epidemic by the official data. In Section 5, we give our
conclusions and some discussions.

2. Global exponential attractor for the general dissipative evolution equation

To study the global asymptotic stability of complex models which Lyapunov functions are difficult
to construct, in this Section, we will introduce the global exponential attractor method. Hence, be-
fore discussing the global dynamics of the reaction-diffusion SEIQR model with relapse and spatial
heterogeneous in detail, we need to recall some concept and existing results of exponential attractor.

Definition 2.1. ( [27, Definition 1.1]) Let X be a Banach space, {Q (t)}t≥0 be a continuous semigroup
on X. A compact setA∗ ⊂ X is a global exponential attractor for Q (t) if

(1) it has finite fractal dimension,
(2) it is positive invariant, i.e. for arbitrary t ≥ 0, Q (t)A∗ ⊂ A∗,
(3) it attracts exponentially any bounded subsets of X, i.e., for any bounded subset B ⊂ X, there exist
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constant C (‖B‖X) > 0 and α > 0, such that

dist (Q (t) B,A∗) ≤ C (‖B‖X) e−αt, ∀t ≥ 0.

IfA∗ only satisfies condition (2) and condition (3), we call it the global exponential attract set.

Definition 2.2. ( [28]) Let X be a compact, connected subset of a Hilbert space H. Let Qs : X→ X
be a Lipschitz continous map. We call that Qs has squeezing property in X, if for some δ in (0, 1

4 ) there
exists an orthogonal projection P = P(δ) of rank equal to N0(δ) such that: for every u and v in X,
either

‖Qsu − Qsv‖H ≤ δ ‖u − v‖H ,

or
‖(I − P)(Qsu − Qsv)‖H ≤ ‖P(Qsu − Qsv)‖H .

Theorem 2.3. ( [28]) Let Qs : X→ X be a Lipschitz continous map and Qs have squeezing property
in X, then Qs has an exponential fractal attractorA∗, moreover

dF(A∗) ≤ max{α(X),N0}

where α(X) =
log K0

log 1
θ

, θ ∈ (2δ, 1) and K0 is a constant with respect to X.

In the following, we prove the existence of global exponential attractor for a class of nonlinear
evolution equations. ∂u

∂t = Lu + G (u) ,
u (0) = ϕ.

(2.1)

Let H1,H are Hilbert space, H1 ⊂ H is dense and H1 ↪→ H is compact. L : H1 → H is a compact
symmetrical sectorial operator and all eigenvalues of L are

0 > λ1 ≥ λ2 ≥ ... ≥ λk > ..., λk → −∞ (k → ∞) , (2.2)

G : H1 → H is continuous.

Definition 2.4. ( [29, Definition A.2.1]) A mapping L +G : H1 → H is called a gradient-type operator
if there exists a C1 functional F : H1→ R1 and for some constant C0 > 0 such that DF (u) ⊂ H for
every u ∈ Hβ for some β ≤ 1, and

〈DF (u) , Lu + G (u)〉H ≤ −C0 ‖DF (u)‖2H , ∀u ∈ H1,

DF (u0) = 0⇔ Lu0 + G (u0) = 0.

In this case, F is called the energy functional of L + G, where Hβ is the fractional power subspace
generated by the sectorial operator L.

Lemma 2.5. Assume that condition (2.2) holds, and there exists C1,C2 > 0, such that ∀ϕ ∈ H1, the
solution u = u(t, ϕ) of system (2.1) satisfies condition

〈Lu + G (u) , u〉H ≤ −C1 ‖u‖2H 1
2

+ C2, (2.3)

where H 1
2

is the fractional dimension subspace generated by the sectorial operator L. G (u) is locally
Lipschitz with respect to u. Then the system (2.1) has a global solution and exists a invariant set which
exponential attracts any bounded set under the H-norm.
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Proof. By the assumption of Lemma 2.5 and G is locally Lipschitz with respect to u, if ∀ϕ ∈ H1, it
follows from [30, Theorem 11.3.5] that the system (2.1) has a global solution. It means that system
(2.1) generates a operator semigroup Q (t) and Q (t)ϕ = u (t, ϕ).

We prove that for any bounded set B ⊂ H1, there exists a invariant set BR ⊂ H for the operator
semigroup Q (t). It follows from the inner product of Eq (2.1) in H with u and by using the condition
(2.3), we have that

1
2

d
dt
〈u, u〉H = 〈ut, u〉H = 〈Lu + G (u) , u〉H ≤ −C1 ‖u‖2H 1

2

+ C2,

since H 1
2
↪→ H, so there exists C3 > 0, such that

‖u‖H 1
2
≥ C3 ‖u‖H , ∀u ∈ H 1

2
.

Hence,
1
2

d
dt
‖u‖2H ≤ −C1C2

3 ‖u‖
2
H + C2,

By Gronwall’s inequality in differential form [26, Lemma 2.2], we obtain that

‖u‖2H ≤ e−αt ‖ϕ‖2H +
2C2

α

(
1 − e−αt) ,

where α = 2C1C2
3. It implies if R2 > 2C2

α
, ϕ ∈ BR, then

‖u‖2H ≤ e−αtR2 +
2C2

α

(
1 − e−αt) < R2.

Therefore, for any t ≥ 0, there has u (t, ϕ) ⊂ BR. Then, we have that BR ⊂ H is the invariant set. �

Lemma 2.6. Assume H is a Hilbert space, L : H1 → H is a injective and compact symmetrical
sectorial operator and G (u) is Lipschitz with respect to u, there exists a time t∗ > 0, such that the
operator Q∗ = Q(t∗) satisfies the squeezing property on δ < 1

8 in BR, and there exists a exponential
attractorA∗ satisfies dF(A∗) ≤ max{α(BR),N0}.

Proof. Since L : H1 → H is a injective and compact symmetrical sectorial operator, so the eigenvectors{
e j

}
j∈N

corresponding to the eigenvalues
{
λ j

}
j∈N

are the complete orthonormal basis of H, that is for
any u, v ∈ H, u, v can be represented as follows

u =

∞∑
k=1

akek, ‖u‖2H =

∞∑
k=1

a2
k , v =

∞∑
k=1

bkek, ‖v‖2H =

∞∑
k=1

b2
k .
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Then, for any θ̃ ∈
(
0, 1

2

]
, there exists a constant c > 0, such that c |λ1 |̃

θ > 1, hence,

‖u − v‖H =

(∑
k

(ak − bk)2
) 1

2

≤ c |λ1 |̃
θ

(∑
k

(ak − bk)2
) 1

2

= c
(∑

k
λ2̃θ

1 (ak − bk)2
) 1

2

≤ c
(∑

k
λ2̃θ

k (ak − bk)2
) 1

2

≤ c
∥∥∥∥Lθ̃ (u − v)

∥∥∥∥
H
.

This imples that
‖G (t, u) −G (t, v)‖H ≤ L̂ · ‖u − v‖H ≤ cL̂ ·

∥∥∥∥Lθ̃ (u − v)
∥∥∥∥

H
. (2.4)

Since H1 ⊂ H is dense and H1 ↪→ H is compact, according to the properties of the fractional
dimension space, BR is compact in H. Combine Lemma 2.5, conditions (2.4) and applying [28, Propo-
sition 3.1] on BR, we can get that there exists a time t∗ > 0, such that the operator Q∗ = Q(t∗) sat-
isfies the squeezing property on δ < 1

8 in BR. And there exists a exponential attractor A∗ satisfies
dF(A∗) ≤ max{α(BR),N0}. �

Next we give the existence theorem of the global exponential attractor for the general dissipative
evolution equation.

