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Abstract: The polynomial-based image secret sharing (ISS) scheme encodes a secret image into n
shadows assigned to n participants. The secret image with high resolution is decoded by Lagrange
interpolation when collecting any k or more shadows. Thus, ISS is used in applications such as
distributive storage in the cloud, digital watermarking, block chain, and access control. Meaningful
shadows are significant in ISS because meaningful shadows decrease the suspicion of image encryption
and increase the efficiency of shadow management. Generally, previously meaningful ISS schemes
were achieved through embedding the shadows into cover images using information hiding techniques
and suffer from large pixel expansion and complex decoding procedure. Digital image processing, such
as inpainting (texture synthesis), is a standard technique in multimedia applications. It will be highly
significant if ISS can be performed in the processing of a normal digital image processing technique.
Generally, the encoding method of an ISS scheme entails the use of a mathematical function that is
sensitive to any slight change in the ISS output; therefore, the development of a method for performing
the ISS procedure and simultaneously achieving image processing behavior is a key challenge. In
this paper, we exploit the behavior ISS (BISS) and realize an image inpainting-based BISS scheme
for the (k, n) threshold. Using screening operations, a secret image is encoded into the pixels of cover
images by polynomial-based ISS in the processing of inpainting shadows to obtain meaningful shadows
similar to the input cover images. In addition, the secret image can be losslessly decoded by Lagrange
interpolation when collecting any k or more shadows. Experiments are given to confirm the efficiency
of the scheme.

Keywords: image secret sharing; behavior image secret sharing; image inpainting; polynomial; color
image; meaningful shadows

1. Introduction

Digital images have a special feature that distinguishes them from general digital data (even though
they are a specific form of such data), whereby each binary (grayscale) pixel is represented by a 1 bit
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(8 bits); thus, SIS can be easily applied to secret sharing.
The image secret sharing (ISS) scheme encodes a secret image into n shadows assigned to n

participants. The secret image is decoded when collecting any k or more shadows. Thus, ISS has been
applied to distributed storage in the cloud, digital watermarking, block chain, and access
control [1–4].

The basic principles of widely studied high-resolution ISS techniques include visual cryptography
(VC), a.k.a. visual secret sharing (VSS) [4, 5], and polynomials [6–12].

In VC, for a (k, n)-threshold [11,13–17], the encoded n shadows are usually printed onto transparent
films and then assigned to associated n participants. VC has the merit that the secret is decoded without
any cryptographic computations by superposing any k or more shadows and using only the human
naked eye. Unfortunately, the conventional VC schemes generally have the weaknesses of poor image
quality and pixel expansion.

To decode the secret image with high resolution, the first polynomial-based secret sharing scheme
for a (k, n) threshold introduced by Shamir [6] entailed the construction of a random (k − 1)-degree
polynomial to obtain n shadows. When any k or more shadows are collected, the secret is decoded
with high resolution by Lagrange interpolation. Inspired by Shamir’s work, many enhanced
polynomial-based ISS schemes [18–21] with additional properties have been introduced. The
advantage of polynomial-based ISS is that the decoded secret image is obtained with high resolution
and no pixel expansion. However, this technique has the drawbacks that the decoded secret image is
generally slightly distorted and the shadows appear as noise (meaningless).

Meaningful shadows are significant in ISS because they decrease the suspicion of image encryption
and increase the efficiency of shadow management. More importantly, meaningful shadows can be
used to search in the encrypted domain based on image recognition, which is a reasonable approach
for distributed storage and cloud computing.

However, most polynomial-based ISS schemes with meaningful shadows [19,22,23] utilize existing
information hiding techniques other than ISS, which embed the shadows into n cover images in order
to output meaningful steganographic images (shadows). However, this kind of method entails pixel
expansion and has a high computational decoding complexity. In addition, meaningfulness is achieved
based on information hiding rather than ISS.

Digital image processing, such as inpainting (texture synthesis) [24–26], is a normal behavior in
multimedia applications. Therefore, performing ISS in the processing of normal digital image
processing behavior will be a significant advance. Recently, Yan et al. [26] proposed a partial ISS
scheme for a (k, n)-threshold based on linear congruence and image inpainting. This scheme can
recover the full secret image including the secret target part when collecting any k or more shadow
images. However, it has some artifacts or secret leakage on the shadow and inputs the same cover
image.

