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Abstract: Measles is a contagious disease caused by the measles virus of genus Morbillivirus, which
has been spreading in many affected regions. This infection is characterized by the appearance of
rashes all over the body and potentially cause serious complications, especially among infants and
children. Before measles immunization was promoted, it is one of the endemic diseases that caused
the most fatalities each year in the world. This paper aims to analyze and to investigate measles
transmission in Jakarta via an SIHR epidemic model involving vaccination from January to December
2017. Jakarta Health Office collected the observed data of measles incidence. We then derived the basic
reproduction number as a threshold of disease transmission and obtained the local as well as global
stability of the equilibria under certain conditions. The unobserved parameters and initial conditions
were estimated by minimizing errors between data and numerical results. Furthermore, a stochastic
model was developed to capture the data and to accommodate the randomness of the transmission.
Sensitivity analysis was also performed to analyze and to identify the parameters which give significant
contributions to the spread of the virus. We then obtained simulations of vaccine level coverage. The
data is shown within a 95% confidence interval of the stochastic solutions, and the average of the
stochastic solutions is relatively close to the solution of the deterministic model. The most sensitive
parameter in the infected compartment is the hospitalized rate, which can be considered to be one of
the essential factors to reduce the number of cases for policymakers. We hence proposed a control
strategy which is providing treatment accesses easier for infected individuals is better than vaccinating
when an outbreak occurs.
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1. Introduction

Many countries already recognize measles as a highly contagious and dangerous disease for infants
and children, which can cause death in the pre-immunization period [1,2]. World Health Organization
(WHO) has estimated that there were around 535,000 human deaths due to measles in 2000, and
most of them occurred in tropical and sub-tropical such as Indonesia, China, Malaysia, Colombia,
and Myanmar. Since then, several measles immunization programs have been launched in high-risk
countries which have an impact on reducing global measles deaths by 78% in 2012 [3]. Dramatic
decreases in the number of cases have also been reported in China since 1986 and can reach around
0.5 per million in the 1995–2005 period. It is an impact of the implementation of the two-dose measles
vaccination program, which has been carried out during that period [4, 5].

Meanwhile, a different condition for measles cases was reported in Australia. The outbreaks occur
even with a reasonably large reproduction number (R0) of around 15 to 20, whereas efforts to eliminate
measles have been launched [6]. Consequently, the coverage of the immunization level was increased
to 92–95% in order to reduce the number of measles cases [7]. Measles outbreaks have also been
reported in Italy, with 4347 confirmed cases and 5404 notified cases in 2017 [8].

Measles are caused by enveloped RNA virus with the genus Morbillivirus in the family paramyx-
ovirus. Transmission usually occurs through direct contact with sufferers or via air such as mucus
contact, coughing, and sneezing [9]. Sharing tableware with an infected person may also have a high
potential for measles. Other names for this disease are morbilli or rubeola. Measles transmission starts
from infected individuals coughing or sneezing who can make the virus spread through the air and can
survive up to several hours.

The virus infects the respiratory tract and then spreads throughout the body. The period of measles
transmission begins four days before and four days after the rash appears, the peak of transmission
at the time of the initial symptoms (prodromal phase), namely in the first 1–3 days of illness [11].
Complications that often occur are diarrhea and bronchopneumonia [12]. Specific symptoms of this
disease are reddish skin rashes that appear within the incubation period (7–18 days) and can last for
5–6 days [10].

Symptoms of measles are characterized by fever and are accompanied by one or more symptoms
of cough, runny nose, red eyes, or watery eyes and then followed by reddish spots or rash that usually
appears starting from behind the ear. Furthermore, symptoms appear on the body in the form of
maculopapular shape and found grayish-white patches on the inner cheeks. In children, this disease
can cause deadly severe complications if not handled properly. Therefore, early treatment, such as
consultation with a doctor or the nearest health care provider, is needed to avoid complications.

The disease can be prevented by immunization using two doses of MMR (measles, mumps, and
rubella) vaccine, which is highly effective and safe [13]. However, the implementation of immunization
strategy has failed to cover rural populations in developing countries [14]. One in five children in the
world (around 24 million children) did not receive the first dose of measles vaccination in a routine
immunization program in 2008 [2]. Efforts to overcome the spread of measles globally by providing
safe and cost-effective vaccines have been improving rapidly to reduce the mortality of children from
measles. The impact was a dramatic decrease in the number of measles cases [10]. World Health
Assembly endorsed Global Vaccine Action Plan (GVAP) for eliminating measles, congenital rubella
syndrome (CRS), and rubella in 2012 [15], followed by all WHO regions who agreed to eradicate
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measles [10]. In Indonesia, there were around 23,164 cases of measles and 30,463 cases of rubella
from 2010 to 2015. The number of these cases was allegedly lower than the reality, given the number
of cases that were not reported [16]. In 2016, there were around 3112 measles cases reported in
Jakarta [17].