Theorem 2.7. Under the hypothesis of Lemma 2.5 and Lemma 2.6 holds, then the flow {Q(t)}t≥0 gen-
erated by (2.1) admits an global exponential attractorA∗ =

⋃
0≤t≤t∗
Q(t)A∗, and its fractional dimension

can be estimated as
dF(A∗) ≤ dF(A∗) + 1.

Proof. For any T > 0, let F (t, u) = Q (t) u : [0,T ]×A∗. We verify that F (t, u) is Lipschitz continuous.
Since L is the infinitesimal generator of T (t) = etL andA∗ is compact, we have that

lim
t→0

T (t)ϕ − ϕ
t

= Lϕ, ∀ϕ ∈ A∗.

This shows that T (t)ϕ−ϕ
t − Lϕ is continuous on the compact set [0,T ] × A∗, thus, it is bounded on

[0,T ] ×A∗, that is, there exists a constant ε > 0, such that∥∥∥∥∥T (t)ϕ − ϕ
t

− Lϕ
∥∥∥∥∥

H
≤ ε, ∀ (t, ϕ) ∈ (0,T ] ×A∗.

This implies that
‖T (t)ϕ − ϕ‖H ≤

(
ε + ‖Lϕ‖H

)
t, ∀ (t, ϕ) ∈ [0,T ] ×A∗.

SinceA∗ is compact and L is continuous, then there exists a constant C̃1 > 0, such that

ε + ‖Lϕ‖H ≤ C̃1, ∀ϕ ∈ A∗,
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thereby,
‖T (t)ϕ − ϕ‖H ≤ C̃1t, ∀ (t, ϕ) ∈ [0,T ] ×A∗. (2.5)

For any (t1, ϕ) , (t2, ϕ) ∈ [0,T ] ×A∗, without loss of generality, we assume that t1 > t2, then

‖Q (t1)ϕ1 − Q (t2)ϕ2‖H ≤ ‖Q (t1)ϕ1 − Q (t2)ϕ1‖H + ‖Q (t2)ϕ1 − Q (t2)ϕ2‖H ,

where Q (t)ϕ = etLϕ +
∫ t

0
e(t−s)LG (Q (s)ϕ) ds. Then we can get that

Q (t1)ϕ1 − Q (t2)ϕ1

=et2L
(
e(t1−t2)L − I

)
ϕ1

+

∫ t2

0
e(t2−s)L

(
e(t1−t2)L − I

)
G (Q (s)ϕ1) ds

+

∫ t1

t2
e(t1−s)LG (Q (s)ϕ1) ds.

By the boundedness of solution of system (2.1), we know that G (Q (s)ϕ) is bounded. Hence, there
exists a constant C̃2 > 0, such that

‖G (Q (s)ϕ1)‖H ≤ C̃2, ∀ϕ1 ∈ A∗.

Since T (t) = etL is a continuous semigroup, then there exists a constant M > 0, such that∥∥∥etL
∥∥∥ ≤ M, t ∈ [0,T ] .

Therefore, by using the inequality (2.5), there has

‖Q (t1)ϕ1 − Q (t2)ϕ1‖H

≤
∥∥∥et2L

∥∥∥ ∥∥∥∥(e(t1−t2)L − I
)
ϕ1

∥∥∥∥
H

+

∫ t2

0

∥∥∥e(t2−s)L
∥∥∥ ∥∥∥∥(e(t1−t2)L − I

)
G (Q (s)ϕ1)

∥∥∥∥
H

ds

+

∫ t1

t2

∥∥∥e(t1−s)L
∥∥∥ ‖G (Q (s)ϕ1)‖H ds

≤M
∥∥∥∥(e(t1−t2)L − I

)
ϕ1

∥∥∥∥
H

+

∫ t2

0
M

∥∥∥∥(e(t1−t2)L − I
)
G (Q (s)ϕ1)

∥∥∥∥
H

ds

+

∫ t1

t2
M ‖G (Q (s)ϕ1)‖H ds

≤MC̃1 |t1 − t2| + MC̃1C̃2T |t1 − t2| + MC̃2 |t1 − t2|

≤C̃3 |t1 − t2| ,

where C̃3 = max
{
MC̃1,MC̃1C̃2T,MC̃2

}
. Similarly, we can calculate that

‖Q (t2)ϕ1 − Q (t2)ϕ2‖H
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=

∥∥∥∥∥∥et2L (ϕ1 − ϕ2) +

∫ t2

0
M

[
G (Q (s)ϕ1) −G (Q (s)ϕ2)

]
ds

∥∥∥∥∥∥
H

≤M ‖ϕ1 − ϕ2‖H +

∫ t2

0
ML̂ ‖Q (s)ϕ1 − Q (s)ϕ2‖H ds.

By Gronwall’s inequality, there exists a constant C̃4 > 0, such that

‖Q (t2)ϕ1 − Q (t2)ϕ2‖H ≤ C̃4 ‖ϕ1 − ϕ2‖H .

Let C = max
{
C̃3, C̃4

}
, for any t1, t2 ∈ [0,T ] and ϕ1, ϕ2 ∈ A

∗, we have

‖Q (t1)ϕ1 − Q (t2)ϕ2‖H ≤ C
(
|t1 − t2| + ‖ϕ1 − ϕ2‖H

)
.

Therefore, F (t, u) = Q (t) u : [0,T ] ×A∗ is Lipschitz continuous.
By [28, Theorem 3.1], we can obtain that the flow {Q(t)}t≥0 generated by (2.1) has an exponential

attractorA∗ =
⋃

0≤t≤t∗
Q(t)A∗, and its fractional dimension can be estimated as

dF(A∗) ≤ dF(A∗) + 1.

�

3. Long-term dynamic behavior of a reaction-diffusion SEIQR epidemic model with relapse in
heterogeneous environment

In this section, we construct a reaction-diffusion SEIQR (Susceptible-Exposed-Infected-
Quarantined-Recovery) model with relapse in spatially heterogeneous environment. Our model is
divided into five compartments, namely susceptible individuals (S ), exposed individuals (E), infected
individuals (I), quarantined individuals (Q) and temporary restorers (R). The parameters description
and transfer diagram as shown below:

Figure 1. Transfer diagram for the SEIQR model with relapse in spatially heterogeneous
environment.
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Table 1. State variables and parameters of S EIQR model.

Parameter Description
S (x, t) Density of susceptible individuals at location x and time t.

E(x, t) Density of exposed individuals at location x and time t.

I(x, t) Density of infected individuals at location x and time t.

Q(x, t) Density of quarantined individuals at location x and time t.

R(x, t) Density of temporary restorers at location x and time t.

Λ(x) Total recruitment scale into this homogeneous social mixing community at location x.

βi(x), i = 1, 2 Contact rate at location x.

α(x) Incidence rate at location x.

γ(x) Quarantined rate at location x.

ρi(x), i = 1, 2 Relapse rate at location x.

φ(x) Per-capita recovery (treatment) rate at location x.

µ(x) Natural mortality rate at location x.

ηi(x), i = 1, 2 Disease-related death rate at location x.

dS (x) , dI (x) , dR (x) Diffusion rate at location x.