The encoding method of an ISS scheme generally entails the use of a mathematical function that
is sensitive to any slight change in the ISS output; therefore, how to perform the ISS procedure and
simultaneously achieve the image processing behavior is a key challenge, which is the motivation of
this paper.

In this paper, we exploit the behavior ISS (BISS) and realize an image inpainting-based BISS
scheme for the (k, n) threshold. Figure 1 illustrates the motivation of this paper, where BISS means
that digital image processing behavior is utilized to achieve ISS.
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Figure 1. The motivation of this paper.

In the realized inpainting-based [24, 25] BISS scheme for the (k, n) threshold, using screening
operations, a secret image is encoded into the pixels of cover images by polynomial-based ISS in the
processing of inpainting shadows to obtain the meaningful shadows that are similar to the input cover
images. In addition, the secret image can be losslessly decoded by Lagrange interpolation when
collecting any k or more shadows. Experiments are given to validate the efficiency of the scheme.

The outline of the rest of the paper is as follows. Section 2 focuses on some basic preliminaries for
the realized scheme. In Section 3, the realized scheme is described in detail. Section 4 is devoted to
experiments. Finally, Section 5 concludes the paper.

2. Preliminaries

In this section, we give the BISS motivation description and some preliminaries as the basis for
the realized method. The original secret image S is shared among the total of n shadows, while the
reconstructed secret image S ′ is reconstructed from t (k ≤ t ≤ n, t ∈ Z+) shadows.

2.1. Motivation description

As shown in Figure 2, for the given secret image in Figure 2(a), denoted by S , Figure 2(b),(c)
show two input cover images C1 and C2, Figure 2(d) is obtained by manually selecting and removing
the target part (of the same size as S ) with the color green from the original cover image C1, the
notations of different regions and their edges are shown in Figure 2(e), and the general notations are
given in Figure 2(f). The region Ω denotes the target part with the same size as S , part Φ means the
untouched part, and ∂Ω is the edge of the 2 parts. The shadow-covered secret after sharing is denoted
by S Ci, i = 1, 2, · · · , n for the (k, n) threshold.

A BISS problem can be described as follows: For the selected target part Ω and the associated cover
images C1,C2, · · · ,Cn, a BISS scheme outputs n meaningful shadows S Ci, i = 1, 2, · · · , n, assigned to
n associated participants, and each shadow has an appearance similar to a cover image. When any k or
more shadows are collected, the secret image can be decoded. However, even if infinite computational
power is available, no part of the secret image will be decoded when less than k shadows are collected.
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(a) Secret image S (b) Cover image C1 (c) Cover image C2

(d) C′1

∂Ω

Ω

Φ

1
C ′

(e) (f)

Figure 2. An example of the BISS problem description. (a) Secret image S ; (b),(c) same
input cover image Ci; (d) C′1 obtained by manually selecting and removing the target part
with the color green from the original cover image C1; (e) notations in this example; (f)
general notations.
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2.2. Polynomial-based image secret sharing

The current processing pixel value of the grayscale secret image is denoted by s, and then, to encode
s into n pixels for n corresponding shadows by using the polynomial-based ISS scheme [6], the steps
will be repeated until all of the secret pixels have been processed.

Step 1: Construct a k − 1 degree polynomial as follows.

g(x) = (a0 + a1x + · · · + ak−1xk−1) mod P (2.1)

where a0 = s, ai is random in [0, P − 1] for i = 1, 2, · · · k − 1 and P = 251.
Step 2: Calculate

sc1 = g(1), · · · , sci = g(i), · · · , scn = g(n) (2.2)

In the decoding phase of polynomial-based ISS, for any given k pairs among the total n pairs
{(i, sci)}ni=1, where i is the ith participant’s order label, using Lagrange interpolation, we can solve for
the coefficients of g(x) and finally calculate s = g(0). By contrast, the secret image S will not be
decoded with any less than k shadows.