Modeling of measles with vaccination provides a better understanding and interpreting collected
data and dynamics of measles to produce effective and efficient control strategies. A spatial pattern of
misaligned disease data was investigated to estimate and map the risk of measles by utilizing ecological
Bayesian regression models in Namibia [18]. A discrete-time seasonal model of measles transmission
was proposed by Zhenguo Bai and Liu in 2015. They described the seasonal fluctuation of measles
cases in China [19]. Muhammad Farman et al. have presented analysis and numerical simulations of
an SEIR model represented the measles transmission with non-integer time-fractional derivatives in
2017 and considered the measles control [20]. An SEIR epidemic model was performed to investigate
the impact of exposed individuals in the dynamics of measles transmission [21]. The optimal policy for
controlling measles was examined through an SIRV model using supplemental immunization activities
with separation of vaccinated compartment [22]. In 2018, O.J. Peter et al. proposed an SVEIR model
of measles transmission by considering natural recovery and recovery due to vaccination [23].

The progress in measles transmission modeling has given challenges for researchers in shaping up
the health policy decisions. This paper aims to construct two measles transmission models involving
vaccination and to investigate the most influential parameters for proposing a control strategy. The
proposed model introduces a hospitalized compartment wherein infected individuals entering hospitals
are considered isolated and cannot transmit the infection to the susceptible group. First, we presented
the weekly data and the measles progress in the data section. We then extracted measles incidence
data to be the number of incidences per total population. Second, two mathematical models were con-
structed, and then afterward, the equilibrium points, as well as their stability conditions, were analyzed.
Further, there exist oscillatory solutions if the parameters are satisfying a certain condition. Third, the
unobserved parameters and initial conditions were estimated from the data along their feasible regions.
Fourth, we did a sensitivity analysis to analyze the effect of changing parameter values and the most
influential parameter towards the dynamics. We then conducted several simulations of control strate-
gies to minimize the number of infected by taking different vaccinated proportions in the last section
of this paper.

2. Epidemiological data

2.1. Measles progress in Jakarta

Following the policy of the Ministry of Health in achieving the elimination target for measles in
2020. the Jakarta Provincial Health Office has targeted for no endemic area of measles for more than
12 months with the implementation of adequate measles surveillance. The indicator is to conduct
measles surveillance based on individual cases or CBMS (Case-Based Measles Surveillance), which
has been carried out gradually since 2014. In this surveillance, for every case found with symptoms
of fever, rash on the body, accompanied by one or more symptoms of cough, runny nose, and red-eye,
blood specimens (serum) from the individual are examined at a national reference laboratory to confirm
the diagnosis of Measles. Another indicator of the surveillance is discarded ratio (misclassification of
measles) obtained from laboratory tests [24].
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Based on a leaflet from Jakarta Provincial Health Office, hospitals are instructed to identify people
groups who are vulnerable to measles by considering the mapping of cases and immunization status
at the rural level. It is implemented as a global target for measles elimination and Rubella’s control in
2020. Besides, several attempts were made to follow up on each reported case in a health service facil-
ity. They are examining, treating, and verifying alerts by carrying out epidemiological investigations in
less than 24 hours. Then they are taking and sending specimens for laboratory examinations, reporting
each case of measles to Jakarta Health Office surveillance website by submitting individual data (form
C1), and monitoring measles cases in the local area or various sources of infection, including cases
reported at the local hospital.

Achievement of the measles target is carried out by laboratory sampling in 2017 amounted to 77%,
2018 amounted to 75%, and until July 2019 amounted to 70% based on the evaluation results of measles
program holder in Jakarta. Even though the proportion of measles until July 2019 had only reached
70%, the achievement of discarded measles in Jakarta had exceeded 2 per 100,000 population, equal
to 4.17 per 100,000 population [25].

2.2. Measles data

In this study, we validated our model with actual data of measles in Jakarta. The data recorded
here is the number of hospitalized individuals. We chose Jakarta as our observed area due to the most
available of completed data collection compared to other cities in Indonesia. Jakarta Health Office has
collected measles data from 44 sub-district health centers, 283 village health centers, and 152 hospitals
in Jakarta, which has verified and passed the validation process. Here, the data used is a weekly basis
of incidence data started from the first to the last week in 2017, see Figure 1. The left figure is a plot
of time series measles data in all districts of Jakarta. The right one is the weekly total incidence of
measles in Jakarta, produced by adding up the data in the left data plot.
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Figure 1. Incidence of hospitalized measles cases of (a) each districts; (b) all districts; in
Jakarta (2017).
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3. Methods

We developed a standard SIR model (Kermack–McKendrick epidemic model [26]) for measles
transmission involving vaccination and the addition of a hospitalized compartment to analyze the
dynamics of measles transmission. Hereafter a stochastic model was constructed from a theory of
stochastic differential equations containing a Wiener process.