From Figure 1, the following system with the initial-boundary-value conditions is constructed by:

∂S
∂t = ∇ · (dS (x)∇S ) + Λ (x) − β1 (x) S E

S +E − β2 (x) S I
S +I − µ (x) S , x ∈ Ω, t > 0,

∂E
∂t = ∇ · (dE (x)∇E) + β1 (x) S E

S +E + β2 (x) S I
S +I + ρ2 (x) R −

[
µ (x) + α (x)

]
E, x ∈ Ω, t > 0,

∂I
∂t = ∇ · (dI (x)∇I) + α (x) E + ρ1 (x) R −

[
µ (x) + η1 (x) + γ (x)

]
I, x ∈ Ω, t > 0,

∂Q
∂t = γ (x) I −

[
µ (x) + η2 (x) + φ (x)

]
Q, x ∈ Ω, t > 0,

∂R
∂t = ∇ · (dR (x)∇R) + φ (x) Q −

[
µ (x) + ρ1 (x) + ρ2 (x)

]
R, x ∈ Ω, t > 0,

∂S
∂n = ∂E

∂n = ∂I
∂n =

∂Q
∂n = ∂R

∂n = 0, x ∈ ∂Ω, t > 0,
S (x, 0) = S 0 (x) , E (x, 0) = E0 (x) , I (x, 0) = I0 (x) ,Q (x, 0) = Q0 (x) ,
R (x, 0) = R0 (x) , x ∈ Ω.

(3.1)

Here, Ω is a bounded domain in Rm (m ≥ 1) with smooth boundary ∂Ω (when m > 1),
dS (x) , dE (x) , dI (x) , dR (x) ∈ C1 (Ω) are positive, continuous and uniformly bounded diffusion co-
efficients depend on space and Λ (x) , β1 (x) , β2 (x) , ρ1 (x) , ρ2 (x) , α (x) , γ (x) , φ (x) , µ (x) , η1 (x) and
η2 (x) are positive Hölder continuous functions on accounting for the total recruitment scale, rates of
contact, relapse, incidence, quarantined, recovery, natural death and disease-related death respectively.
Neumann boundary conditions ∂S

∂n = ∂E
∂n = ∂I

∂n =
∂Q
∂n = ∂R

∂n = 0 denotes that the change rate on the
boundary of the region Ω is equal to 0. It is straightforward to verify that S I

S +I

(
S E

S +E

)
is a Lipschitz con-

tinuous function of S and I (E) in the open first quadrant. Therefore, we can extend it to the entire first
quadrant by defining it to be zero whenever S = 0 or I = 0 (E = 0). Throughout the paper, we assume
that the initial value S 0, E0, I0,Q0 and R0 are nonnegative continuous functions on Ω, and the number
of infected individuals is positive, i.e.,

∫
Ω

I0(x)dx > 0. Specific parameters described in Table 1.
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From now on, we denote that H = L2 (Ω), H1= H1
0 (Ω) ∩ C2,1 (Ω), and for any given continuous

function f on Ω,
f ∗ = max

x∈Ω
f (x) and f∗ = min

x∈Ω
f (x) .

Theorem 3.1. For each (S 0(x), E0(x), I0(x),Q0(x),R0 (x)) ∈ C(Ω), system (3.1) exists a positive and
bounded global solution (S (x, t), E(x, t), I(x, t),Q(x, t),R (x, t)) ∈ C2,1(Ω × (0,∞)).

Proof. Since L = (∇ · (dS (x)∇) ,∇ · (dE (x)∇) ,∇ · (dI (x)∇) , 0,∇ · (dR (x)∇)) is a symmetrical secto-
rial operator and all eigenvalues of L are

0 > λ1 ≥ λ2 ≥ ... ≥ λk > ..., λk → −∞ (k → ∞) ,

G (S , E, I,Q,R) := (g1 (S , E, I,Q,R) , g2 (S , E, I,Q,R) ,
g3 (S , E, I,Q,R) , g4 (S , E, I,Q,R) , g5 (S , E, I,Q,R))T ,

where
g1 (S , E, I,Q,R) = Λ (x) − β1 (x) S E

S +E − β2 (x) S I
S +I − µ (x) S ,

g2 (S , E, I,Q,R) = β1 (x) S E
S +E + β2 (x) S I

S +I + ρ2 (x) R −
[
µ (x) + α (x)

]
E,

g3 (S , E, I,Q,R) = α (x) E + ρ1 (x) R −
[
µ (x) + η1 (x) + γ (x)

]
I,

g4 (S , E, I,Q,R) = γ (x) I −
[
µ (x) + η2 (x) + φ (x)

]
Q,

g5 (S , E, I,Q,R) = φ (x) Q −
[
µ (x) + ρ1 (x) + ρ2 (x)

]
R

be quasimonotone and satisfy the locally Lipschitz conditions, so by Lemma 2.5, we can guarantees
that system (3.1) exists a global solution (S (x, t), E(x, t), I(x, t),Q(x, t),R (x, t)) ∈ C2,1(Ω × (0,∞)).
Similar to the method in [26, Lemma 2.1 and Theorem 2.2], we can easily prove that the global solution
of the system (3.1) is positive. We next consider the following total population at time t. Define

U (t) =

∫
Ω

[S (x, t) + E (x, t) + I (x, t) + Q (x, t) + R (x, t)] dx.

From system (3.1), it is easy to see that

dU (t)
dt

=

∫
Ω

[
∂

∂t
S (x, t) +

∂

∂t
E (x, t) +

∂

∂t
I (x, t) +

∂

∂t
Q (x, t) +

∂

∂t
R (x, t)

]
dx

=

∫
Ω

{∇ · (dS (x)∇S ) + ∇ · (dE (x)∇E) + ∇ · (dI (x)∇I) + ∇ · (dR (x)∇R)

+ Λ (x) − µ (x) S − µ (x) E −
[
µ (x) + η1 (x)

]
I −

[
µ (x) + η2 (x)

]
Q

−µ (x) R} dx

≤

∫
Ω

∇ · (dS (x)∇S ) dx +

∫
Ω

∇ · (dE (x)∇E) dx +

∫
Ω

∇ · (dI (x)∇I) dx

+

∫
Ω

∇ · (dR (x)∇R) dx +

∫
Ω

{Λ∗ − µ∗ [S + E + I + Q + R]} dx

≤Λ∗ |Ω| − µ∗U (t) .

By Gronwall’s inequality in differential form [26, Lemma 2.2], we can obtain that

U (t) ≤ U (0) e−µ∗t +
Λ∗ |Ω|

µ∗

(
1 − e−µ∗t

)
.
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So U(t) ≤ max
{
U(0), Λ∗ |Ω|

µ∗

}
, where

U(0) =

∫
Ω

[S (x, 0) + E (x, 0) + I (x, 0) + Q (x, 0) + R (x, 0)] dx

≤

∫
Ω

‖S (x, 0) + E (x, 0) + I (x, 0) + Q (x, 0) + R (x, 0)‖L∞(Ω) dx

= ‖S (x, 0) + E (x, 0) + I (x, 0) + Q (x, 0) + R (x, 0)‖L∞(Ω) |Ω| .

This shows that U(t) =
∫

Ω
(S + E + I + Q + R) dx is bounded. By the positivity of the solution of the

system (3.1), we obtain that

‖S + E + I + Q + R‖L1(Ω)

=

∫
Ω

|S + E + I + Q + R| (x, t) dx

=

∫
Ω

(S + E + I + Q + R) (x, t) dx

≤max
{
‖S (x, 0) + E (x, 0) + I (x, 0) + Q (x, 0) + R (x, 0)‖L∞(Ω) |Ω| ,

Λ∗ |Ω|

µ∗

}
.