Figure 3 gives an example by directly applying the polynomial-based ISS method for the (2, 2)
threshold to BISS, where the same input secret image and cover images as those for Figure 2 are used.
We find that the target part can be decoded with high resolution (with slight loss), while the
corresponding target parts of the shadows are noise-like, decreasing the efficiency of shadow
management and increasing the suspicion of encryption.

Polynomial-based sharing idea will be selected in our scheme as the basic ISS method. In the
realized scheme, polynomial-based ISS will be enhanced to be lossless and meaningful in the
processing of inpainting shadows. .

(a) Shadow S C1 (b) Shadow S C2 (c) Decoded secret
image S ′

Figure 3. Experimental results of directly applying the polynomial-based ISS method for
the (2, 2) threshold to BISS. (a),(b) Two shadows S C1 and S C2; (c) cropped secret image S ′

decoded from S C1 and S C2.

2.3. Image inpainting

Image inpainting refers to the process of reconstructing the lost or damaged part of an image. Its
essence is the process of recovering the complete information according to the lost incomplete
information. The inpainting features used for an image are generally discussed as follows.
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1) Image inpainting technology is to analyze images according to the rules of human vision, which
mainly depends on the research of image model and the cognitive rules of human vision.

2) How to fill the target part is mainly determined by the overall situation of the image. The purpose
of image inpainting is to maintain the harmony and unity of the whole original image.

3) The original structure around the target part should be extended to the inside of the target part.
4) The target part can be divided into several areas by the extension of the surrounding structure,

and each area is filled with a color or patch similar to the surrounding boundary.
5) Repaint the details inside the target part, that is, match the texture.
6) The basic idea of image inpainting method based on texture synthesis is to select appropriate

patch samples from known untouched part, synthesize or copy them to the defect area, and ensure the
similarity and continuity of texture and structure at the same time. At this point, the process of
matching, searching and filling, and the determination of patch priority are the most important.

Among the many image inpainting techniques developed and reported in the literature, the widely
used and investigated approach of Criminisi et al. [24, 25] will be adopted in our scheme. We will
describe the image inpainting approach of Criminisi et al. in detail. The key feature in the design of
this method is the selection of the patch priority order during region filling. The patch with the highest
priority is filled preferentially. The priorities will be updated after each filling until the whole target is
completely inpainted in the same manner. The main inpainting process is as follows.

1) Select the target part Ω to be inpainted, and Φ = C −Ω, where C denotes the whole image.
2) Use the image texture feature to determine the size of the template window, denoted by Ψp ,

where any p ∈ ∂Ω represents the center of the template window, and the size of the window must be
larger than the largest texture element.

3) Calculate patch priorities according to Eq (2.3), i.e., the product of the data term and the
confidence term.

W(p) = C(p)D(p) (2.3)

where C(p) and D(p) represent the data term and the confidence term, respectively, and are
defined as

D(p) =

∣∣∣∇S ⊥p · np

∣∣∣
a

(2.4)

C(p) =

∑
q∈ψp∩Ω̄

C(q)∣∣∣ψp

∣∣∣ (2.5)

where
∣∣∣ψp

∣∣∣ denotes the area of ψp and a is a normalization factor. At point p, ∇S ⊥p and np are the
isophote direction and the normal vector direction, respectively.

The data term expresses the difference between the normal vector direction and the isophote
direction. The confidence term measures the amount of reliable information in the template
window. In other words, when the difference between the normal vector direction and the isophote
direction is smaller and the template window contains more information, the priority of the patch will
be higher.

4) Find p̂ by using Eq (2.6) and, in the source image, the block ψq̂ ∈ Φ with the highest matching
by using the template window as specified by Eq (2.7), where the sum of squared Differences (SSD) is
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adopted as the evaluation standard. Finally, the patch of the current window is replaced by the highest
matching block.

p̂ = arg max
p∈∂Ω

W(p) (2.6)

q̂ = arg min
q∈Φ

d(ψp̂, ψq) (2.7)

5) For any q ∈ ψp̂ ∩Ω, after each filling process, renew the confidence terms C(q) = C(p̂).
6) Repeat steps 3–5 until the image is completely inpainted.
As examples, the inpainted images obtained using the approach of Criminisi et al. are shown in

Figure 4. Some other visually plausible images are obtained, and therefore, image inpainting will be
used in the realized scheme to achieve meaningful shadows.