3.1. Deterministic model

We formulated a deterministic model (SIHR) to describe the measles transmission dynamic. The
total population is assumed to be constant in this model. To illustrate the model equations, we divide
the total population into four compartments. Let S̄ , Ī, H̄, and R̄ are the number of susceptible, infected,
hospitalized, and recovered individuals including individuals who were successfully vaccinated, re-
spectively.

The susceptible compartment S̄ increased by birth at a rate of Λ. The individuals probably got
their infection by contact with infected individuals at rate β. Vaccination process is given against the
susceptible population S̄ at rate rp, where r and p are a probability of success in preventing measles
and the proportion of vaccinated individuals, respectively. Consequently, the susceptible individuals
might be moved to the infected compartment Ī at rate β(1 − p) + β(1 − r)p = β(1 − rp). Then,
the infected individuals tend to go to the hospital at a rate of δ for getting treatment. The infected
and hospitalized individuals recovered naturally at a rate of γ1 and due to treatment at a rate of γ2,
respectively. Logically, it should be γ2 > γ1. All compartments decreased by a natural death at a rate
of µ.

The transmission dynamics of measles can be expressed by a system of differential equations as
follows.

dS̄ (t)
dt

= Λ −
β

N
(1 − rp)S̄ (t)Ī(t) − (rp + µ)S̄ (t),

dĪ(t)
dt

=
β

N
(1 − rp)S̄ (t)Ī(t) − (δ + γ1 + µ)Ī(t),

dH̄(t)
dt

= δĪ(t) − (γ2 + µ)H̄(t),

dR̄(t)
dt

= γ1 Ī(t) + γ2H̄(t) + rpS̄ (t) − µR̄(t),

(3.1)

where
dN̄(t)

dt
= Λ − µN(t). We assumed that the population is constant then Λ = µN,N ∈ N. We

then normalized the variables by substituting S (t) =
S̄ (t)
N

, I(t) =
Ī(t)
N
,H(t) =

H̄(t)
N

,R(t) =
R̄(t)
N

. Con-
sequently, it reduced the system (3.1) into three-dimensional space in (3.2) by ignoring the recovered
compartment due to the fact that recovered and successfully vaccinated individuals did not contribute
to the transmission.
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dS (t)
dt

= µ − β(1 − rp)S (t)I(t) − (rp + µ)S (t),

dI(t)
dt

= β(1 − rp)S (t)I(t) − (δ + γ1 + µ)I(t),

dH(t)
dt

= δI(t) − (γ2 + µ)H(t).

(3.2)

Since, the parameters and state variables are non negative ie t ≥ 0, we investigated model (3.2) in the
following feasible region:

Ω = {(S (t), I(t),H(t)) ∈ R3
+|0 ≤ S (t), I(t),H(t) ≤ 1,∀t}

All of the parameters used here are positive and described in Table 1. The non-negative octant Ω is
positively invariant of model (3.2). This follows immediately evaluating normal vector at each plane
S = 0, I = 0, and H = 0, respectively. The model has two equilibria; we called it as a disease-

free equilibrium (DFE) E0 = (S 0, I0,H0) =

(
µ

rp + µ
, 0, 0

)
and a endemic equilibrium E1 that can be

expressed as follows.

S ∗ =
µ

R0(rp + µ)
, I∗ =

(R0 − 1)µ
(δ + γ1 + µ)R0

,H∗ =
δ(R0 − 1)µ

(δ + γ1 + µ)R0(γ2 + µ)
, (3.3)

where R0 =
β(1 − rp)µ

(µ + rp)(δ + γ1 + µ)
is a basic reproduction number for the model. It can be defined as the

spectral radius of matrix ρ(FV−1) which is

F =


β (1 − rp) µ

rp + µ
0

0 0

 and V =

 δ + γ1 + µ 0

−δ γ2 + µ

.
Further, we give the proof of stability of the equilibria both locally and globally, in Theorem 3.1.1
and 3.1.2. The existence of oscillatory solutions is also presented in Proposition 3.1.1.. Although it is
trivial, we stated it explicitly to support simulations and to provide easy understanding.

Table 1. Parameter values of ODE system (3.2), defined on wekkly basis.

No. Parameters Description Value Reff.

1. µ Death rate and birth rate
1

52 ∗ 70
[27]

2. β Infection rate Estimated -
3. r Probability of succesed vaccination 90% [28]
4. p Proportion of vaccinated individuals Varied -
5. δ Hospitalized rate Estimated -
6. γ1 Recovery rate of infected 1/3 [10]
7. γ2 Recovery rate of hospitalized 1 -
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Theorem 3.1.1 Local stability of the equilibria.