We denote that K = max
{
‖S (x, 0) + E (x, 0) + I (x, 0) + Q (x, 0) + R (x, 0)‖L∞(Ω) |Ω| ,

Λ∗ |Ω|

µ∗

}
, then we

know ∫
Ω

(S + E + I + Q + R)dx ≤ K.

In view of [31, Theorem 1 and Corollary 1], there exists a positive constant K∗ depending on K such
that

‖S + E + I + Q + R‖L∞(Ω) ≤ K∗.

Thus, we can obtain that S (x, t), E(x, t), I(x, t),Q(x, t),R (x, t) are uniformly bounded on Ω. This im-
plies the global solution of system (3.1) is positive and uniformly bounded. �

3.1. Threshold dynamics of the reaction-diffusion SEIQR epidemic model with relapse in
heterogeneous environment

In this section, we will analyze the qualitative behavior of system (3.1). It is clearly see that sys-
tem (3.1) admits a disease-free equilibrium E0 (x) = (S 0 (x) , 0, 0, 0, 0).

In order to further study the long-term dynamic behavior of the diffusive SEIQR epidemic model
with relapse in spatially heterogeneous environment, we need to prove the existence of principal eigen-
values of system (3.1). Linearizing the second, the third, the forth and the fifth equations of (3.1) at
disease-free equilibrium, we get

∂E
∂t = ∇ · (dE (x)∇E) + β1 (x) E + β2 (x) I + ρ2 (x) R −

[
µ (x) + α (x)

]
E, x ∈ Ω, t > 0,

∂I
∂t = ∇ · (dI (x)∇I) + α (x) E + ρ1 (x) R −

[
µ (x) + η1 (x) + γ (x)

]
I, x ∈ Ω, t > 0,

∂Q
∂t = γ (x) I −

[
µ (x) + η2 (x) + φ (x)

]
Q, x ∈ Ω, t > 0,

∂R
∂t = ∇ · (dR (x)∇R) + φ (x) Q −

[
µ (x) + ρ1 (x) + ρ2 (x)

]
R, x ∈ Ω, t > 0,

∂E
∂n = ∂I

∂n =
∂Q
∂n = ∂R

∂n = 0, x ∈ ∂Ω.

(3.2)
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Let E = eλtχ (x) , I = eλtϕ (x) ,Q = eλtξ (x) ,R = eλtψ (x), equations (3.2) can be rewritten as

∇ · (dE (x)∇χ (x)) +
[
β1 (x) − (µ (x) + α (x))

]
χ (x) + β2 (x)ϕ (x) + ρ2 (x)ψ (x) = λχ (x) ,

∇ · (dI (x)∇ϕ (x)) + α (x) χ (x) + ρ1 (x)ψ (x) −
[
µ (x) + η1 (x) + γ (x)

]
ϕ (x) = λϕ (x) ,

γ (x)ϕ (x) −
[
µ (x) + η2 (x) + φ (x)

]
ξ (x) = λξ (x) ,

∇ · (dR (x)∇ψ (x)) + φ (x) ξ (x) −
[
ρ (x) + µ (x) + η2 (x)

]
ψ (x) = λψ (x) , x ∈ Ω,

∂χ

∂n =
∂ϕ

∂n =
∂ξ

∂n =
∂ψ

∂n = 0, x ∈ ∂Ω.

(3.3)

Denote Φ (x) = (χ (x) , ϕ (x) , ξ (x) , ψ (x))T ,D (x) =


dE (x) 0 0 0
0 dI (x) 0 0
0 0 0 0
0 0 0 dR (x)

 and

M (x) =
(
mi j (x)

)
=


m11 (x) β2 (x) 0 ρ2 (x)
α (x) m22 (x) 0 ρ1 (x)
0 γ (x) m33 (x) 0
0 0 φ (x) m44 (x)

 ,
where

m11 (x) = β1 (x) − (µ (x) + α (x)) ,
m22 (x) = −

[
µ (x) + η1 (x) + γ (x)

]
,

m33 (x) = −
[
µ (x) + η2 (x) + φ (x)

]
,

m44 (x) = −
[
µ (x) + ρ1 (x) + ρ2 (x)

]
and mi j (x) ≥ 0, i , j, x ∈ Ω. Therefore, equations (3.3) can be rewritten asλΦ (x) = ∇ · (D (x)∇Φ (x)) + M (x) Φ (x) , x ∈ Ω,

∂Φ
∂n = 0, x ∈ ∂Ω

(3.4)

By Krein–Rutman theorem, we can obtain that there exists a real eigenvalue λ∗ of Eq (3.4) and a
corresponding eigenvector Φ∗ (x) = (χ∗ (x) , ϕ∗ (x) , ξ∗ (x) , ψ∗ (x)) satisfying Φ∗ (x) >> 0 for all x ∈ Ω

in the case of Neumann boundary conditions.

3.2. Global exponential attractor and stability analysis of system (3.1)

In this section we use the global exponential attractor theory to discuss the long-term dynamic
behavior of the reaction-diffusion SEIQR epidemic model with relapse in heterogeneous environment.
Denote that H5 = H ×H ×H ×H ×H and H5

1 = H1×H1×H1×H1×H1. Note that H5 and H5
1 are

Banach spaces equipped with norm∥∥∥(S , E, I,Q,R)T
∥∥∥

H5 := ‖S ‖H + ‖E‖H + ‖I‖H + ‖Q‖H + ‖R‖H .

and ∥∥∥(S , E, I,Q,R)T
∥∥∥

H5
1

:= ‖S ‖H1 + ‖E‖H1 + ‖I‖H1 + ‖Q‖H1
+ ‖R‖H1 .

In the following, we apply Lemma 2.5 and Theorem 2.7 to our system (3.1).
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Theorem 3.2. System (3.1) exists a global exponential attractor A∗, it exponential attracts any
bounded set in H5.

Proof. For the system (3.1), we first verify the condition (2.3). Since〈
∇ · (dS (x)∇S ) + Λ (x) − β1 (x)

S E
S + E

− β2 (x)
S I

S + I
− µ (x) S , S

〉
H

=

∫
Ω

∇ · (dS (x)∇S ) · S dx +

∫
Ω

Λ (x) S dx −
∫

Ω

β1 (x)
S 2E

S + E
dx

−

∫
Ω

β2 (x)
S 2I

S + I
dx −

∫
Ω

µ (x) S 2dx

=

∫
Ω

n∑
i=1

S ·
∂

∂xi

(
dS (x)

∂S
∂xi

)
dx +

∫
Ω

Λ (x) S dx −
∫

Ω

β1 (x)
S 2E

S + E
dx

−

∫
Ω

β2 (x)
S 2I

S + I
dx −

∫
Ω

µ (x) S 2dx

=

n∑
i=1

∫
Ω

S ·
∂

∂xi

(
dS (x)

∂S
∂xi

)
dx +

∫
Ω

Λ (x) S dx −
∫

Ω

β1 (x)
S 2E

S + E
dx

−

∫
Ω

β2 (x)
S 2I

S + I
dx −

∫
Ω

µ (x) S 2dx

= −

n∑
i=1

∫
Ω

dS (x)
(
∂S
∂xi

)2

dx +

n∑
i=1

∫
∂Ω

S ·
(
dS (x)