(a) C1 (b) C2 (c) C3 (d) C4

(e) C′1 (f) C′2 (g) C′3 (h) C′4

(i) DC1 (j) DC2 (k) DC3 (l) DC4

Figure 4. Examples of the inpainted images obtained using the approach of Criminisi et al.
(a–d) Cover images; (e–h) C′i obtained by manually selecting and removing the target part
with the color green from the cover image Ci; (i–l) directly inpainted images.
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3. The realized BISS scheme

In this section, we will realize an image inpainting-based BISS scheme for the (k, n) threshold. We
will encode the original secret image S and the selected target part Ω of the cover image, resulting
in n output meaningful shadows S C1, S C2, · · · S Cn. Prior to describing the realized scheme in detail,
we first describe the selection of the patch priority order in region filling.

3.1. Filling order selection

In ISS, n shadows will be output in the inpainting processing. According to Eq (2.6), as shown in
Figure 5, each shadow will have its own current filling order, a.k.a. p̂i. The n orders will be different for
the n shadows, but the order should be unique in ISS to avoid shape distortion in order to successfully
decode the secret.

Thus, we have to determine the filling order for different shadows from possible n candidate orders.
Our design is to select the filling order p̂i∗ with the highest patch priority in order to achieve better
image quality of the shadows, i.e., i∗ = arg max

i∈[1,n]
Wi( p̂i) and p̂i = p̂i∗ , i = 1, 2, · · · n.

Φ

Ω

∂Ω

1
SC

1
p
ɵ

⋯

Φ

Ω

∂Ω

i
SC

*
ip
ɵ

Φ

Ω

∂Ω

n
SC

np
ɵ

⋯⋯ ⋯

Figure 5. Filling order selection strategy.

3.2. The realized method

Our generation steps are described in Algorithm 1.
In Algorithm 1, we note the following:
1) In Step 2, each shadow has its own filling order (highest priority), i.e., p̂i. To inpaint

synchronously, in Step 3 from the n candidate orders, the highest priority is selected as the the
adopted order for inpainting all of the n shadows.

2) ∆ is used to control the image quality between the shadows and the directly inpainted images.
To satisfy f (xi) < P − 1 and

∣∣∣∣ f (xi) −C′i,pl(h,w)
∣∣∣∣ ≤ ∆, all the possible values of a1, a2, · · · , ak−1 will

decrease to NA = 256k−1 ×
(

2∆
256

)n
, and, thus ∆ =

n√
NA×256n+1−k

2 .
3) In Step 8, each color image can be decomposed to three planes, and each plane is similar to a

grayscale image.
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Algorithm 1. The realized BISS scheme for the (k, n) threshold.
Input: The threshold parameters (k, n), a color secret image S with size H ×W, and n color cover
images C1,C2, · · ·Cn.
Output: n color shadows S C1, S C2, · · · S Cn.
Step 1: Remove the target part Ωi with the same size as S , to obtain C′i , for i = 1, 2, · · · n. Let C′i be
the input uninpainted image. Use the method in section 2.3 to determine the size of the template
window, denoted by Ψp∗ .
Step 2: For each shadow, find p̂i using Eq (2.6).
Step 3: Find i∗ = arg max

i∈[1,n]
Wi( p̂i), and set p̂i = p̂i∗ , i = 1, 2, · · · n.

Step 4: For each cover image, according to p̂i and Eq (2.7), search for the most matching block
to gain ψq̂i , and then, replace the patch of the current window by the most matching block, for i =

1, 2, · · · n.
Step 5: For each position (h,w) ∈ {(h,w)|H1 ≤ h ≤ H2,W1 ≤ w ≤ W2}, where (H1,W1) and
(H2,W2) denote the coordinates of the current processing template window, repeat Steps 6–9.
Step 6: Let NA represent the number of available random values in the sharing phase, and initialize
NA = 2.