1. If R0 < 1, then the disease-free equilibrium E0 is locally asymptotically stable in Ω.

2. If R0 > 1, then the endemic equilibrium E1 is locally asymptotically stable in Ω.

Proof.

1. The Jacobian matrix of model (3.2) at E0 is

J(E0) =


−(rp + µ) −

β (1 − rp) µ
pr + µ

0

0
β (1 − rp) µ

pr + µ
− (δ + γ1 + µ) 0

0 δ −(γ2 + µ)


.

The eigen values of the matrix are −(µ+ γ2),−(rp +µ), and (δ+ γ1 +µ)(R0 − 1). If R0 < 1 then all
eigen values are real negative, implies the disease-free equilibrium E0 is locally asymptotically
stable in Ω.

2. The Jacobian matrix of model (3.2) at E0 is

J(E1) =


−
β (1 − rp) (R0 − 1) µ

(δ + γ1 + µ) R0
− (rp + µ) −

β (1 − rp) µ
(rp + µ) R0

0

β (1 − rp) (R0 − 1) µ
(δ + γ1 + µ) R0

β (1 − rp) µ
(pr + µ) R0

− (δ + γ1 + µ) 0

0 δ −(γ2 + µ)


.

The characteristic polynomial of J(E1) is given by f (λ) = λ3+Aλ2+Bλ+C where A = (pr+µ)R0+

(µ+γ2), B = (R0−1)(pr+µ)(δ+γ1+µ)+R0(pr+µ)(µ+γ2), and C = (γ2+µ)(R0−1)(pr+µ)(δ+γ1+µ).
If R0 > 1 then coefficients of the polynomial are positive and AB > C. It indicates that Routh-
Hurwitz conditions for the polynomial are satisfied. Therefore the endemic equilibrium E1 is
locally asymptotically stable in Ω.�

Theorem 3.1.2 Global stability of the equilibria.

1. If R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptotically stable in Ω.

2. If R0 > 1, then the endemic equilibrium E1 is globally asymptotically stable in the sub-region

Ω2 ⊆ Ω that satisfy H ≥ max{H∗,
δI
γ̂
} or H ≤ min{H∗,

δI
γ̂
}.

Proof.

1. We first considered the Lyapunov function V(S , I,H) =
S 0

(δ + γ1 + µ)
I +

1
δ

H and got

V̇ =
S 0

δ + γ1 + µ
İ +

1
δ

Ḣ

=
S 0

(δ + γ1 + µ)
[
β(1 − rp)S I − (δ + γ1 + µ)I

]
+

1
δ

[
δI − (γ2 + µ)H

]
= [R0S − 1] I − S 0I −

γ2 + µ

δ
H,
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which is less than zero in Ω if R0 ≤ 1. A dot represents differentiation with respect to time.
Furthermore, V̇ = 0 if I = I0 and H = H0. Hence, the largest compact invariant set contained in
the set Ψ = {(S , I,H) ∈ Ω, V̇(S , I,H) = 0} when R0 < 1 is the singleton E0. Therefore, the DFE
is globally asymptotically stable in Ω based on the LaSalle invariance principle theorem in [29].

2. For simplifying this proof, we assumed that β̂ = β(1−rp), α̂ = rp+µ, δ̂ = δ+γ1 +µ and γ̂ = γ2 +µ.
Consequently, the system (3.2) can rewrite as follows.

Ṡ = µ − β̂S I − α̂S

İ = β̂S I − δ̂I

Ḣ = δI − γ̂H,

(3.4)

where R0 =
β̂µ

α̂δ̂
, S ∗ =

µ

R0α̂
, I∗ =

(R0 − 1)µ
R0δ̂

, and H∗ =
δ(R0 − 1)µ
γ̂R0δ̂

. We then considered a Lya-

punov function

U(S , I,H) = S − S ∗ − S ∗ ln
( S
S ∗

)
+ I − I∗ − I∗ ln

( I
I∗

)
+ H − H∗ − H∗ ln

( H
H∗

)
.

Clearly U : Ω → R and continuously differentiable. In addition, U(S ∗, I∗,H∗) = 0 while
U(S , I,H) > 0,∀(S , I,H) , (S ∗, I∗,H∗). The derivative with respect to the time can be derived as
follows.