∂S
∂xi

)
· nxids

+

∫
Ω

Λ (x) S dx −
∫

Ω

β1 (x)
S 2E

S + E
dx −

∫
Ω

β2 (x)
S 2I

S + I
dx −

∫
Ω

µ (x) S 2dx

= −

∫
Ω

dS (x)
n∑

i=1

(
∂S
∂xi

)2

dx +

∫
∂Ω

S dS (x)
∂S
∂n

ds

+

∫
Ω

Λ (x) S dx −
∫

Ω

β1 (x)
S 2E

S + E
dx −

∫
Ω

β2 (x)
S 2I

S + I
dx −

∫
Ω

µ (x) S 2dx

= −

∫
Ω

dS (x) |∇S |2 dx +

∫
Ω

Λ (x) S dx −
∫

Ω

β1 (x)
S 2E

S + E
dx

−

∫
Ω

β2 (x)
S 2I

S + I
dx −

∫
Ω

µ (x) S 2dx

≤ − (dS )∗

∫
Ω

|∇S |2 dx + Λ∗
∫

Ω

S dx

= − (dS )∗ ‖S ‖
2
H 1

2

+ Λ∗
∫

Ω

S dx,

〈
∇ · (dE (x)∇E) + β1 (x)

S E
S + E

+ β2 (x)
S I

S + I
+ ρ2 (x) R −

[
µ (x) + α (x)

]
E, E

〉
H

=

∫
Ω

∇ · (dE (x)∇E) · Edx +

∫
Ω

β1 (x)
S E2

S + E
dx +

∫
Ω

β2 (x)
S EI
S + I

dx
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+

∫
Ω

ρ2 (x) ERdx −
∫

Ω

[
µ (x) + α (x)

]
E2dx

≤ − (dE)∗ ‖E‖
2
H 1

2

+

∫
Ω

β1 (x)
S E2

S + E
dx +

∫
Ω

β2 (x)
S EI
S + I

dx +

∫
Ω

ρ2 (x) ERdx

≤ − (dE)∗ ‖E‖
2
H 1

2

+ β∗1

∫
Ω

E2dx + β∗2

∫
Ω

EIdx + ρ∗2

∫
Ω

ERdx,

〈
∇ · (dI (x)∇I) + α (x) E + ρ1 (x) R −

[
µ (x) + η1 (x) + γ (x)

]
I, I

〉
H

=

∫
Ω

∇ · (dI (x)∇I) · Idx +

∫
Ω

α (x) EIdx +

∫
Ω

ρ1 (x) IRdx

−

∫
Ω

[
µ (x) + η1 (x) + γ (x)

]
I2dx

≤ − (dI)∗ ‖I‖
2
H 1

2

+ α∗
∫

Ω

EIdx + ρ∗1

∫
Ω

IRdx,

〈
γ (x) I −

[
µ (x) + η2 (x) + φ (x)

]
Q,Q

〉
H

=

∫
Ω

γ (x) IQdx −
∫

Ω

[
µ (x) + η2 (x) + φ (x)

]
Q2dx

≤γ∗
∫

Ω

IQdx,

〈
∇ · (dR (x)∇R) + φ (x) Q −

[
µ (x) + ρ1 (x) + ρ2 (x)

]
R,R

〉
H

=

∫
Ω

∇ · (dR (x)∇R) · Rdx +

∫
Ω

φ (x) QRdx −
∫

Ω

[
µ (x) + ρ1 (x) + ρ2 (x)

]
R2dx

≤ − (dR)∗ ‖R‖
2
H 1

2

+ φ∗
∫

Ω

QRdx.

From Theorem 3.1, we know (S (x, t), E(x, t), I(x, t),Q(x, t),R (x, t)) is uniformly bounded, hence, con-
dition (2.3) holds. In addition, since S I

S +I

(
S E

S +E

)
is a Lipschitz continuous function of S and I (E) in the

open first quadrant, so it is not difficult for us to verify that

‖g1 (S 1, E1, I1,Q1,R1) − g1 (S 2, E2, I2,Q2,R2)‖H
≤ β∗1 ‖E1 − E2‖H + β∗2 ‖I1 − I2‖H +

(
β∗1 + β∗2 + µ∗

)
‖S 1 − S 2‖H ,

‖g2 (S 1, E1, I1,Q1,R1) − g2 (S 2, E2, I2,Q2,R2)‖H
≤

(
β∗1 + β∗2

)
‖S 1 − S 2‖H

(
β∗1 + µ∗ + α∗

)
‖E1 − E2‖H + β∗2 ‖I1 − I2‖H

+ρ∗2 ‖R1 − R2‖H ,

‖g3 (S 1, E1, I1,Q1,R1) − g3 (S 2, E2, I2,Q2,R2)‖H
≤ α∗ ‖E1 − E2‖H +

(
µ∗ + η∗1 + γ∗

)
‖I1 − I2‖H + ρ∗1 ‖R1 − R2‖H ,
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‖g4 (S 1, E1, I1,Q1,R1) − g4 (S 2, E2, I2,Q2,R2)‖H
≤ γ∗ ‖I1 − I2‖H +

(
µ∗ + η∗2 + φ∗

)
‖Q1 − Q2‖H ,

‖g5 (S 1, E1, I1,Q1,R1) − g5 (S 2, E2, I2,Q2,R2)‖H
≤ φ∗ ‖Q1 − Q2‖H +

(
µ∗ + ρ∗1 + ρ∗2

)
‖R1 − R2‖H .

If we choose L̂ = β∗1 + β∗2 + ρ∗1 + ρ∗2 +α∗ + γ∗ + φ∗ + µ∗ + η∗1 + η∗2, and denote u = (S 1, E1, I1,Q1,R1) , v =

(S 2, E2, I2,Q2,R2), then

‖G (t, u) −G (t, v)‖H5

= ‖(g1 (t, u) − g1 (t, v)) , (g2 (t, u) − g2 (t, v)) , (g3 (t, u) − g3 (t, v)) ,
(g4 (t, u) − g4 (t, v)) , (g5 (t, u) − g5 (t, v)) , ‖H5

= ‖g1 (t, u) − g1 (t, v)‖H + ‖g2 (t, u) − g2 (t, v)‖H + ‖g3 (t, u) − g3 (t, v)‖H
+ ‖g4 (t, u) − g4 (t, v)‖H + ‖g5 (t, u) − g5 (t, v)‖H

≤
(
β∗1 + β∗2 + ρ∗1 + ρ∗2 + α∗ + γ∗ + φ∗ + µ∗ + η∗1 + η∗2

)
‖u − v‖H5

= L̂ · ‖u − v‖H5 .

Hence, Lipschitz condition is well verified. As we know that
L = (∇ · (dS (x)∇) ,∇ · (dE (x)∇) ,∇ · (dI (x)∇) , 0,∇ · (dR (x)∇)) is a symmetrical sectorial operator
and all eigenvalues of L are

0 > λ1 ≥ λ2 ≥ ... ≥ λk > ..., λk → −∞ (k → ∞) ,

therefore, by Lemma 2.5, system (3.1) exists a invariant set, it exponential attracts any bounded set
in H5. By Theorem 2.7, we can obtain that system (3.1) has a global exponential attractor A∗ and
dimF (A∗) = d0 < ∞. �

After getting the global exponential attractor, we discuss the stability and persists uniformly of the
epidemic disease.