Step 7: Compute ∆ =
n√

NA×256n+1−k

2 , where ∆ denotes an image quality threshold.
Step 8: Decompose all the color images to three (R,G, B) grayscale planes. For each plane, repeat
Step 9.
Step 9: Construct the following k − 1 degree polynomial.

f (x) = (a0 + a1x + · · · + ak−1xk−1) mod P (3.1)

where a0 = S (h,w), ai is random in [0, P], and P = 257, for i = 1, 2, · · · k − 1.
Let C′i,pl(h,w) denote the plth plane of the ith shadow, for i = 1, 2, · · · n and pl = R,G, B.
Screen all of the possible values of a1, a2, · · · , ak−1, and compute f (xi). Check if f (xi) < P− 1 and∣∣∣∣ f (xi) −C′i,pl(h,w)

∣∣∣∣ ≤ ∆, for i = 1, 2, · · · n, then, calculate C′i,plane(h,w) = f (xi) and go to the next
plane or position; otherwise, NA = NA + 1, and go to Step 7.
Step 10: Renew the confidence terms after each filling process C′(qi) = C′( p̂i)m for any qi ∈

ψp̂i ∩Ω, i = 1, 2, · · · n.
Step 11: Repeat Steps 2–5 until each cover image is completely inpainted.
Step 12: Output n shadows C′1,C

′
2, · · ·C

′
n.
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4) After the patch of the current window is replaced by the most matching block in Step 4, the
secret block of the current window is encoded into n corresponding blocks with close values based
on polynomial-based ISS sharing to replace the patch of the current window in Steps 8-9. Then, the
modified patches of the current window will be the basis for the subsequent inpainting processing.
Although the ISS sharing processing may introduce slight noise or error into the shadows, the already
inpainted block with slight noise will be the input of the next inpainting round. Based on the current
input, the order with the highest priority and the most matching block will also be selected. Finally,
meaningful shadows will be obtained in a visually plausible way.

5) In Step 9, because grayscale a1, a2, · · · , ak−1 are random and all the possible values of
a1, a2, · · · , ak−1 are screened to satisfy

∣∣∣∣ f (xi) −C′i,pl(h,w)
∣∣∣∣ ≤ ∆, for i = 1, 2, · · · n, by setting

C′i,plane(h,w) = f (xi), the values of the shadow pixels are close to those of the cover image pixels such
that meaningful shadows can be obtained.

6) A prime number P = 257 is selected in Step 9, and by using screening operations on
a1, a2, · · · , ak−1, f (xi) < P − 1 will be satisfied to achieve the value of the shadow pixel in the range of
[0, 255] and lossless decoding.

7) If f (xi) < P − 1 and
∣∣∣∣ f (xi) −C′i,pl(h,w)

∣∣∣∣ ≤ ∆ are not satisfied after screening all the possible
values of a1, a2, · · · , ak−1, NA is increased to increase the value of ∆, and thus, the conditions can be
more easily satisfied. Generally, NA ≤ 16 is satisfactory.

8) xi, such as 1,33,67 and 101, will be specified in our experiments in order to achieve better image
quality and security.

9) Since every position has three color channels (planes), in Step 9, after the current plane is finished,
we go to the next plane or position.

The secret decoding of the realized scheme is the same as polynomial-based ISS based on color
decomposition, a.k.a Lagrange interpolation when any k or more shadows are collected.

4. Experimental results and analyses

In this section, experiments and analyses are performed to evaluate the effectiveness of the realized
method. In the experiments, the secret image in Figure 2(a) with the size of 256 × 256 and the cover
images in Figure 4(a–d) with the size of 500 × 375 will be employed.

4.1. Image illustration

The simulation results obtained by the realized BISS scheme for case (3, 4) are shown in Figure 6,
where Figure 6(a–d) present the encoded four shadows S C1, S C2, S C3, and S C4 and the decoded
results obtained by Lagrange interpolation with any two or more shadows are illustrated in
Figure 6(e–o). Here, S ′

{1,2} denotes the secret image decoded with S C1 and S C2. The shadows in
Figure 6 corresponding to the target part are meaningful, and they look reasonable to the human eyes.
When any three or more shadows are collected, lossless secret images are obtained. However, no
information on the secret image is decoded when fewer than three shadows are collected.

Additionally, the (2, 2) threshold simulation results are shown in Figure 7, and it is observed that
the results are similar to the results of the simulations described above.