U̇ =

(
1 −

S ∗

S

)
Ṡ +

(
1 −

I∗

I

)
İ +

(
1 −

H∗

H

)
Ḣ

=

(
1 −

S ∗

S

) (
µ − β̂S I − α̂S

)
+

(
1 −

I∗

I

) (
β̂S I − δ̂I

)
−

(
1 −

H∗

H

)
(δI − γ̂H)

=

(
µ − α̂S ∗

S
S ∗
− µ

S ∗

S
+ β̂S ∗I + α̂S ∗ − δ̂I − β̂I∗S + δ̂I∗

)
−

1
H

(H − H∗) (δI − γ̂H)

=

µ − µ

R0

S
S ∗
− µ

S ∗

S
+
β̂µ

R0α̂
I +

µ

R0
− δ̂I −

β̂µ2(R0 − 1)
R2

0α̂δ̂

S
S ∗

+
µ(R0 − 1)

R0


−

1
H

(
γ̂H2 − δIH − γ̂H∗H + δH∗I

)
=

(
µ −

α̂δ̂

β̂

S
S ∗
− µ

S ∗

S
+ δ̂I +

α̂δ̂

β̂
− δ̂I − µ

S
S ∗

+
α̂δ̂

β̂

S
S ∗

+ µ −
α̂δ̂

β̂

)
−
γ̂

H

(
H2 −

(
δI
γ̂

+ H∗
)

H +
δH∗I
γ̂

)
=

(
µ − µ

S ∗

S
− µ

S
S ∗

+ µ

)
+

(
−
α̂δ̂

β̂

S
S ∗

+
α̂δ̂

β̂
+
α̂δ̂

β̂

S
S ∗
−
α̂δ̂

β̂

)
−
γ̂

H

(
H

(
H −

δI
γ̂
− H∗

)
+
δH∗I
γ̂

)
= µ

(
2 −

S ∗

S
−

S
S ∗

)
+
α̂δ̂

β̂

(
−

S
S ∗

+ 1 +
S
S ∗
− 1

)
−
γ̂

H

(
H

(
H −

δI
γ̂
− H∗

)
+
δH∗I
γ̂

)
= −µ

S ∗

S

(( S
S ∗

)2

− 2
S
S ∗

+ 1
)
−
γ̂

H

(
H

(
H −

δI
γ̂
− H∗

)
+
δH∗I
γ̂

)
= −µ

S ∗

S

(
1 −

S
S ∗

)2

−
γ̂

H
(H − H∗)

(
H −

δI
γ̂

)
.
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If R0 > 1 and H ≥ max{H∗,
δI
γ̂
} or H ≤ min{H∗,

δI
γ̂
} are satisfied then U̇ ≤ 0. Therefore, E1 is a

globally asymptotically stable within Ω2.�

Proposition 3.1.1 There exists oscillatory solutions of system (3.2) to the endemic equilibrium if

R0 > 1 and I∗ >
µ(rp + µ)R0

4(δ + γ1 + µ)2 .

Proof. The characteristic polynomial of the Jacobian matrix at E1 can be used as a sign of the existence
of oscillatory solutions around the equilibrium of E1. Remember that we can check it through its
discriminant. The eigenvalue of the matrix has non-zero imaginary parts if the discriminant ∆ =
A3C
27
−

A2B2

108
−

ABC
6

+
B3

27
+

C2

4
is bigger than zero [30,31]. Therefore, we have ∆ = −

1
108

(pr +µ)Q2
1Q2

where Q1 = R0(pr + µ)(δ+ γ1 − γ2) + µ(2γ2 − pr − δ− γ1)− pr(δ+ γ1) + γ2
2 ≥ 0 and Q2 = R2

0(pr + µ) +

(1 − R0)4(µ + δ + γ1).

If R0 > 1 and I∗ >
µ(pr + µ)R0

4(δ + γ1 + µ)2 then Q2 < 0, implies ∆ > 0.�

3.2. Stochastic model

In this part, we constructed a system of Itô SDEs (stochastic differential equations) with continuous-
valued random variables by utilizing the probability transition rates in Table 2 and assuming 4t (time
step) approach zero [32, 33]. A diffusion approximation is a designation of the process resulting from
the SDE model by Kurtz in 1978 [34]. Let y(t) denote the number of compartments in the population
at generation t, x(t) denote the proportion of compartments in a population, and x(t) = y(t)/N. The
random vectors x(t) =

(
s(t) i(t) h(t)

)T
and y(t) =

(
s̄(t) ī(t) h̄(t)

)T
are vectors of continuous random

variables with state space s(t), i(t), h(t) ∈ [0, 1] and s̄(t), ī(t), h̄(t) ∈ [0,N], t ∈ [0,∞).

Table 2. Table of probability transition.

i Change, (4y)i Probability, Pi

1 [1, 0, 0]T µN4t

2 [−1, 1, 0]T β

N
(1 − rp)s̄(t)ī(t)4t

3 [−1, 0, 0]T rps̄(t)4t
4 [−1, 0, 0]T µs̄(t)4t
5 [0,−1, 1]T δī(t)4t
6 [0,−1, 0]T γ1 ī(t)4t
7 [0,−1, 0]T µī(t)4t
8 [0, 0,−1]T γ2h̄(t)4t
9 [0, 0,−1]T µh̄(t)4t

Based on the transitions and rates in Table 2, the corresponding SDE model can be written as the
form

dx = f̄ (x(t))dt + G(x(t))dW̄(t), (3.5)

where G is a diffusion matrix and W̄(t) = (W̄1(t), W̄2(t), · · · , W̄9(t))T is a 9 × 1 matrix (vector) of
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independent Wiener processes. To order 4t,

f̄ (x(t))4t = E(4x(t)|x(t)) =
1
N
E(4y(t)|x(t)),

where f̄ is drift vector and

GGT4t = M4t = E
(
4x(t)(4x(t))T |x(t)

)
=

1
N2E

(
4y(t)(4y(t))T |x(t)

)
.