Theorem 3.3. The following statements are valid.

(1) If λ∗ < 0, then

lim
t→∞

S (x, t) = S 0 (x) , lim
t→∞

E (x, t) = 0, lim
t→∞

I (x, t) = 0,

lim
t→∞

Q (x, t) = 0, lim
t→∞

R (x, t) = 0

in H, and hence, the disease-free equilibrium is globally asymptotically stable.
(2) If λ∗ > 0, then there exists a function γ (x) > 0 independent of the initial data, such that any

solution (S , E, I,Q,R) satisfies

lim inf
t→∞

S (x, t) ≥ γ (x) , lim inf
t→∞

E (x, t) ≥ γ (x) , lim inf
t→∞

I (x, t) ≥ γ (x) ,

lim inf
t→∞

Q (x, t) ≥ γ (x) , lim inf
t→∞

R (x, t) ≥ γ (x)

for x ∈ Ω, and hence, the disease persists uniformly
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Proof. (1) Suppose λ∗ < 0. We will use the comparison principle to show that E (x, t)→ 0, I (x, t)→
0,Q (x, t) → 0,R (x, t) → 0 as t → ∞ for every x ∈ Ω. First, we observe from the system (3.1)
that 

∂E
∂t ≤ ∇ · (dE (x)∇E) +

{
β1 (x) −

[
µ (x) + α (x)

]}
E + β2 (x) I + ρ2 (x) R,

∂I
∂t ≤ ∇ · (dI (x)∇I) + α (x) E + ρ1 (x) R −

[
µ (x) + η1 (x) + γ (x)

]
I,

∂Q
∂t ≤ γ (x) I −

[
µ (x) + η2 (x) + φ (x)

]
Q,

∂R
∂t ≤ ∇ · (dR (x)∇R) + φ (x) Q −

[
µ (x) + ρ1 (x) + ρ2 (x)

]
R, x ∈ Ω, t > 0.

Next, let us define
(
Ẽ (x, t) , Ĩ (x, t) , Q̃ (x, t) , R̃ (x, t)

)
=(

Meλ
∗tχ∗ (x) ,Meλ

∗tϕ∗ (x) ,Meλ
∗tξ∗ (x) ,Meλ

∗tψ∗ (x)
)

where λ∗ < 0, χ∗ (x) >> 0, ϕ∗ (x) >> 0,
ξ∗ (x) >> 0, ψ∗ (x) >> 0 are the eigenvalue and eigenvectors in equations (3.3) and M is chosen
so large that E (x, 0) ≤ Ẽ (x, 0) , I (x, 0) ≤ Ĩ (x, 0) ,Q (x, 0) ≤ Q̃ (x, 0) ,R (x, 0) ≤ R̃ (x, 0) for every
x ∈ Ω. It can be shown that

(
Ẽ (x, t) , Ĩ (x, t) , Q̃ (x, t) , R̃ (x, t)

)
satisfies

∂Ẽ
∂t = ∇ ·

(
dE (x)∇Ẽ

)
+

{
β1 (x) −

[
µ (x) + α (x)

]}
Ẽ + β2 (x) Ĩ + ρ2 (x) R̃,

∂Ĩ
∂t = ∇ ·

(
dI (x)∇Ĩ

)
+ α (x) Ẽ + ρ1 (x) R̃ −

[
µ (x) + η1 (x) + γ (x)

]
Ĩ,

∂Q̃
∂t = γ (x) Ĩ −

[
µ (x) + η2 (x) + φ (x)

]
Q̃,

∂R̃
∂t = ∇ ·

(
dR (x)∇R̃

)
+ φ (x) Q̃ −

[
µ (x) + ρ1 (x) + ρ2 (x)

]
R̃, x ∈ Ω, t > 0.

∂Ẽ
∂n = ∂Ĩ

∂n =
∂Q̃
∂n = ∂R̃

∂n = 0, x ∈ ∂Ω.

By the comparison principle [26, Lemma 2.1], E (x, t) ≤ Ẽ (x, t) , I (x, t) ≤ Ĩ (x, t) ,Q (x, t) ≤
Q̃ (x, t) ,R (x, t) ≤ R̃ (x, t) for every x ∈ Ω and t ≥ 0. Since Ẽ (x, t) → 0, Ĩ (x, t) → 0, Q̃ (x, t) →
0, R̃ (x, t) → 0 as t → ∞ for every x ∈ Ω, we also have that E (x, t) → 0, I (x, t) → 0,Q (x, t) →
0,R (x, t)→ 0 as t → ∞ for every x ∈ Ω.
Next we claim S (·, t) → S 0 (x) uniformly on as t → ∞. Given any small constant ε > 0, there
exists a large time T > 0 such that 0 ≤ E(x, t), I(x, t) ≤ ε for all x ∈ Ω, t ≥ T . From the first
equation in system (3.1), it is observed that S is a super-solution to

∂w
∂t − ∇ · (dS (x)∇w) = Λ (x) −

(
β∗1 + β∗2

)
ε − µ (x) w, x ∈ Ω, t ≥ T,

∂w
∂n = 0, x ∈ ∂Ω,

w (x,T ) = S (x,T ) , x ∈ Ω

(3.5)

and a sub-solution to 
∂v
∂t − ∇ · (dS (x)∇v) = Λ (x) − µ (x) v, x ∈ Ω, t ≥ T,
∂v
∂n = 0, x ∈ ∂Ω,

v (x,T ) = S (x,T ) , x ∈ Ω.

(3.6)

Denote by w and v the solution of system (3.5) and system (3.6), respectively. The parabolic
comparison principle gives

w (x, t) ≤ S (x, t) ≤ v (x, t) for all x ∈ Ω, t ≥ T .

For system (3.5), we can verify that〈
∇ · (dS (x)∇w) + Λ (x) −

(
β∗1 + β∗2

)
ε − µ (x) w,w

〉
H
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=

∫
Ω

∇ · (dS (x)∇w) · wdx +

∫
Ω

Λ (x) wdx −
∫

Ω

(
β∗1 + β∗2

)
εwdx −

∫
Ω

µ (x) w2dx

≤ − (dS )∗ ‖w‖
2
H 1

2

+ Λ∗
∫

Ω

wdx,

this means that system (3.5) satisfies condition (2.3) for Lw + G (w) = ∇ · (dS (x)∇w) + Λ (x) −(
β∗1 + β∗2

)
ε − µ (x) w. It is similar to the proof of Theorem 3.2, we can obtain that system (3.5)

exists a global exponential attractor Aw. In addition, system (3.5) has a variational structure, the
corresponding functional of the variational structure is

F (w) =

∫
Ω

[
dS (x)

2
|∇w|2 − g (x,w)

]
dx,

where
g (x,w) =

∫ w

0

[
Λ (x) −

(
β∗1 + β∗2

)
ε − µ (x) u

]
du.

Then

〈DF (w) , Lw + G (w)〉H
=

〈
DF (w) ,∇ · (dS (x)∇w) + Λ (x) −

(
β∗1 + β∗2

)
ε − µ (x) w

〉
H

= − ‖DF (w)‖2H ,

so L + G is a gradient type operator. From [29, Theorem A.2.2], we can prove that

lim
t→∞

w (x, t) = S 0
− (ε, x) in H,

where S 0
− (ε, x) is the unique positive steady state of problems (3.5). Similarly, for system (3.6),

we can obtain
lim
t→∞

v (x, t) = S 0 (x) in H,

where S 0 (x) is the unique positive steady state of problems (3.6). Furthermore, due to the arbi-
trariness of ε, it is easily checked that

S 0
− (ε, x)→ S 0 (x) in H, as ε→ 0.