Based on the above-described results, we know the following.
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(a) S C1 (b) S C2 (c) S C3 (d) S C4

(e) S ′
{1,2} (f) S ′

{1,3} (g) S ′
{1,4} (h) S ′

{2,3}

(i) S ′
{2,4} (j) S ′

{3,4} (k) S ′
{1,2,3} (l) S ′

{1,2,4}

(m) S ′
{1,3,4} (n) S ′

{2,3,4} (o) S ′
{1,2,3,4}

Figure 6. Experimental result for the realized scheme for the threshold (3, 4).

(a) S C1 (b) S C2 (c) S ′
{1,2}

Figure 7. Experimental result for the realized scheme for the threshold (2, 2).
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1) Each shadow is meaningful and looks reasonable to the human eyes. Each shadow separately
looks similar to a natural cover image.

2) An arbitrary secret image is successfully inpainted into the visually plausible shadows.
3) We cannot decoding the secret when t < k shadows are collected; when t = k or more shadows

are collected, the secret image is decoded losslessly.
4) A BISS for the (k, n) threshold is achieved.

4.2. Image quality

The image quality is evaluated using the peak signal-to-noise-ratio (PSNR) given in Eq (4.1) and
the structural similarity index measure (SSIM) [27] given in Eq (4.3). The same secret image shown
in Figure 2(a) and the cover images shown in Figure 4(a–c) are used to perform the experiments.

PS NR = 10log10(
2552

MS E
)dB (4.1)

where

MS E =
1

W × H

W∑
i=1

H∑
j=1

[S ′(h,w) − S (h,w)]2 (4.2)

S S IM(x, y) =
[
l (x, y)

]α
·
[
c (x, y)

]β
·
[
s (x, y)

]γ (4.3)

where
l (x, y) =

2µxµy+C1

µ2
x+µ2

y+C1

c (x, y) =
2σxσy+C2

σ2
x+σ2

y+C2

s (x, y) =
2σxy+C3

σxσy+C3

µx, µy, σx, σy, and σxy mean the local means, standard deviations, and cross-covariance for images
x and y. In this paper, we assume C3 = C2

2 , α = β = γ = 1.
For the secret target area and (k, n) ( 2 ≤ k ≤ n, 2 ≤ n ≤ 4 ) threshold, the PSNR and SSIM between

S Ci and DCi for the target area, for i = 1, 2, · · · , n, are given in Table 1. From Table 1, when n is fixed,
a larger value of k leads to better image quality of the shadow since a larger value of k results in a lower
value of ∆; when k is fixed, a larger value of n leads to a worse image quality of the shadow.

Table 1. Average PSNR and SSIM between S Ci and DCi for the target area.

Threshold (k,n) PSNR SSIM
(2,2) 19.1913 0.3336
(2,3) 15.1980 0.2759
(3,3) 19.2590 0.4092
(3,4) 17.8137 0.2973
(4,4) 17.8643 0.2995
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4.3. Embedding capacity

We intend to introduce and discuss the embedding capacity of the presented scheme as follows.

Definition 1 (Embedding capacity). When n cover images with a size of HC × WC, denoted by
C1,C2, · · ·Cn, are input, a secret image, represented by S , with a size of HS × WS is encoded
into n shadows, denoted by S C1, S C2, · · · S Cn, with a size of HS C × WS C, the embedding capacity,
denoted by EC, can be employed to evaluate the average embedding rate per shadow bit, as in
Eq (4.4).

EC =
LS × HS ×WS

n × LS C × HS C ×WS C
(4.4)

where Lx,Hx, and Wx denote the color level, image height, and image weight of x, respectively. For a
binary image, Lx = 1, Lx = 8 for a grayscale image and Lx = 24 for a RGB color image.

We further explain and analyze Definition 1 as follows.

• In Eq (4.4), the denominators include the total bits in all shadows; the numerator indicates the
total bits embedded in the output shadows.

• A larger pixel expansion will lead to lower EC based on Eq (4.4) because of the larger WS C×HS C.
• LS C = 24 and LS = 24 in the presented scheme. Thus, EC = HS×WS

n×HS C×WS C
in the presented scheme.

According to Eq (4.4), the embedding capacity of Figure 7 and Figure 6 is 0.175 and 0.087,
respectively.