Next, we computed the expectation and the covariance matrix based on Table 2. For a sufficiently
small 4t, the expectation

E(4x) =


µ − β(1 − rp)s(t)i(t) − (rp + µ)s(t)
β(1 − rp)s(t)i(t) − (δ + γ1 + µ)i(t)

δi(t) − (γ2 + µ)h(t)

4t. (3.6)

The covariance matrix can be written as

M =
1
N


m11 m12 0
m12 m22 m23

0 m23 m33

4t, (3.7)

where m11 = µ + β(1 − rp)s(t)i(t) + (rp + µ)s(t), m22 = β(1 − rp)s(t)i(t) + (δ + γ1 + µ)i(t),
m33 = δi(t) + (γ2 + µ)h(t), m12 = −β(1 − rp)s(t)i(t) and m23 = −δi(t). The diffusion matrix G(x(t)) is
given by

1
√

N


√
µ −

√
−m12 −

√
rps(t) −

√
µs(t) 0 0 0 0 0

0
√
−m12 0 0 −

√
δi(t) −

√
γ1i(t) −

√
µi(t) 0 0

0 0 0 0
√
δi(t) 0 0 −

√
γ2h(t) −

√
µh(t)


such that GGT = V .

3.3. Parameter estimation

We defined an optimization problem for parameter estimation in model (3.2). For simplification of
the optimization problem, the model can be rewritten

Ẋ(t) = f (X(t), t, ϑ), X(t0) = X0 (3.8)

where X(t) =
(
S (t) I(t) H(t)

)T
and ϑ = {β, δ, I(0),H(0)} is sets of estimated parameters and initial

conditions. In this case, we have two unobserved parameters, β and δ, and two unknown initial condi-
tions, I(0) and H(0). p is vaccination related parameter, which is not included into consideration for
parameter estimation. This parameter is then used to compare the impact of vaccination against the
measles epidemic. Hence, the optimization problem can be written as follows.

minimize
θ

: Ψ(x(t), ϑ) =
√∑n

t=1(H(t) − Data(t))2

subject to : system(3.8),
0 ≤ I(0) ≤ 1, 0 ≤ H(0) ≤ 1,
β ≥ 0, 0 ≤ δ ≤ 1.

(3.9)
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Ψ is squared residual norm (resnorm). The main idea of parameter estimation is how to find the best
combination of ϑ such that minimizing the resnorm. In this case, we used nonlinear least squares
method to look for the best combination of ϑ.

3.4. Sensitivity analysis

In this part, we discuss a local sensitivity analysis. It gives us information on which parameters are
the most influential to the dynamics of the system, with the initial value of the given parameter. We
investigate the sensitivity of parameters that are meaningful in the biological interpretation of measles
transmission. The idea of this sensitivity analysis is to determine the effect of changing parameter
values on the solution of the system Ẋ = f (t, X, θ) in Eq (3.8) where X(t, θ) ∈ R3 depend on time t and
θ is the set of parameters, θ = {β, p, δ, γ1, γ2} ∈ R

5. We first define a sensitivity function of X(t, θ) as
follows.

ζ(t, θ) = (ζik(t, θ)) =
d

dθi
Xk(t, θ). (3.10)

where i = 1, ...5, k = 1, 2, 3, and ζ is time dependent t [35]. By differentiating ζ with respect to time t,
then the first order solution sensitivity is a solution of differential equation,

ζ̇ =
d
dt

dX
dθ

=
d
dθ

dX
dt

=
d
dθ

f (t, X, θ)

=
∂X
∂θ
·

d f (t, X, θ)
dX

+
∂ f (t, X, θ)

∂θ

= ζ · J(t, X, θ) + Q(t, X, θ)

(3.11)

with ζ(t = 0) = 0. J(t, X, θ) and Q(t, X, θ) are 3-by-3 Jacobian matrix and 5-by-3 matrix, respectively.
The entries of matrix Q are derivatives of the right side of Eq (3.10) with respect to the parameters.

3.5. Control strategy

In the past decade, some countries in the European Union (EU) are burdened with cases of high
measles due to low immunization coverage [36]. Several factors potentially reduced coverage of the
measles vaccine, such as low family income [37], parent education, lack of access to health care net-
works, migration [37–40], and beliefs about the risk of vaccination [41]. Therefore, high vaccine
coverage is needed to prevent outbreaks in the general population as well as in the poorly pooled pop-
ulation [42]. The effectiveness of immunization also depends on reducing disparities associated with
socioeconomic levels and access to health care [43, 44].