Thus, our analysis implies that the S (·, t)→ S 0 (x) uniformly as t → ∞.
(2) Since λ∗ > 0, it is observed that the solution of

∂S −
∂t − ∇ · (dS (x)∇S −) = Λ (x) −

[
β1 (x) + β2 (x) + µ (x)

]
S −, x ∈ Ω, t ≥ T,

∂S −
∂n = 0, x ∈ ∂Ω,

S − (x,T ) = S (x,T ) , x ∈ Ω

(3.7)

is a sub-solution of the first equation in (3.1). Similar to the proof of conclusion (1), system (3.7)
is also a gradient type equation. From [29, Theorem A.2.2], we can prove that

lim
t→∞

S − (x, t) = S ∗− (x) in H.
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By weak maximum principle, we know that S ∗− (x) > 0 for all x ∈ Ω. Next, let us de-
fine (E− (x, t) , I− (x, t) ,Q− (x, t) ,R− (x, t)) = (εχ∗ (x) , εϕ∗ (x) , εξ∗ (x) , εψ∗ (x)) where χ∗ (x) >>
0, ϕ∗ (x) >> 0, ξ∗ (x) >> 0, ψ∗ (x) >> 0 and ε > 0 is a sufficiently small constant. Substitut-
ing εχ∗ (x) , εϕ∗ (x) , εξ∗ (x) , εψ∗ (x) into the second, the third, the forth and the fifth equations of
system (3.1), we know

ε∇ · (dE (x)∇χ∗) + β1 (x)
S εχ∗

S + εχ∗
+ β2 (x)

S εϕ∗

S + εϕ∗
+ ερ2 (x)ψ∗

− ε
[
µ (x) + α (x)

]
χ∗ −

∂ (εχ∗)
∂t

=ε∇ · (dE (x)∇χ∗) + β1 (x)
S εχ∗

S + εχ∗
+ β2 (x)

S εϕ∗

S + εϕ∗
+ ερ2 (x)ψ∗

− ε
[
µ (x) + α (x)

]
χ∗ + εβ1 (x) χ∗ − εβ1 (x) χ∗ + εβ2 (x)ϕ∗ − εβ2 (x)ϕ∗

=ε
{
∇ · (dE (x)∇χ∗) + β1 (x) χ∗ + β2 (x)ϕ∗ + ρ2 (x)ψ∗ − ε

[
µ (x) + α (x)

]
χ∗

}
+ εβ1 (x) χ∗

[
S

S + εχ∗
− 1

]
+ εβ2 (x)ϕ∗

[
S

S + εϕ∗
− 1

]
=ελ∗χ∗ + εβ1 (x) χ∗

[
S

S + εχ∗
− 1

]
+ εβ2 (x)ϕ∗

[
S

S + εϕ∗
− 1

]
> 0

(ε > 0 is a sufficiently small constant),

ε∇ · (dI (x)∇ϕ∗) + εα (x) χ∗ + ερ1 (x)ψ∗ − ε
[
µ (x) + η1 (x) + γ (x)

]
ϕ∗

−
∂ (εϕ∗)
∂t

=ε
{
∇ · (dI (x)∇ϕ∗) + α (x) χ∗ + ρ1 (x)ψ∗ −

[
µ (x) + η1 (x) + γ (x)

]
ϕ∗

}
=ελ∗ϕ∗ > 0 (ε > 0 is a sufficiently small constant),

εγ (x)ϕ∗ − ε
[
µ (x) + η2 (x) + φ (x)

]
ξ∗ −

∂ (εξ∗)
∂t

=ε
{
γ (x)ϕ∗ −

[
µ (x) + η2 (x) + φ (x)

]
ξ∗

}
=ελ∗ξ∗ > 0 (ε > 0 is a sufficiently small constant)

and

ε∇ · (dR (x)∇ψ∗) + εφ (x) ξ∗ − ε
[
µ (x) + ρ1 (x) + ρ2 (x)

]
ψ∗ −

∂ (εψ∗)
∂t

=ε
{
∇ · (dR (x)∇ψ∗) + φ (x) ξ∗ −

[
µ (x) + ρ1 (x) + ρ2 (x)

]
ψ∗

}
=ελ∗ψ∗ > 0 (ε > 0 is a sufficiently small constant).

Therefore, (εχ∗ (x) , εϕ∗ (x) , εξ∗ (x) , εψ∗ (x)) is the sub-solution of the second, the third, the forth
and the fifth equations of system (3.1). We choose
0 < γ (x) < min

{
S ∗− (x) , εχ∗ (x) , εϕ∗ (x) , εξ∗ (x) , εψ∗ (x)

}
, we can obtain that

lim inf
t→∞

S (x, t) ≥ γ (x) , lim inf
t→∞

E (x, t) ≥ γ (x) , lim inf
t→∞

I (x, t) ≥ γ (x) ,
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lim inf
t→∞

Q (x, t) ≥ γ (x) and lim inf
t→∞

R (x, t) ≥ γ (x)

for x ∈ Ω, then it shows that the disease persists.
�

The synthesis of Theorem 3.2 and Theorem 3.3 can give the following results: if λ∗ > 0 and t → ∞,
then the positive solution of system (3.1) is globally exponential attractive and the attraction domain is
A∗. Medically speaking, the disease persists in this situation. The epidemic is globally asymptotically
stable or attracted by the global exponential attractor.

4. Numerical simulations

The COVID-19 was discovered because of Wuhan Viral Pneumonia cases in 2019. It was named by
the World Health Organization on January 12, 2020. During the Spring Festival in 2020, the epidemic
broke out in China with Wuhan as the center and began to diffuse. The Chinese government quickly
adopted a strong response. Since January 23, 2020, Wuhan has implemented the strategy of closing
the city, and various regions have adopted strategies such as restricting travel to control the spread of
the epidemic. On January 30, 2020, WHO released the COVID-19 pneumonia epidemic as a public
health emergency of international concern, emphasizing that travel and trade restrictions are not rec-
ommended, and reaffirming the Chinese government’s control measures. While medical workers are
fighting the epidemic, epidemiologists around the world have begun to use data analysis and modeling
to study the spread of disease and find the fastest control methods [32–35].

The official website of the National Health Committee of the People’s Republic of China has up-
dated the relevant data of the COVID-19 epidemic [36] from January 24, 2020. The official website of
the WHO can check the relevant data from January 21 to the present [37]. The specific data is shown
in the Table 2.

Judging from the existing data and various notifications of the epidemic, the COVID-19 is not yet
relapse. Based on the data in Table 2, with the help of simple data analysis and calculation, we can get
some important parameters in Table 3.

According to the data in Table 3 and our system (3.1), we first simulate the spread of the COVID-19
epidemic (Figure 2).

From Figure 2, we can see that the numerical simulation basically accords with the current official
data, especially the exposed individuals and the infected people. In addition, we also find that the
COVID-19 is currently in a period of high incidence and extremely low cure rate. In such a period, the
number of quarantines in the hospital will be large, and the sickbeds in the hospital will be very tight.

The Chinese government has tried to curb the spread of the epidemic by blocking cities and traffic.
The essence is to control the exposure of the disease. If we choose β2 = 10−8 in Table 3, then we can
get the image in Figure 3.