4.4. Comparisons with related schemes

We compare our BISS with the schemes of Yan et al. [26] and Ding et al. [9], where the same secret
image as in Figure 2(a) and the (3, 3) threshold are used. These are chosen for comparison because
the scheme of Yan et al. also utilizes image inpainting to achieve partial image secret sharing and the
scheme of Ding et al. relies on pixel expansion based on a polynomial for the (k, n) threshold.

Yan et al. [26] proposed a partial ISS scheme for the (k, n)-threshold based on linear congruence
and image inpainting. Their scheme can recover the full secret image including the secret target part
when collecting any k or more shadow images. We use the same parameters as Yan et al. [26] to
perform the comparisons shown in Figures 8 and 9, where k = 3, n = 3. Figure 9 illustrates the
experimental results obtained using the scheme of Yan et al. [26]. Figure 8 illustrates the experimental
results obtained using our scheme. According to Figures 8 and 9, both the scheme of Yan et al. and our
scheme output meaningful shadows based on image inpainting and decode the secret image losslessly.
However, the differences between the scheme of Yan et al. and our scheme are as follows.

1) There are some artifacts or secret leakage on the shadow of Yan et al.’s scheme due to the
sharing principle of linear congruence, while our scheme has no artifact due to the polynomial sharing
principle.

2) When any t < k shadows are collected, Yan et al.’s scheme exhibits secret leakage, while our
scheme has no secret leakage because of its different sharing principles.

3) We can input three different cover images, while Yan et al.’s scheme inputs the same one, so our
scheme is more convenient for managing the shadows than theirs.

4) Their secret can only be a part of the cover image, while in our scheme, the secret can be any
input secret image; hence, our method is more general than theirs.
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(a) S C1 (b) S C2 (c) S C3

(d) S ′
{1,2} (e) S ′

{1,2,3}

Figure 8. Experimental result of the realized BISS scheme for the threshold (3, 3).

(a) S C1 (b) S C2 (c) S C3

(d) S ′
{1,2} (e) S ′

{1,2,3}

Figure 9. Experimental results of the scheme of Yan et al. [26] for the (k, n) threshold, where
k = 3, n = 3.
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The experimental results of the scheme of applying the traditional polynomial-based ISS method for
the (k, n) threshold [9] are shown in Figure 10. According to Figures 8 and 10, the differences between
the results are quite obvious. More importantly, our scheme can decode the secret image losslessly,
while the scheme of Ding et al. is slightly lossy because 251 is adopted as the prime.

(a) S C1 (b) S C2 (c) S C3

(d) S ′
{1,2} (e) S ′

{1,2,3}

Figure 10. Experimental results of the scheme of applying the traditional polynomial-based
ISS method for the (k, n) threshold [9], where k = 3, n = 3.

4.5. Extensions

The realized scheme may be extended to improve the performance of the realized scheme in the
following way.

Cheating is a serious issue in related ISS schemes. In [28], an ISS scheme for a (k, n) threshold with
a separate shadow authentication ability is proposed based on ISS itself rather than information hiding
through applying visual secret sharing (VSS) to polynomial-based ISS by using a screening operation.

We may apply the idea to the presented algorithm to deal with the cheating issue at the price of
reducing image quality. More specifically, in step 9 of the realized scheme, in order to achieve separate
shadow authentication, we may increase an additional condition, i.e., the most significant bit (MSB)
of the value of each shadow pixel is equal to the corresponding bit of a binary authentication image;
in other words, step 4 of the Algorithm 1 in [28] is added into step 9 of the realized scheme. We note
that, since more conditions should be satisfied in this way, the shadow quality will be reduced.

5. Conclusion

This paper considered a method for outputting meaningful ISS by image secret sharing (ISS)
rather than information hiding. An image inpainting-based behavior ISS (BISS) scheme for
the (k, n) threshold is realized. Experiments confirm the efficiency of the scheme. The PSNR of the
shadow is close to 20, achieving acceptable shadow image quality. Comparisons with related schemes
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show the advantages of the realized scheme. Our future work will focus on applying follow-up
improved image inpainting methods, improving the image quality, cheating prevention and realizing
secret image recovery in the case of lossy shadows.
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