Measles vaccine is available and circulating in society. Jakarta provincial office also supports
measles vaccination programs to minimize the cases as much as possible by implementing several
government programs that have been launched. There are three stages of vaccine implementation
in Jakarta. The stages of vaccination are given to susceptible individuals aged 9–11 months, 18–24
months, and 7–15 years [45]. However, the efficiency of this intervention program has not been fully
assessed. Hence it is necessary to analyze it to get the best strategy that is efficient and adjusted for
the budget. Here, we discussed the optimal way to control measles transmission via model (3.2) by a
term of vaccination p. The parameter values obtained from the estimation parameter are used in this
simulation by varying the value of p to observe the impact of vaccination.
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Figure 2. Oscillatory solutions of model (3.2) for β = 2, p = 0, δ = 0.5, and the initial con-
dition I(0) = H(0) = 10−5,R(0) = 0, S (0) = 1 − (I(0) + H(0)); (a) susceptible compartment;
(b) infected compartment; (c) hospitalized compartment; (d) recovered compartment.
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4. Results and discussion

We confirmed the constructed model based on the above analysis results and the actual data in this
part. The numerical method used in this simulation is Runge-Kutta method. First, the oscillatory
solution was performed by taking parameter values from Table 1, β = 2, p = 0, and δ = 0.5. The
other values are taken according to either references or assumptions, see Table 1. Second, the solution
oscillates and tends to the equilibrium point, see Figure 2. It is a numerical simulation of Proposition
3.1.1 about the existence of oscillatory solutions around E1.Third, we estimated parameters in the
model satisfying the minimum error between data and hospitalized solution and used the parameters
for stochastic simulation. There are two unobserved parameters in model (3.2), they are β and δ.
For the initial condition, we assumed N = 9.5 · 106 as a total population in Jakarta, S (0) = 1 −
(I(0) + H(0)),R(0) = 0. The unknown initial conditions, H(0) and I(0) are estimated together with
the unobserved parameters. Fourth, we presented a study of sensitivity analysis and then performed
control a strategy which is simulated with several levels of immunization coverage.
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Figure 3. (a) Bifurcation diagram represents the stable solution and the unstable one; (b) Plot
oscillatory orbit of infected compartment with respect to the susceptible compartment (3.2).

The result of parameter estimation shows that ϑ converges to β = 0.67, δ = 0.3583, I(0) = 2.0157 ·
10−5,H(0) = 2 · 10−6 with a resnorm of 1.0486 · 10−10, see Figure 4(a). The residual plot and fitting the
distribution of the residual are shown in Figure 4(b) and Figure 4(c), respectively. The results show that
the absolute errors are mostly below 2 ·10−6, indicated in the yellow area, which can be interpreted that
the average estimated error is under two people per million population. Further, the residual follows a
normal distribution with mean equal to zero and 1.4242 · 10−6 variance by using a one-sample t−test
at significance level 99 %. Afterward, we used the estimated parameter for stochastic simulation with
4t = 10−4. The results are shown in Figure 5. The simulation results show that the data are within the
95 % confidence interval of the stochastic model and the average of the stochastic solutions across a
thousand runs is relatively close to the deterministic solution.
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Figure 4. (a) Fitting the solution of hospitalized compartment in model (3.2) to the measles
data; (b) Residual plot of hospitalized individual; (c) Fitting the distribution of residual to a
normal function; (d) 3D plot of resnorm with respect to β and δ.
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Figure 5. (a) Simulation of hospitalized compartment from stochastic model compared to
the data; (b) 95% confidence interval of hospitalized compartment across a thousand runs of
stochastic model.

In sensitivity analysis, we are interested in observing the parameter sensitivity under endemic con-
ditions (R0 > 1) such that the sensitivity analysis was conducted locally in neighborhood of θ? where,

θ? =
{
β? = 2, p? = 2 × 10−7, δ? = 0.5, γ?1 = 1/3, γ?2 = 1

}
.

The results of this sensitivity analysis are shown in Figure 6 by taking fixed biological parameters
µ = 1/(52 · 70) and r = 0.9. We then compared which parameters are dominantly contributing to the
change of the solutions. The parameters discussed here for sensitivity analysis are β, p, δ, γ1, and γ2,
respectively. Recalling the Eq (3.10), if ζ is large enough, it means that a small change in parameter θi

makes a big contribution to Xk. Therefore, significant parameters have large values of ζ. A positive or
negative value of ζ indicates the effect which is directly or inversely proportional, respectively.