From the Figure 3 we can see that merely controlling the contact between susceptible and infected
people can only delay the time of getting sick, and cannot obviously reduce the number of people
infected. If we want a better control, we need to control the contact rate between the susceptible and
the exposed individuals, because there are more people in the exposed period and their activities are
more frequent. After several numerical simulations, we found that when β1 < 0.38, the stability of the

Mathematical Biosciences and Engineering Volume 17, Issue 4, 3062–3087.



3081

Table 2. The official data of the COVID-19 epidemic.

Date Suspected Confirmed Intensive care Cured Death
2020.1.24 1965 1287 237 38 41

2020.1.25 2684 1975 324 49 56

2020.1.26 5794 2744 461 51 80

2020.1.27 6973 4515 976 60 106

2020.1.28 9239 5974 1239 103 132

2020.1.29 12167 7711 1370 124 170

2020.1.30 15238 9692 1527 171 213

2020.1.31 17988 11791 1795 243 259

2020.2.1 19544 14380 2110 328 304

2020.2.2 21558 17205 2296 475 361

2020.2.3 23214 20438 2788 632 425

2020.2.4 23260 24324 3219 892 490

2020.2.5 24702 28018 3859 1153 563

2020.2.6 26359 31161 4821 1504 636

2020.2.7 27657 34546 6101 2050 722

2020.2.8 28942 37198 6188 2649 811

2020.2.9 23589 40171 6484 3281 908

2020.2.10 21675 42638 7333 3996 1016

2020.2.11 16067 44653 8204 4780 1113

Table 3. The parameters description of the COVID-19 epidemic.

Parameter Data estimated Data sources
Λ 100000 Estimate

β1 0.7 Estimate

β2 0.5 Estimate

α 0.423 References [36]

γ 0.798 References [36]

ρ1 0 References [36]

ρ2 0 References [36]

φ 0.0228 References [36]

µ 0.1595 References [38]

η1 0.021 References [36]

η2 0.157 References [36]

dS 2 Estimate

dE 1 Estimate

dI 0.3 Estimate

dR 2 Estimate
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Figure 2. The spread of the COVID-19 epidemic.

Figure 3. The spread of the COVID-19 epidemic when β2 = 10−8.

model’s endemic equilibrium began to be destroyed. If we choose β1 = 0.35 in Table 3, then we can
get a simulated image of the disease-free equilibrium of constant coefficient model (Figure 4).

We can see from the Figure 4 that if people’s travel is restricted and the contact rate between sus-
ceptible and incubation period patients is controlled, the epidemic will be effectively controlled and the
disease will eventually die out. At this time, the disease-free equilibrium of the COVID-19 epidemic
is globally asymptotically stable. Therefore, it is very correct for the Chinese government to restrict
people’s access through policies such as traffic blocking and forced quarantine, and these policies may
only be implemented so smoothly in China.

Next, we discuss the dynamics of the epidemic model with a spatial heterogeneous environment and
relapse, so we then simulate the stability and persistence of the spatial system (3.1). From the system
(3.1) we can see that all the parameters are x − related functions, so we choose different functions
will directly lead to different stability results. As of the end of February, a small number of relapse
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Figure 4. The global stability of disease-free equilibrium of constant coefficient model.

cases of the COVID-19 epidemic have appeared. If we choose β1 (x) = 0.4 |sin x| , β2 (x) = 0.3
1+x , ρ1 (x) =

0.4e−x, ρ2 (x) = 0.3
2+x , η1 (x) = 0.021e−x, η2 (x) = 0.157e−2x and select other parameters from Table

3, then we can clearly see that the disease-free equilibrium of the spatial heterogeneity epidemic is
globally asymptotically stable (Figure 5).

Figure 5. The global stability of disease-free equilibrium of spatial heterogeneity sys-
tem (3.1) when β1 (x) = 0.4 |sin x| , β2 (x) = 0.3

1+x , ρ1 (x) = 0.4e−x, ρ2 (x) = 0.3
2+x , η1 (x) =

0.021e−x, η2 (x) = 0.157e−2x.

According to our discussion in the previous Section, the diffusion coefficient is highly dependent on
space. The spread of viruses and human activities are subject to conditions such as climate and tem-
perature. From this perspective, the diffusion coefficient should have periodic characteristics. Hence,
from now on, we choose dS (x) = e30 sin x, dE (x) = e15 sin x, dI (x) = e5 sin x, dR (x) = e10 sin x. If we then
choose ρ1 (x) = 0.03e−x, ρ2 (x) = 0.02

2+x , η1 (x) = 0.021e−x and select other parameters from Table 3, then

Mathematical Biosciences and Engineering Volume 17, Issue 4, 3062–3087.



3084

we can clearly see that the spatial heterogeneity epidemic is persists uniformly (Figure 6).

Figure 6. The global stability of endemic of spatial heterogeneity system (3.1) when ρ1 (x) =

0.03e−x, ρ2 (x) = 0.02
2+x , η1 (x) = 0.021e−x.

In Figure 6, we find that the fluctuation of the image shows an irregular and unsmooth state. This
irregular and unsmooth phenomenon is caused by the spatial heterogeneity of the diffusion coefficient.
However, this irregular fluctuation is still in a controllable range. And this range is also the scope of
the global exponential attractor.

If we choose β2 (x) = 0.05 sin x, ρ1 (x) = 0.03e−x, ρ2 (x) = 0.02
2+x , η1 (x) = 0.021e−x and select other

parameters from Table 3, then we can clearly see that the spatial heterogeneity epidemic is persists
uniformly (Figure 7), and the disease has obvious almost periodic characteristics.

Figure 7. The spatial heterogeneity epidemic is persists uniformly when β2 (x) =

0.05 sin x, ρ1 (x) = 0.03e−x, ρ2 (x) = 0.02
2+x , η1 (x) = 0.021e−x.
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From all above simulation we can clearly see that both the disease-free equilibrium and endemic
equilibrium of the constant-coefficient model are global asymptotic stability. For spatial heterogeneous
models, the stability of the model is dependent on the spatial parameters and diffusion coefficients. In
addition, we also see that the image whether rising or falling is very fast in the initial stage, and then fast
tend to stability. It is also confirms that the solutions of system (3.1) is global exponentially attractive.

5. Conclusions and discussion

We first prove the existence theorem of the global exponential attractor for the general dissipative
evolution system. Then we formulate a reaction-diffusion SEIQR model with relapse in the spatially
heterogeneous environment and prove the positivity, uniform boundedness and existence of solution of
the epidemiological model. Applying the general results of global exponential attractor for dissipative
evolution system in Section 2 to the model in Section 3, we can get the existence of the attractor of the
epidemic model. In addition, we prove that the disease-free equilibrium is global asymptotically stable
and the endemic is persisting uniformly. Due to the influence of spatial heterogeneity relapse rate, it is
no longer possible to rely on the basic reproductive number to describe the spread of epidemics. There-
fore, we describe the phenomenon of disease transmission through the main eigenvalue of the system.
From our proof, we can find that λ∗ has threshold characteristics. Finally, we perform numerical simu-
lations of the spread trend of the COVID-19 epidemic in China recently. With these authoritative data,
we also simulate the diffusion of the epidemic in the spatially heterogeneous environment. Simulation
results show that the best way to eliminate the disease is to control the contact rate. Choosing different
spatial coefficients can produce a fundamental change of the global dynamics of the system.
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