In Figure 6(a)–(c), the most sensitive parameter to the susceptible population is p. The second and
third are δ and γ1. They have a positive effect on the susceptible population even though changes to
these parameters do not greatly affect the susceptible population. It indicates that when the parameters
increase, then the susceptible population also increases. Unlike the β parameter, this parameter is
the fourth sensitive parameter after δ and γ1. But the effect of changing the parameter β and p have
an opposite effect on the population. It means that by increasing infection rates or the proportion of
vaccinated individuals, it decreases the susceptible population. Meanwhile, the parameter γ2, the effect
of the changes is not significant on the susceptible population.

For the sensitivity of the infected population with respect to the parameters, δ and γ1 are the most
sensitive parameter and have a opposite effect on the infected population. The parameter p is more
sensitive than the parameter β. But the parameter p has a opposite impact on the infected population,
see Figure 6(d)–(f). It can be interpreted that when the rate of treatment to the hospital increases,
the infected population decreases. The government (health department) can issue policies such as the
health insurance program to increase the rate of treatment at the hospitals to reduce the number of
infected populations. Natural healing is more sensitive than vaccination parameters. It indicates that
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Figure 6. Numerical approximation for time-dependent sensitivity analysis around θ∗: Sen-
sitivity dynamics of susceptible S (t) with respect to the parameters (a) β and γ1; (b) δ; (c) p
and γ2. Sensitivity dynamics of infected I(t) with respect to the parameters (d) β; (e) δ and
γ1; (f) p and γ2. Sensitivity dynamics of hospitalized H(t) with respect to the parameters (g)
γ2; (h) δ and γ1; (i) β and p.
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when an outbreak is occurring, providing treatment accesses easier for infected individuals is better
than vaccinating.

The most sensitive parameter in the hospitalized population is the recovery rate caused by treatments
(γ2). The second one is the hospitalized rate (δ). The recovery rates, both natural healing, and healing
caused by treatments have an opposite effect on the hospitalized population. It can be seen that the
increase in the recovery rate will further reduce the number of hospitalized population. The infection
rate (β) has a positive effect on the hospitalized population even though the sensitivity level is lower
than p, see Figure 6(g)–(i). Vaccination parameter (p) has an opposite impact, which means that giving
vaccines with a large proportion will reduce the number of hospitalized population.
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Figure 7. Comparison between dynamic of hospitalized compartment with and without in-
terventions, where the interventions are indicated by value variation of intervention coverage
(a) by 0.2%, 0.4%, 0.6%, 0.8%, and 1%; (b) by 2%, 3%, 4%, 5%, and 6%.

Jakarta has about 2.5 million children under 15 years old or around 26% of the total population.
They are the most dominant measles vaccination target. Therefore, the variation of vaccination cover-
age is less than 30% in this simulation. Variation of the level of vaccine coverage is represented by the
parameter p and the results are presented in Figure 7. The far-left graphics represent the dynamics in-
fected with respect to the vaccine coverage 0.2% to 1% and 2% to 6% in the right image. Both provide
information that increasing vaccine coverage, the number of cases is getting smaller. Nevertheless, this
level of vaccine coverage must be adjusted and synchronized with the intended budget to overcome
this disease.

5. Conclusion

We have constructed deterministic and stochastic models for a measles transmission with vaccina-
tion. Two equilibria are obtained with their stability, both locally and globally. Oscillatory solutions
are also found around the endemic equilibrium when certain conditions are satisfied, are shown in Fig-
ures 2 and 3. In the case of parameter estimation, the residuals are mostly less than two people per
one million population and follow a normal distribution with a mean of 0 at the significance level of
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99%. The stochastic model is shown to capture the randomness of the transmission, represented by
independent Wiener process variables and diffusion matrices. It is caused by the influence of other
factors in which not all of them can be accommodated into the model. However, the simulation results
show that the actual data are within the 95% confidence interval of the stochastic model, which means
that the model can reach the random transmission of this disease contained in the data (see Figure 5).
The average of the stochastic solutions across a thousand runs is relatively close to the deterministic
solution. Moreover, the sensitivity analysis results show that the most influential parameters in the
infected population are hospitalized rate and natural recovery rate, then followed by the vaccinated
proportion. It can be a valuable information for decision-makers that improving access to health care
networks is one of the dominant factors in reducing the number of measles cases. Vaccine coverage
is also very influential in reducing the spread of the virus as a preventive measure. We hence pro-
posed a control strategy which is providing treatment accesses easier is better than vaccinating when
an outbreak occurs.

There are several limitations to this study. The first problem is the unique solution for parameter
estimation. It brings us to the global optimization problem in high dimensional space, which is still a
challenge for researchers in the optimization field. The assumption that the total population is almost
constant over time and some uniformity assumptions on parameter values taken are also limitations of
this study. In the case of sensitivity analysis, it is a local sensitivity in the neighborhood of θ∗, which is
time-dependent dynamics, and its sensitivities have adhered to the initial parameters.
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